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1  | INTRODUC TION

Insulin resistance (IR) is a condition related to metabolic alterations 
such as hyperglycemia and hypertriglyceridemia and is the first of 
multiple hits that determine the progression of nonalcoholic fatty 

liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH; 
Reaven, 1995). Moreover, the clinical features of NAFLD are similar to 
those present in metabolic disorders, such as obesity, inflammation, 
IR, and type 2 diabetes (T2D; Liu et al., 2016; Samuel et al., 2004). 
Current therapeutic strategies for IR management initially focus 
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Abstract
Although studies on lupin protein isolate (LPI) have indicated the presence of a pre-
ventive effect on insulin resistance (IR) and lipid disturbances, their influence on es-
tablished pathological traits has received little attention. Here, we evaluated the in 
vivo effects of LPI on IR and steatohepatitis as well as its influence on genes involved 
in lipid and carbohydrate metabolism. We first induced IR and steatohepatitis in rats 
by maintaining them on a high- fat diet for 5 weeks. Thereafter, we administered LPI 
to the rats daily for 3 weeks. LPI improved insulin sensitivity (AUC: 6,777 ± 232 vs. 
4,971 ± 379, p < .05, pre-  vs. post- treatment values) and reduced glucose and triglyc-
eride levels by one- third. In addition, LPI- treated rats exhibited attenuated steato-
hepatitis. At the molecular level, LPI treatment reduced liver Fasn gene expression 
substantially but increased Gys2 and Gsk3b levels. We concluded that the hypolipi-
demic and hypoglycemic activities of LPI may be caused by reduced liver lipogenesis 
and modulation of insulin sensitization mechanisms.
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on encouraging lifestyle changes, including forming healthy eating 
habits and performing daily exercise, followed by treatment with 
pharmacological agents (Cornier et al., 2005; Devlin, 1992; McAuley 
et al., 2003). In particular, the use of legume seed proteins for the 
management and treatment of noncommunicable diseases (NCDs) 
is an area of current interest, with an increasing number of recent 
reports regarding this (Hosseinpour- Niazi et al., 2015; McMacken & 
Shah, 2017; Pihlanto et al., 2017; Rizkalla et al., 2002).

Legumes have adequate nutritional value for a healthy diet be-
cause of their protein, fiber, complex carbohydrates, and micronutri-
ent content (Polak et al., 2015). Besides their nutritional properties, 
legumes contain a wide variety of health- promoting bioactive com-
pounds (Rebello et al., 2014). Regarding the importance of legume 
seeds in diabetes management, clinical studies have supported its 
inclusion in the diet because of its purported insulin sensitization 
actions (Clark et al., 2018).

The legume lupin (genus Lupinus) belongs to the Fabaceae fam-
ily and includes more than 300 species distributed worldwide. The 
domestic species Lupinus albus, L. angustifolius, L. luteus, and L. mu-
tabilis are the most widely cultivated and most widely used lupins 
for animal and human consumption in various countries (Duranti 
et al., 2008; Kohajdová et al., 2011). Furthermore, lupin and soy-
bean represent excellent protein sources for the human diet (Erbaş 
et al., 2005; Sirtori et al., 2004).

Studies on humans and laboratory animals have shown that 
adding soybean protein to the diet lowers total cholesterol, LDL- 
cholesterol (LDL- c), and triglyceride serum levels as well as amelio-
rates IR (Anderson et al., 1995; Tachibana et al., 2014). Moreover, 
soybean protein supplementation has been associated with clinical 
improvements in metabolic syndrome and T2D. Reduced values 
of fasting plasma glucose, insulin, homeostatic model assessment 
of IR (HOMA- IR), total cholesterol, low- density lipoprotein cho-
lesterol, diastolic blood pressure, and C- reactive protein have also 
been found in subjects after consuming soybean protein (Zhang 
et al., 2016). Similarly, other studies have shown beneficial effects 
of lupin protein on hyperlipidemia and hyperglycemia (Bouchoucha 
et al., 2016; Sewani- Rusike et al., 2015). In rats fed with lupin protein- 
supplemented pasta, body weight gain and food intake were reduced 
(Capraro et al., 2014). In addition, the consumption of a lupin protein- 
based beverage caused acute reductions in serum glucose levels in 
T2D patients (Dove et al., 2011). Fornasini et al. (2012) found that 
lupin protein did not reduce glycemia in normoglycemic individuals 
but induced a hypoglycemic effect in dysglycemic individuals.

Previous research in the nutraceutical field has revealed the po-
tential use of lupin protein in regulating IR, lipid, and glucose metab-
olism. One mechanism related to the metabolic effects of insulin is 
the modulation of liver glycogen synthesis, mainly through the acti-
vation of the glycogen synthase enzyme. The increase in liver glyco-
gen synthesis has been associated with improved glucose tolerance 
(Ros et al., 2010). Specifically, Gys2 and Gsk3b are directly involved 
in the glycogen synthesis pathway. In contrast, altered lipid metab-
olism has also been implicated in IR. Fatty acid synthase protein, 
encoded by Fasn, is an enzyme that participates in the synthesis of 

long- chain saturated fatty acids. Interestingly, it has been reported 
that a luteolin- enriched artichoke leaf extract reduced Fasn gene ex-
pression and triglyceride levels in vivo by modulating lipogenesis and 
fatty acid oxidation, contributing to the amelioration of liver steato-
sis (Kwon et al., 2018).

Thus, we hypothesized that lupin protein isolate (LPI) exerts a 
beneficial effect on IR and steatohepatitis in an in vivo model through 
the modulation of Fasn, Gys2, and Gsk3b gene expression. Here, we 
aimed to analyze the effects of LPI on IR and steatohepatitis in vivo. 
We also studied how lupin protein influences the expression of genes 
involved in lipid and carbohydrate metabolism such as Gys2, Gsk3b, 
and Fasn in the livers of animals under a pathological IR state.

2  | MATERIAL AND METHODS

2.1 | Plant material and lupin protein isolate 
preparation

Certified L. albus seeds were kindly provided by Dr. Edzard van 
Santen (College of Agriculture, Auburn University, Alabama, USA).

The dehulled L. albus seeds were ground into flour and defatted 
with hexane in a Soxhlet apparatus for 12 hr. The protein isolates 
were prepared as described in Figure S1 (D’Agostina et al., 2006). 
At the end of the extraction process, the isolates were freeze 
dried for 8 hr at −50°C and 0.036 mbar using a 4.5 L freeze dryer 
(LABCONCO).

2.2 | High- fat and high- cholesterol diet

We purchased the casein, cholesterol, vitamin, and mineral mixes 
from Dyets, Inc. and crude sodium cholate from Sigma- Aldrich. We 
then prepared a high- fat, high- cholesterol experimental diet as pre-
viously reported (Magaña- Cerino et al., 2020). The diet provided 
5.1 kcal/g energy, with proteins, carbohydrates, and fat supplying 
18%, 22%, and 60% of the total dietary energy, respectively. The 
lard used in this study consisted mainly of saturated fatty acids (37%) 
and monounsaturated fatty acids (45%). In addition, a proportion of 
cholesterol and sodium cholate was added. Table 1 contains the de-
tailed diet ingredients and chemical composition analyses.

2.3 | Animals

Male Wistar rats, provided by the Universidad de Guadalajara bio-
terium, were housed in an air- conditioned room (24 ± 2°C, 55 ± 5% 
humidity) with a 12 hr light/dark cycle and free access to food and 
water. The Universidad de Guadalajara Ethics Committee approved 
the experimental protocol (C.I./023/2014), and all experimental 
procedures were conducted in accordance with the International 
Guidelines for Care and Use of Laboratory Animals and the Mexican 
Official Standard 062 (NOM- 062- ZOO- 1999).
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2.4 | IR induction and experimental  
procedure

The study consisted of a 5- week IR induction period followed by a 
3- week experimental phase. In the induction period, a group of ten 
healthy rats (180– 220 g body weight) were provided with free ac-
cess to a high- fat, high- cholesterol diet (HFD) to induce IR, whereas a 
control group (Ctrl) of five rats were fed a standard chow diet (Purina 
LabDiet® 5001). After 5 weeks, we randomly assigned the induced 
IR rats to an IR- LPI (lupin- treated) or IR (saline placebo- treated) ex-
perimental group (five rats per group). During the 3- week experi-
mental phase, animals in the IR- LPI and IR groups were maintained 
on the HFD and given daily doses of LPI (2 g/kg BW of LPI dissolved 
in 5 ml saline) or sterile saline (5 ml), respectively. The Ctrl group was 
maintained on standard chow diet.

We performed an insulin tolerance test (ITT) at the start and 
end of the induction period as well as at the end of the experimen-
tal phase. We also determined the blood biochemical parameters at 
the beginning and end of the experimental phase. At the end of the 
treatment period, we excised and collected the livers for histological 
analysis and quantification of Fasn, Gys2, and Gsk3b gene expression 
(Figure 1).

2.5 | Insulin tolerance test

The IR status was verified in the animals by performing ITT at the 
beginning and end of the 5- week IR induction period as well as at the 
end of the treatment period. ITT was done by administering intra-
peritoneal insulin injections (0.5 IU/kg BW, Humulin R®, Eli Lilly and 
Company) after a 12 hr fasting period. Blood glucose concentrations 
were measured using a glucometer (One Touch Ultra®, Johnson & 
Johnson) at 0, 30, 60, and 90 min after insulin injection. Finally, we 
calculated the area under the curve (AUC) using the glucose values 
and determined the IR status using the Ctrl group as a reference.

2.6 | Blood sample collection

The animals were fasted for 12 hr and anesthetized via intraperi-
toneal administration of Zoletil® 50 (80 mg/kg BW; tiletamine- 
zolazepam; Virbac). Blood samples were withdrawn from the 
retro- orbital plexus. Serum was collected from the centrifuged blood 
samples (1,300 x g for 10 min, 4°C) and stored at −70°C until analysis.

2.7 | Determination of biochemical parameters

Serum glucose, triglyceride, total cholesterol, LDL- c, HDL- c, and ala-
nine aminotransferase levels (ALT) were determined using a semi- 
automatic spectrophotometer (BTS- 350) and commercial reagents 
(BioSystems). The very low- density lipoprotein cholesterol (VLDL- c) 
concentrations were calculated using the following formula: 
[VLDL- c] = ([TG]/5).

2.8 | RNA extraction, reverse 
transcription, and quantification of Fasn, Gys2, and 
Gsk3b gene expression

RNA was isolated from the liver tissue using the RNeasy® Mini Kit 
(QIAGEN). The total RNA (2 μg) was reverse- transcribed using the 
Transcriptor First Strand cDNA Synthesis Kit (Roche) following the 
manufacturer's instructions. Fasn, Gys2, and Gsk3b gene expressions 
were quantified via real- time PCR using the LightCycler® FastStart 
DNA Master Plus SYBR Green I Kit (Roche) and Rps18 as the house-
keeping gene. The primer sequences for all evaluated genes were as fol-
lows: Fasn forward (F) 5′- TCGAGACACATCGTTTGAGC- 3′, reverse (R) 
5′- CCCAGAGGGTGGTTGTTAGA- 3′; Gys2 F 5′- TCCGCTCTCCAGAT 
GATTCT- 3′, R 5′- GAAAAGCCCTGCTCAGTGTC- 3′; Gsk3b F 5′- AGA 
CCAATAACGCCGCTTCT- 3′, R 5′- TGACCAGTGTTGCTGAGTGG- 3′; 
and Rps18 F 5′- CATGTGGTGTTGAGGAAAGCAG- 3′, R 5′- GGG 
ATCTTGTATTGTCGTGGGT- 3′. The reaction conditions were as fol-
lows: 95°C for 10 min and 45 cycles at 95°C for 10 s, 60°C for 10 s, 
and 72°C for 7 s for Gys2; 95°C for 10 min and 45 cycles at 95°C 
for 10 s, 61°C for 10 s, and 72°C for 5 s for Gsk3b; 95°C for 10 min 
and 45 cycles at 95°C for 10 s, 60°C for 10 s, and 72°C for 7 s for 

TA B L E  1   Formulation and chemical composition of the 
experimental diets

Ingredient (g/kg) HFD SDa 

Casein 269.0 241.0

Starch 197.0 219.0

Sucrose 111.0 315.0

Fat — 94.0

Lardb  355.0 — 

Vitamin Mix 10.0c  d.s.d

Mineral Mix 36.0c  d.s.d

Cholesterol 16.0 0.201e 

Sodium cholate 5.0 — 

Total energy (kcal/kg of diet) 5,100.0 3,350.0

Proximate analysis (dry basis) Percentage

Crude protein (N × 6.25) 22.9 23.0

Crude fat 35.4 4.5

Carbohydrates 38.3 58.5

Crude Fiber 0.0 6.0

Ash 3.4 8.0

Abbreviations: HFD, high- fat diet; SD, standard chow diet.
aCommercial diet. 
bIngredients for the HFD diet only. 
cHFD: the values shown are in accordance with AIN- 93 
recommendations for growing rodents (Reeves et al., 1993); for the SD, 
vitamins and minerals are described separately d(d.s.) according to the 
Laboratory Rodent Diet supplier (5001). 
eIn contrast to the HFD, the SD contained 201 ppm of cholesterol. 
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Fasn; 95°C for 10 min and 45 cycles at 95°C for 10 s, 61°C for 10 s, 
and 72°C for 6 s for Rps18. In the negative controls, sterile water 
was used instead of the cDNA. All amplification reactions were per-
formed in triplicates using a 2.0 LightCycler® instrument (Roche). 
We normalized the target gene Ct values with the Rps18 Ct values 
and calculated the relative Fasn, Gys2, and Gsk3b gene expressions 
using the 2−ΔΔCt method (Livak & Schmittgen, 2001). Single prod-
uct amplification for each gene was confirmed via melting curve 
analysis.

2.9 | Liver histological assessment

At the end of the 3- week experimental period, the animals were 
anesthetized, and their livers were excised by laparotomy. Next, 
we fixed tissue fragments in 4% paraformaldehyde (1× phosphate- 
buffered saline) and embedded them in paraffin. A certified pa-
thologist evaluated the 4- μm thick paraffin- embedded liver tissue 
sections separately stained with hematoxylin and eosin (H&E) and 
Masson's trichrome. We also semi- quantitatively determined liver 
glycogen changes by staining tissue sections with periodic acid- 
Schiff (PAS)- diastase. In this staining procedure, the tissue sections 
were treated with diastase before application of the PAS stain. The 
use of a PAS- diastase stain allowed us to differentiate glycogen from 
other cellular carbohydrates. A pathologist evaluated the PAS and 
PAS- diastase slides wherein the loss of cytoplasmic staining after di-
astase treatment indicated the presence of glycogen. Representative 
images were acquired from each experimental group using a Motic 

BA410 trinocular light microscope coupled to a Moticam CMOS 5 
MP digital camera and documented using Motic Plus 2.0.

2.10 | Statistical analysis

Results are presented as the mean ± standard error of the mean. We es-
tablished which biochemical parameters significantly differed between 
pre-  and post- treatment, using the dependent t- test. The significance 
of the inter- group effects in Fasn, Gys2, and Gsk3b gene expression 
and AUC was established using ANOVA and Bonferroni post hoc test. 
We used IBM SPSS Statistics software for Windows (version 20.0; NY, 
USA) for data analysis and considered p < .05 as significant.

3  | RESULTS

3.1 | Biochemical parameters

Table 2 shows the results of biochemical parameter tests. At the end 
of the IR induction period (pretreatment), both the IR (saline placebo) 
and IR- LPI (lupin- treated) groups had higher serum glucose levels 
(138.6 ± 12.0 and 162.6 ± 13.3 mg/dl, respectively) than the Ctrl 
group (58.3 ± 18.8 mg/dl). Similarly, the HFD resulted in higher blood 
lipid levels in the induced IR groups (IR and IR- LPI). However, chronic 
administration of LPI to the induced IR animals reduced blood glu-
cose levels by 33% (pre-  vs. post- treatment), whereas the IR group 
with no administration of LPI had an increase of 78%. Furthermore, 

F I G U R E  1   Schematic representation of the experimental design established for the study. Ctrl, control group; IR, insulin resistance 
group; IR- LPI, insulin resistance group treated with LPI; LPI, lupin protein isolate
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LPI improved the blood lipid profiles of the rats. Although not statis-
tically significant, triglyceride levels decreased by 34% (52 ± 8.1 and 
34.2 ± 11.4 mg/dl, pre-  and post- treatment, respectively) after the 
administration of LPI. Moreover, we observed a significant decrease 
in total cholesterol (37%) in the animals treated with LPI. Accordingly, 
the concentration of LDL- c decreased after LPI administration (39%, 
153.9 ± 18.6 vs. 94.1 ± 9.4 mg/dl, p < .05). In contrast, VLDL- c lev-
els were significantly increased in the IR group, whereas a decrease, 
although not significant, was observed in the IR- LPI group. Finally, 
HDL- c levels showed an increase of 35%, although not statistically 
significant (Table 2).

3.2 | Evaluation of insulin sensitivity

Insulin sensitivity was evaluated by comparing the AUCs of the 
ITTs of each study group (Figure 2). As expected, the animals fed 
the HFD for 5 weeks developed IR. It was observed that the pre- 
treatment AUC values of IR and IR- LPI were higher (p < .05) than 
those of the control group (Figure 2b), which confirmed the develop-
ment of IR in our experimental model. In contrast, the comparison 
of post- treatment AUCs between the IR- LPI and IR groups showed 
that the administration of LPI caused an increase in insulin sensitivity 
as compared to the IR group (Figure 2d). In Figure 2e, the changes 
in the values corresponding to the AUC (pre-  vs. post- treatment) 
of each study group are shown. The change in the pre-  vs. post- 
treatment AUC values of the IR- LPI group was statistically signifi-
cant (6,777 ± 232 vs. 4,971 ± 379, p < .05).

3.3 | Gene expression

The effects of LPI on Gys2 and Gsk3b gene expression are shown in 
Figure 3. The induction of IR caused a decrease in Gys2 expression 

(83.3%, p < .01). Interestingly, we observed that LPI administration 
partially reestablished Gys2 expression (2.8- fold increase) in the IR- 
LPI group (p < .05) as compared to the IR group. Our results showed 
that IR induction also decreased Gsk3b gene expression (56.6%) 
compared with the Ctrl group (p < .05). This IR- mediated reduction 
in expression was attenuated in the IR- LPI group. This shows an aug-
mented, although not significant, Gsk3b gene expression after LPI 
treatment in comparison with the IR group (Figure 3).

Furthermore, expression of the Fasn gene in the IR group was 
slightly increased. However, the expression of Fasn in the IR- LPI 
group was significantly reduced as compared to both the IR and Ctrl 
experimental groups (Figure 4, p < .001).

3.4 | Histological analysis

In the histological analysis of the liver sections, we found that our 
experimental model reproduced histopathological changes compat-
ible with NASH in the induced IR groups (Figure 5). All IR animals not 
treated with LPI (IR group, Figure 5b) presented grade III steatohepa-
titis with necroinflammatory activity, based on the histopathological 
criteria stipulated by Kleiner et al. (2005). Interestingly, we observed 
decreased lobular inflammation in the IR- LPI group (Figure 5c). 
Notably, only two out of five LPI- treated animals had grade III stea-
tohepatitis, whereas the other three experienced amelioration of the 
disease (exhibiting grade I or II steatohepatitis).

Expression of the glycogen- related Gys2 gene led us to test for 
glycogen in liver tissue by PAS staining, wherein PAS- positive areas 
exhibit a purple/magenta color. We used a PAS- diastase staining 
procedure as diastase digestion causes depolymerization of glyco-
gen into smaller sugar units with a loss of PAS positivity, allowing 
for the differentiation of glycogen from other cellular carbohy-
drates. We observed PAS positivity in the cytoplasmic area of peri-
portal hepatocytes in the IR group (Figure 6a) and confirmed that 

TA B L E  2   Comparison of pre-  and post- treatment biochemical parameters among study groups

Ctrl IR IR- LPI

Pre- treatmenta Post- treatment Pre- treatmentb Post- treatment Pre- treatmentb Post- treatment

Glucose (mg/dl) 58.3 ± 18.8 67.5 ± 14.8 138.6 ± 12.0 246.2 ± 17.9* 162.6 ± 13.3 108.8 ± 13.3*

Triglycerides (mg/dl) 24.8 ± 7.4 20.8 ± 2.2 24.6 ± 6.8 72.4 ± 10.9* 52.0 ± 8.1 34.2 ± 11.4

Total cholesterol (mg/dl) 48.3 ± 10.4 51.3 ± 5.9 201.8 ± 41.6 162.0 ± 4.3 223.4 ± 26.9 140.4 ± 10.9*

VLDL- c (mg/dl) 3.5 ± 0.8 4.2 ± 0.4 4.3 ± 0.9 14.5 ± 2.1* 10.4 ± 1.6 6.8 ± 2.3

LDL- c (mg/dl) 5.2 ± 2.4 4.3 ± 2.5 170.6 ± 43.3 127.2 ± 8.5 153.9 ± 18.6 94.1 ± 9.4*

HDL- c (mg/dl) 40.0 ± 8.5 44.7 ± 3.1 26.0 ± 2.5 27.6 ± 3.2 20.8 ± 3.6 28.0 ± 7.2

ALT (U/L) 62.5 ± 12.6 50.7 ± 3.0 136.0 ± 18.4 199.8 ± 15.3* 205.4 ± 27.9 190.0 ± 20.4

Note: Values represent the mean ± SEM.
ALT, alanine aminotransferase; Ctrl, control group; HDL- c, high- density lipoprotein cholesterol; IR, insulin resistance; LDL- c, low- density lipoprotein 
cholesterol; VLDL- c, very low- density lipoprotein cholesterol.
*Student t- test for dependent samples: Statistically significant changes pre-  vs. post- treatment (bold text, p < .05).
aPre- treatment values without IR induction.
bPre- treatment values after 5 weeks of experimental IR induction.
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F I G U R E  2   Insulin tolerance test (ITT) comparison among the experimental groups. (a) Comparison of the pre- treatment glucose levels 
at basal, 30, 60, and 90 min in all groups. (b) Area under the curve (AUC) values of serum glucose concentration obtained during the pre- 
treatment ITT in all study groups. (c) Comparison of post- treatment glucose levels at basal, 30, 60, and 90 min in all groups. (d) AUC values of 
the serum glucose concentration obtained during the post- treatment ITT in all study groups. (e) Summary of pre-  vs. post- treatment changes 
in the AUC values of all groups. The values are shown as mean ± SEM. Mean AUC values were compared using ANOVA with Bonferroni post 
hoc test. Panels a– d: *p <.05, **p <.01. Panel e: *p <.05 compared with control group; #p <.05 comparing pre-  vs. post- treatment AUC values 
using Student's t- test for dependent samples. Ctrl, control group; IR, insulin resistance group; IR- LPI, insulin resistance group treated with 
LPI; LPI, lupin protein isolate



     |  2555SOTO- LUNA eT AL.

the positivity corresponded to glycogen deposits with the diastase 
digestion test (Figure 6c). Furthermore, we found that the intensity 
of PAS- positive areas diminished after PAS- diastase staining in both 
groups (Figure 6c,d) and that the PAS- positive areas coincided with 
the largest fibrosis areas. Interestingly, we were unable to detect 
cytoplasmic PAS positivity in liver tissues from the IR- LPI group. 
However, PAS positivity was located intercellularly between he-
patocytes (Figure 6b). In this case, PAS staining remained even after 
diastase treatment (Figure 6d).

4  | DISCUSSION

It is widely accepted that IR is associated with metabolic disorders 
such as hyperglycemia and hypertriglyceridemia and is essential in 
the development of T2D. Thus, improving a patient's insulin sensi-
tivity is crucial for preventing the progression of IR to NCD. This 

progression is associated with hyperglycemia and lipid alterations, 
such as increased LDL- c and triglyceride levels as well as reduced 
HDL- c concentrations (Marotta et al., 2010).

To evaluate the effects of nutraceuticals and functional foods on 
metabolic pathways related to IR, in vivo and in vitro models were 
employed. In this study, we used a high- fat, high- cholesterol diet to 
induce IR. As expected, we observed that the induced IR animals 
exhibited higher glucose, triglyceride, total cholesterol, and LDL- c 
serum levels. The observed variations in the IR rats before the treat-
ment could be explained by individual metabolic responses to in vivo 
IR induction.

Several studies have confirmed the presence of a hypoglyce-
mic effect on humans from plant proteins, including lupin proteins 
(Baldeón et al., 2012; Bertoglio et al., 2011; Bouchoucha et al., 2016; 
Dove et al., 2011; Fornasini et al., 2012). This effect is attributed 
mainly to γ- conglutin (Cγ; Bertoglio et al., 2011; Lovati et al., 2012; 
Magni et al., 2004; Vargas- Guerrero et al., 2014); therefore, sci-
entific interest has been focused on the biological effects of this 
protein. Cγ is a protein fraction contained in lupin seeds together 
with α, β, and δ- conglutins (Duranti et al., 2008). Magni et al. (2004) 
demonstrated that Cγ reduced acute serum glucose levels in vivo. 
After publication of this study, several groups have attempted to 
discover the mechanisms behind the regulation of glucose homeo-
stasis by Cγ.

Recent reports have described the effects of lupin extracts on IR. 
Zambrana et al. (2018) described the release of insulin from isolated 
islets in Goto- Kakizaki rats after administration of lupin hydroetha-
nolic extracts. In addition, Lima- Cabello et al. (2017) evaluated lupin 
seed β conglutins through ex vivo and in vitro models and found that 
they upregulate mRNA levels of IRS- 1 and GLUT- 4, suggesting an ef-
fect on IR and glucose uptake. Nonetheless, little is known regarding 
the effects of lupin protein extracts on IR. Therefore, we aimed to in-
vestigate the effect of LPI on an in vivo IR and steatohepatitis model. 
In this regard, the biological effects of other legumes on IR have also 
been previously explored. Chickpea seed flour was found to prevent 
development of an IR model induced by a HFD (Yang et al., 2007). 
Recently, Terruzzi et al. (2018) reported that lupin flour reduced 
HOMA- IR values in C57BL/6 mice that were fed an IR- inducing ex-
perimental diet.

HOMA- IR is a mathematic model used for IR evaluation in ep-
idemiological studies (Haffner et al., 1996; Katsuki et al., 2001). 
However, its applicability to experimental research has been 
questioned because of its weak validation for small samples 
(Wallace et al., 2004). ITT is a procedure used to determine insu-
lin sensitivity in in vivo studies. This is an acceptable method for 
IR evaluation since it has been compared and validated against the 
hyperinsulinemic- euglycemic clamp, which is the gold standard 
(Akinmokun et al., 1992; Bonora et al., 1989; Gelding et al., 1994; 
Hirst et al., 1993).

In this study, we used ITT to evaluate the effect of LPI on IR. 
We found a significant improvement in insulin sensitivity after 
LPI administration, indicating that lupin proteins exert an insulin- 
sensitizing effect.

F I G U R E  3   Relative mRNA expression levels of the Gys2 and 
Gsk3b genes. The bars represent the mean ± SEM. We performed 
ANOVA and Bonferroni post hoc tests. *p <.05, **p <.01. Ctrl, 
control group; IR, insulin resistance group; IR- LPI, insulin resistance 
group treated with LPI; LPI, lupin protein isolate

F I G U R E  4   Relative mRNA expression levels of the Fasn gene. 
The values represent the mean ± SEM. Statistical analysis was 
performed via ANOVA and Bonferroni post hoc tests. ***p <.001. 
Ctrl, control group; IR, insulin resistance group; IR- LPI, insulin 
resistance group treated with LPI; LPI, lupin protein isolate
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In addition to IR amelioration, an attenuated postprandial hyper-
glycemia was reported in a clinical study wherein oral administra-
tion of lupin kernel flour or soybean proteins was found to exert an 
acute glucose- reducing effect evaluated by the oral glucose toler-
ance test (OGTT) in T2D patients. The authors concluded that these 
results were probably due to similarities in protein content between 
these legumes (Dove et al., 2011). Furthermore, another study has 
reported that rats fed with a high- fat diet supplemented with raw 
chickpea seeds exhibited reduced serum glucose levels as compared 
with a nonsupplemented group under measurement with OGTT and 
ITT (Yang et al., 2007). In accordance with these findings, our results 
showed that LPI treatment improved IR from experimental induction 
by a high- fat diet.

Insulin modulates liver glycogen synthesis by activating glycogen 
synthase enzyme. The Gys2 gene encodes liver glycogen synthase, 
an enzyme responsible for directing synthesis of glycogen, one of 
the primary sources of stored energy in the body. In contrast, Gsk3b 
encodes a serine- threonine kinase with negative regulatory activity 
on glycogen synthesis. Thus, an increase in liver glycogen synthe-
sis is associated with improved glucose tolerance (Ros et al., 2010). 
Since treatment with LPI has exhibited improvements in insulin sen-
sitivity, we evaluated the gene expressions of Gys2 and Gsk3b.

Here, we found that LPI treatment increased Gys2 and Gsk3b 
gene expression in the liver. Similar results were also found in the 

gene expression and protein levels in diabetic mice treated with 
Bauhinia holophylla extract, a plant belonging to the Fabaceae family 
(Camaforte et al., 2019). Furthermore, our results showed that LPI 
induced a recovery of insulin sensitivity and a subsequent decrease 
in hyperglycemia, a finding that may have involved the activation of 
hepatic glycogenesis. Therefore, we decided to analyze the glycogen 
content in liver tissues from the experimental groups. Unexpectedly, 
we did not observe differences in the liver PAS positivity of the IR 
and IR- LPI groups. This may be attributed to the development of 
prominent fibrosis when inducing IR with a high- fat diet, hindering 
the histological evaluation and ability to differentiate glycogen from 
other extracellular matrix components. To better understand the 
role of LPI in glycogen metabolism, future studies should consider 
quantifying liver glycogen levels and assessing the protein levels of 
GSK3β and GYS2.

We cannot rule out higher glucose uptake by other insulin- 
sensitive tissues such as skeletal muscle and adipose tissue as an 
explanation for our observations (Petersen et al., 2007; Tachibana 
et al., 2014; Terruzzi et al., 2011). Based on our data, we can hy-
pothesize a possible increase in insulin sensitivity in the adipose 
tissue of the LPI- treated animals. Studies on chickpea and soybean 
supplementation have shown that they prevent the development 
of large and dysfunctional adipocytes associated with IR, support-
ing our hypothesis (Clark et al., 2018). Nonetheless, additional 

F I G U R E  5   Representative photomicrographs of the histological changes observed in the experimental groups. The upper panels (a– c) 
show images from tissues stained with hematoxylin and eosin (H&E), and lower panels (d– f) are representative images of tissues stained 
with Masson's trichrome. (a) and (d) represent normal histology of the liver tissue (Ctrl group). In panel b, the figure shows the presence of 
inflammatory cell infiltration, a representative finding of NASH in the IR group (black circle); the arrows indicate ballooning of hepatocytes. 
Panel c shows a lower lymphocyte infiltration in the IR- LPI group in comparison with the IR group (black circles). Panels e and f show the 
presence of fibrosis in both IR- induced groups. Ctrl, control group; IR, insulin resistance group; IR- LPI, insulin resistance group treated with 
LPI; LPI, lupin protein isolate

(a) (b) (c)

(d) (e) (f)
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studies are needed to establish whether lupin protein exerts similar 
effects.

Metabolic changes associated with IR also correlate with NAFLD 
and its progression to NASH (Ota et al., 2007). In the present study, 
we also evaluated the histological changes caused by a high- fat diet 
and the effect of LPI administration on liver tissue. Using the NASH 
staging scoring system (Takahashi & Fukusato, 2014), an amelioration 
of the degree of steatohepatitis in the IR- LPI group was observed. 
These findings were evidenced by decreased lobular inflammation 
and the presence of mild necroinflammatory activity. Previous stud-
ies have described that some lupin protein fractions decrease the 
mRNA levels of pro- inflammatory genes, including IFN- γ, TNF- α, and 
NF- κB (Lima- Cabello et al., 2017). Fontanari et al. (2012) evaluated 
the weight of the liver from hamsters fed with a hypercholesterol-
emic diet and whole lupin seeds. Their results showed that the an-
imals fed in parallel with lupin seeds exhibited lower liver weights 
compared with the control group. Although we did not perform this 
evaluation, biochemical analysis revealed that LPI administration at-
tenuated the increase in ALT levels by 7.4%. Interestingly, a similar 
effect was observed in an IR model induced by high sucrose con-
sumption and treated with Cγ (González- Santiago et al., 2017).

The relationship between IR and dyslipidemia is widely known 
(Franch- Nadal et al., 2018; Garg, 1996). We observed a decrease in 
serum triglyceride levels in the IR- LPI group compared with the IR 
group. These findings correlated with changes in Fasn gene expres-
sion, showing strikingly reduced mRNA levels in the IR- LPI group 
compared with the IR and Ctrl groups. FASN, the enzyme encoded 
by the Fasn gene, participates in the synthesis of palmitate in the 
lipogenesis pathway. Furthermore, both hypertriglyceridemia and 
steatosis can be reduced by modulating lipogenesis and fatty acid 
oxidation (Kwon et al., 2018). Other studies have also shown that 

rats fed a western diet and treated with lupin proteins exhibited 
lower triglyceride and VLDL levels (Fontanari et al., 2012; Spielmann 
et al., 2007). In accordance with our results, Spielmann et al. (2007) 
also found lower mRNA levels of Fasn and Srebp- 1c genes as well 
as lower liver triglyceride content in animals treated with lupins. In 
addition, it has been reported that HFDs are not only associated 
with NAFLD development but have also been found to induce IR 
(Liu et al., 2016). Therefore, the insulin- sensitizing effect observed 
in LPI- treated animals and reduced Fasn levels might be associated 
with the attenuation of liver damage.

Finally, our data contribute to the understanding of the biological 
effects exerted by lupin proteins in a state of IR. To the best of our 
knowledge, this is the first study to provide evidence that LPI could 
be useful in the treatment of established pathological states, such 
as IR and steatohepatitis. Moreover, our results add to the body of 
evidence indicating the presence of a beneficial effect of lupins on 
insulin sensitivity, as suggested by some clinical studies. Likewise, 
there is a need for further basic and clinical research aimed at clarify-
ing whether lupin- based therapies are beneficial in different clinical 
conditions such as obesity, dyslipidemia, IR, and diabetes.

In conclusion, our results show that LPI exerts insulin- sensitizing 
and hypoglycemic effects on IR- induced rats. Moreover, administra-
tion of lupin proteins promoted a hypolipidemic effect by decreasing 
serum lipid levels, involving a marked reduction in the mRNA levels 
of the lipogenic Fasn gene in induced IR animals. Thus, we provide 
evidence that lupin proteins might be useful in restoring insulin sen-
sitivity and attenuating the histopathological changes induced by IR. 
Further molecular and metabolic characterizations of the liver and 
other insulin- sensitive tissues represent an exciting research area to 
better understand the effects of lupin proteins and their potential 
use in the management of metabolic disorders.

F I G U R E  6   Histological comparison 
of glycogen content in the IR and IR- LPI 
groups. Representative photomicrographs 
from the tissues stained with PAS and 
PAS- diastase are shown. In the IR group, 
loss of staining in the cytoplasmic 
glycogen deposits (arrows) of hepatocytes 
after diastase treatment was observed (a 
and c). In contrast, panels b and d show 
an intercellular PAS positivity in tissues 
from the IR- LPI group (arrows). IR, insulin 
resistance group; IR- LPI, insulin resistance 
group treated with LPI; LPI, lupin protein 
isolate

(a) (b)

(c) (d)
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