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Alzheimer’s disease (AD) is a common neurodegenerative disorder causing

dementia in the elderly population. Functional disconnection of brain is

considered to be the main cause of AD. In this study, we applied a

newly developed association (Asso) mapping approach to directly quantify

the functional disconnections and to explore the diagnostic effects for

AD with resting-state functional magnetic resonance imaging data from

36 AD patients and 42 age-, gender-, and education-matched healthy

controls (HC). We found that AD patients showed decreased Asso in left

dorsoanterior insula (INS) while increased functional connections of INS with

right medial prefrontal cortex (MPFC) and left posterior cingulate cortex

(PCC). The changed Asso and functional connections were closely associated

with cognitive performances. In addition, the reduced Asso and increased

functional connections could serve as effective neuromarkers to distinguish

AD patients from HC. Our research provided new evidence for functional

disconnections in AD and demonstrated that functional disconnections

between cognition-memory networks may be potential early biomarkers

for AD.

KEYWORDS

Alzheimer’s disease, association mapping, functional connectivity, disconnection,
biomarker

Introduction

Alzheimer’s disease (AD) is a typical neurodegenerative disorder and the most
common cause of dementia with a core symptom of progressive cognitive declines
(Ballard et al., 2011). Almost 15% of old adults over 65 years old have mild cognitive
impairment and more than half of these people become to AD within 5 years
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(Farlow, 2009). AD is mainly manifested with loss of memory,
language, attention, executive, and perceptive functions
(Petersen et al., 1999; Dubois et al., 2007; Petersen, 2009;
Dubois et al., 2010; Sheline and Raichle, 2013). With the disease
progresses, AD patients gradually lose their ability to take care of
themselves and can only rely on caregivers (Dubois et al., 2010).
AD has become one of the most serious social and economic
burdens on patients and their families. Thus, identification of
early detection and diagnosis biomarkers for AD provides an
important buffer for developing effective treatments.

The cortical atrophy, especially the hippocampal atrophy
is a hallmark of AD (Jack et al., 2000; Fox and Schott, 2004;
Apostolova et al., 2012). However, emerging evidence has
demonstrated that AD is not only a local lesion but a brain
disorder with functional disconnection (de Vos et al., 2018;
Hojjati et al., 2019). The disconnections within or between
brain functional networks are primary characteristics of AD in
spite of a few increased connections reported (Greicius et al.,
2004; Wang et al., 2006; Agosta et al., 2012; Wu H. et al.,
2016; Zhan et al., 2016; Yu et al., 2021; Liu et al., 2022).
A recent study found that the large-scale decoupling of fronto-
temporal networks associated with cognitive decline precedes
structural deficit in individuals with mild cognitive impairment
and may represent a potential biomarker for disease progression
(Broadhouse et al., 2021). Thus, to reveal the functional
dissociations of brain in AD patients may facilitate establishing
an early diagnosis and prevention target. The previous studies
mainly used functional connectivity strength (FCS), i.e., degree
centrality method to measures functional associations (Wu
H. et al., 2016; Liu C. et al., 2018; Liu et al., 2022; Cheng
et al., 2022a), but FCS only counts the connected edges of the
seed voxel with other voxels but neglect whether or not its
connected neighborhoods are also directly interconnected to
each other since the interconnective state of neighboring voxels
will degrade the importance of the seed voxel in information
transition. To overcome the limitation of FCS, a threshold-free
method of association mapping (Asso) was recently developed
to quantitatively characterize the brain association ability at the
voxel level (Chen et al., 2021). Asso mapping approach identified
a significant gradient distribution with high Asso values in
association cortical networks while low Asso values in visual
and limbic networks. In addition, Asso mapping can better
reveal the aging effects than FCS. Therefore, Asso mapping is
particularly useful to reveal the early functional dissociations in
AD and open a new avenue to reveal early biomarker for onset
of AD.

Using the newly developed Asso approach, the present
study first revealed the functional dissociations in AD. Then,
the functional connectivity (FC) analysis was used to identify
disrupted functional couplings with other brain areas. Next,
support vector machine (SVM) was applied to test whether the
changed Asso and FC could serve as biomarkers to distinguish
AD from healthy controls (HC). Finally, correlation analyses

were performed to establish the relationships between changed
Asso or FC and cognitive performances.

Materials and methods

Subjects

Thirty-six drug-free patients with AD and 42 age-, gender-,
and education-matched HC were recruited from Xuanwu
Hospital, Capital Medical University, China. AD was diagnosed
by 2 trained senior neurologists with a structured clinical
interview. The inclusion criteria were as follows: (1) right-
handed with age from 50 to 85 years, (2) meeting the
diagnosis criteria of 2011 National Institute on Aging AD
(NIA-AA) guidelines, (3) clinical dementia rating (CDR)
(score of 0.5 or 1.0, 4) geriatric depression scale (GDS) ≤ 8
and hachinski ischemic scale (HIS) < 4. The exclusion
criteria include (1) complications with other severe heart,
liver, lung, kidney, or neurological diseases; (2) currently
taking benzodiazepines or having a history of drug abuse; (3)
comorbid with other mental disorders. The written informed
consents were provided and obtained by all participants or
their families. The clinical symptom severity for AD patients
was assessed using the Alzheimer’s disease assessment scale-
cognitive subscale (ADAS-Cog) and CDR scale. In addition,
the Mini-Mental State Examination (MMSE) and Montreal
Cognitive Assessment (MoCA) were also employed to evaluate
the cognitive performances for all the participants. This study
was approved by the local medical research ethics committee
at Xuanwu hospital, Capital Medical University, China. The
detailed information for all the participants can be found in our
previous study (Liu et al., 2022).

Resting-state fMRI data acquisition

The functional MR images were acquired on a clinical
Siemens 3.0 T MRI scanner (Siemens, Erlangen, Germany)
with an echo planar imaging sequence. Subjects were instructed
to keep their eyes closed and to relax during scanning.
The foam padding was used to reduce head motion. The
acquisition parameters were: repetition time (TR) = 2,000 ms,
echo time (TE) = 40 ms, flip angle (FA) = 90◦, matrix
size = 64 × 64, slices = 28, thickness/gap = 4.0/1.0 mm, voxel
size = 3.75× 3.75× 4 mm3, 240 volumes.

Resting-state fMRI data preprocessing

The resting-state fMRI data was preprocessed with the
following steps: (1) discard the first 10 volumes to allow
for magnetization equilibrium; (2) head motion correction by
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realigning all the volumes to the first volume. The participants
with excessive head movements above one voxel were excluded;
(3) normalize the fMRI images to the Montreal Neurological
Institute (MNI) template and re-sampled to 3-mm isotropic
voxels; (4) all the images were detrended and filtered with
temporal band-path (0.01–0.1 Hz); (5), the Friston-24 head
motion parameters, white matter, cerebrospinal fluid, and
global mean signals regressed out. To further eliminate head
motion effects, the bad images (before 2 time points and
after 1 time points) exceeding the pre-set criterion (frame
displacement < 0.5) for excessive motion were scrubbed using
linear interpolation (Cheng et al., 2021, 2022b; Pang et al.,
2022a,b).

Association index calculation

The Asoo for a specific voxel was calculated as the total
number of functional connections of this voxel to all other
voxels minus that of interconnected functional connections
of all the other voxels. The functional connections were
considered only the connectivity strength above 0.25. The details
for Asso calculation are the following. First, the whole-brain
functional connectivities using Pearson’s correlation coefficients
were calculated for a specific voxel. Then, a predefined threshold
of 0.25 was used to identify the number (N) of functional
connectivities with higher coefficients than this threshold. Next,
the number (K) of functional connectivities higher than 0.25
among the above identified voxels was further calculated.
Finally, the Asoo for this specific voxel was computed as the
following formula. Finally, a whole-brain Asoo map for each
subject was obtained using the same procedures for the voxels
of the whole brain. The z-transformation was applied to whole
brain Asso map to improve normality and smoothed with
6 mm full-width-at-half-maximum (FWHM) Gaussian kernel

TABLE 1 Demographics and clinical information.

Subjects AD HC p-value

Number of subjects 36 42

Gender (male: female) 21/15 16/26 0.097

Age (mean± SD) 68.84± 7.84 66.07± 6.79 0.097

Years of education
(mean± SD)

10.84± 3.11 11.62± 3.32 0.29

MMSE (mean± SD) 21.3± 3.36 28.24± 1.43 1.08× 10−19

MoCA (mean± SD) 16.92± 3.08 26.95± 2.01 4.02× 10−27

Duration of illness
(years)

3.08± 1.92

ADAS-Cog 18.81± 7.49

A Pearson chi-squared test was used for gender comparison. Two-sample t-tests
were used for age, years of education, MMSE, and MoCA comparisons. MMSE,
Mini-mental State Examination; MoCA, Montreal Cognitive Assessment; ADAS-Cog,
Alzheimer’s Disease Assessment Scale-Cognitive Subscale test; AD, Alzheimer’s Disease;
HC, healthy control.

for statistical analysis. A two-sample t-test with age, gender, and
education as covariates was used to identify differences between
AD and HC. The significance was determined with a cluster-
level corrected threshold of p < 0.05 (cluster-forming threshold
at voxel-level p < 0.001).

Asso =
N × (N − 1)− 2 × K

2
(1)

Functional connectivity analysis

To calculate FC, the normalized functional images were
smoothed using a 6 mm FWHM Gaussian kernel, and then,
detrending, filtering, and regression were performed to finish
the fMRI data preprocessing. For FC analysis, the seed region
was defined as the brain areas showing difference in Asso index.
The mean time series was then extracted for the seed region,
and the FC was measured using Pearson’s correlations between
the averaged time series of the seed region and voxels in the
rest of the brain. Finally, the Fisher’s z transform was applied
to normalize the FC maps. To identify FC difference, a two
sample t-test with age, gender, and educational as covariates
was performed between AD and HC. The significance was
determined with a cluster-level corrected threshold of p < 0.05
(cluster-forming threshold at voxel-level p < 0.001).

Functional characterization with
BrainMap database

To characterize the behavioral associations of the brain areas
showing differences in Asso and FC, functional characterization
of the brain areas were performed using the behavioral domain
analysis on the BrainMap database.1 The behavioral domain
analysis including 5 behavioral domains and 51 behavioral
sub-domains was determined using forward inferences. The
significance level was established using a binomial test [p < 0.05
corrected for multiple comparisons using false discovery rate
(FDR)] (Bzdok et al., 2013). The detailed procedures for
functional characterization have been described in our previous
studies (Eickhoff et al., 2009; Clos et al., 2013; Wang et al., 2015,
2017a, 2019; Wang J. et al., 2020).

Multivariate pattern classification using
support vector machine

To explore whether changed Asso and FC could effectively
distinguish AD from HC, a linear SVM and a leave-one-
out cross-validation were used to estimate the generalization.

1 www.brainmap.org
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FIGURE 1

Changed functional associations in Alzheimer’s disease (AD) patients. The whole brain voxel-wise association ability (Asso) mapping was applied
to identify the difference in AD patients compared with healthy controls. The reduced Asso in left dorsal anterior insula (INS) was found in AD.
The functional characterization of INS using BrainMap database found that this area is mainly involved in somesthesis perception and speech.
*Represents a significant difference.

The classification results were evaluated using index of
accuracy, sensitivity, specificity, and the area under the curve
(AUC) value.

TABLE 2 Regions with changed association index (Asso) and
functional connectivities (FC) in patients with Alzheimer’s disease
compared to healthy controls.

Brain regions L/R Peak MNI coordinates t-values

X Y Z

Insula L −51 −9 12 −4.81

Medial prefrontal
cortex

R 12 57 9 4.79

Posterior cingulate
cortex

L −6 −48 18 4.62

Two-sample t-tests were used to identify changed functional association (Asso) and
resting-state functional connectivity (FC) between Alzheimer’s disease and healthy
controls. MNI, Montreal Neurological Institute; L, left hemisphere; R, right hemisphere.

Correlation analysis

To explore whether the changed Asso or FC was associated
with the clinical or cognitive performances, the correlation
analyses were performed and the significant level was set at
p < 0.05 corrected with FDR-BH method.

Results

Demographic and behavioral
information

A chi-square was used to determine gender difference and
two-sample t-tests were applied to determine the differences
in age, education, MMSE, and MoCA. There are no significant
differences in gender (p = 0.097), age (p = 0.097), and education
(p = 0.29). Compared to HC, AD patients showed significantly
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lower MMSE (p = 1.08× 10−19) and MoCA (p = 4.02× 10−27)
(Table 1).

Changed association ability

To identify the disrupted association ability in AD patients,
Asso analysis identified significantly decreased Asso values
in left insula (INS) in AD patients (Figure 1 and Table 2).
Functional characterization of left INS revealed that this area is
mainly involved in pain and speech processing (Figure 1).

Functional connectivity analysis

With left INS as seed region, whole brain FC analysis
identified increased FCS in left posterior cingulate

cortex (PCC) and right medial prefrontal cortex (MPFC)
in AD patients compared to HC (Figure 2 and Table 2).
Functional characterization of PCC revealed that this area
is mainly involved in social cognition, explicit memory,
emotion, and cognition. Functional characterization of
MPFC found that this area is mainly involved in sadness,
social cognition, fear, cognition, and explicit memory
(Figure 2).

Classification results

To test whether the changed Asso and FC could serve as
neuromarkers to distinguish AD patients from HC, SVM was
used and achieved an accuracy of 88.46%, sensitivity of 86.11%,
specificity of 90.48%, and AUC = 0.9 for AD classification
(Figure 3).

FIGURE 2

Altered functional connectivities of left dorsal anterior insula (INS) in Alzheimer’s disease (AD) patients. Whole brain voxel-wise functional
connectivity analysis identified significantly increased functional couplings between INS and posterior cingulate cortex (PCC) and medial
prefrontal cortex (MPFC) in AD patients compared to healthy controls. The functional characterization of PCC found that this area is mainly
involved in social cognition, memory, emotion, and cognition. The MPFC was also found to mainly participate in sadness, social cognition, fear,
gustation, cognition, and memory. *Represents a significant difference.
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FIGURE 3

Classification of Alzheimer’s disease (AD) patients from healthy controls using support vector machine (SVM). With the changed association
ability and functional connectivities as features, SVM was used and achieved accuracy of 88.46%, sensitivity of 86.11%, specificity of 90.48%, and
area under curve (AUC) of 0.9 for distinguishing AD from healthy controls.

FIGURE 4

Significant correlations between the association ability, functional connectivities, and cognitive performances. The association ability (Asso) of
left dorsal anterior insula (INS) was positively correlated with Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)
scores. The functional connectivity between INS and posterior cingulate cortex (PCC) was negatively correlated with MMSE. The functional
connectivities between INS and PCC, medial prefrontal cortex (MPFC) were also negatively correlated with MoCA scores.
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Correlation results

To establish the relationship between neural measurements
and behavioral performances, Pearson’s correlation analyses
were performed. The significantly positive correlation and
negative correlation between Asso values in INS, FC of INS with
PCC and MMSE scores were found, respectively (Figure 4). In
addition, positive correlation between Asso values of INS and
MoCA, negative correlations between FCs of INS with PCC,
MPFC, and MoCA were also found (Figure 4).

Discussion

In the present study, we employed a newly proposed
method to directly investigate the functional dissociations in
patients with AD. The decreased Asso ability in insula was
found suggesting the disrupted functional integration of this
area in AD patients. The FC analyses revealed increased
connectivity of INS with PCC and MPFC in AD patients.
Moreover, the changed Asso and FC were closely associated with
cognitive performances and could serve as effective biomarkers
to distinguish AD from HC. Our findings provide new evidence
for disconnection in AD and highlight the important role of
insula in neuropathology of AD.

The insular cortex is a hub in the brain for integrating
cognition, memory, attention, emotion, and sensory (Craig,
2011; Simmons et al., 2013), and functional impairments have
been widely reported in brain disorders as well as in AD patients
(Blanc et al., 2014; Lin et al., 2017; Sun et al., 2018; Wang
C. et al., 2018; Wang Y. et al., 2018; Wang L. et al., 2020;
Fathy et al., 2020; Cheng et al., 2022b). A recent meta-analysis
demonstrated that the insula is a common neurobiological
substrate for mental illness (Goodkind et al., 2015). All these
studies indicated that the important role of insula in the
neuropathology of brain diseases. Insula is also a structurally
and functionally heterogeneous area. The dorsal anterior insula
is mainly involved in cognitive control. The ventral anterior
insula primarily participates in emotion processing, and the
posterior insula is related to perception of internal states (Deen
et al., 2011). In our study, we found that AD patients showed
decreased functional associations in dorsal anterior insula
suggesting that functional dissociations in cognition related
subregion of insula may be an early neuromarkers for cognitive
deficits in AD. The conclusion is supported by the correlation
analyses which found significant associations of AI values in
dorsal anterior insula with cognitive performances in our study.
In a word, these results demonstrated that Asso index is a useful
measure for early characterization of the onset of AD and the
dorsal anterior insula is a key target for early prevention of AD.

The dorsal anterior insula, a part of salience network, acts
as an interface between internal and external stimuli and plays
an important role in flexibly and dynamically switching between

task positive network, i.e., executive control network and task
negative network, default mode network (DMN) (Menon and
Uddin, 2010; Menon, 2011; Liang et al., 2016; Wang J. et al.,
2018). Thus, dorsal anterior insula is important to maintain
the dynamic balance of brain. DMN mainly includes PCC,
MPFC, angular gyrus, dorsolateral prefrontal cortex, and medial
temporal lobule and thus is closely related to social cognition,
memory, and emotion processing (Buckner et al., 2008; Raichle,
2015; Wang et al., 2017b, 2019). In our study, we found AD
patients showed increased functional connections with PCC
and MPFC which are two core areas in DMN (Andrews-
Hanna et al., 2010). Our finding is supported by a previous
study which used seed-based FC analysis of insular subregions
and also identified increased functional connections of dorsal
anterior insula with DMN related brain regions in AD patients
compared to HC (Liu X. et al., 2018). The increased FC between
dorsal anterior insula and DMN indicated disrupted dynamic
balance between internal and external states of brain and may
reflect compensation for cognitive declines in AD patients.
This is line with the correlation analyses results that functional
connectivities between dorsal anterior insula and PCC, MPFC
were negatively correlated with MMSE and MoCA scores in this
study. Together with the classification results, our findings of
decreased functional association ability of dorsal anterior insula
and functional connectivities of dorsal anterior insula with PCC
and MPFC provide new biomarkers for AD.

Conclusion

In conclusion, the present study assessed the alteration of
functional dissociation and couplings in patients with AD. The
decreased functional associations of dorsal anterior insula and
functional couplings with DMN were found in AD patients.
The abnormal functional association and connectivities of insula
were significantly associated with cognitive performances. The
identified insula-DMN circuits may be new biomarkers for early
diagnosis and prevention targets for AD.
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