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Abstract

The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT
pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP
and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind
Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase
recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy
virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can
replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated
HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other
domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its
catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting
proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-
terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of
trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or
ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that
the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached
is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to
proceed.
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Introduction

The membrane scission event that separates the lipid membrane

of nascent enveloped virions from host cell membranes is, in many

cases, an orchestrated event requiring the participation of the class

E vacuolar protein sorting (VPS), or endosomal sorting complex

required for transport (ESCRT) pathway. Ordinarily, the ESCRT

pathway induces topologically equivalent cellular membrane

scission events including the biogenesis of multivesicular bodies

(MVBs) [1,2] and the membrane abscission event at the conclusion

of cell division [3,4]. Components of the pathway can be recruited,

either directly or indirectly, through the action of short peptide

motifs called late (L-) domains in viral structural proteins [5,6].

Three classes of viral L-domains and cognate cofactors have been

defined thus far: PT/SAP motifs bind Tsg101 [7,8,9,10], LxxLF

or YPXL motifs bind ALIX [11,12,13], and PPxY domains bind

Nedd4-like HECT ubiquitin ligases [14,15,16,17,18]. Disruption

of late domain function results in the failure of membrane scission

and the accumulation of assembled virions that remain tethered to

the surface of the host cell by a continuous membrane.

The ESCRT machinery is composed of ,25 proteins, many of

which participate in the formation of several multiprotein complexes,

known as ESCRT-0, -I, -II, -III [19,20,21]. ESCRT-III components

are thought to drive the membrane scission event [22,23,24,25] and

appear to be generally required for L-domain-dependent viral

budding [7,11,12,13,26]. In contrast, other components of the

ESCRT-pathway appear to be required in an L-domain specific way.

For example, PTAP-dependent budding is especially sensitive to

ESCRT-I perturbation, while YPXL-dependent budding is especially

sensitive to ALIX depletion. Since ALIX interacts directly with

ESCRT-III via its Bro1 domain [11,12,13,27,28] and ESCRT-I

indirectly interacts with ESCRT-III via ALIX and/or ESCRT-II,

[11,12,13] these observations suggest that YPXL and PTAP motifs

access the same core scission machinery via alternative routes.

In contrast, it has remained somewhat unclear how PPxY motifs

access the scission machinery. Overexpression of certain HECT

ubiquitin ligases that bind directly to PPxY or other motifs can

markedly stimulate budding, and the catalytic activity of the HECT

domain is essential for this activity [17,29,30,31]. Indeed,

overexpression of catalytically inactive or truncation mutants of

the HECT ligase WWP1 inhibits PPxY-dependent budding

[17,29]. Some components of the ESCRT pathway are also

required for PPxY-induced budding [7,31,32]. However, the

precise means by which HECT ligase recruitment subsequently

results in the engagement of the ESCRT machinery is not

completely defined. One model invokes direct ubiquitination of
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Gag as the key event. This notion derives from observations that

several components of the ESCRT pathway are thought to

recognize ubiquitinated cargo through various low affinity ubiqui-

tin-binding domains [7,33,34,35,36,37] and that monoubiquitina-

tion of cellular cargos can serve as a signal for endosomal trafficking

and delivery to the lysosome [21,38,39]. Indeed, several observa-

tions are consistent with the notion that ubiquitination of retroviral

Gag promotes virus particle release. For example, studies have

noted an enrichment of free ubiquitin in retrovirus particles, and

ubiquitinated Gag species have also been detected therein

[14,40,41,42,43]. Additionally, late budding defects have been

observed in cells treated with proteasome inhibitors, perhaps due to

the depletion of free ubiquitin [14,44,45]. Mutation of multiple

ubiquitin acceptor lysine residues in Gag has been shown to inhibit

particle production by retroviruses [46,47]. Finally, direct fusion of

ubiquitin to the C-terminus of Gag proteins has been shown to

alleviate inhibition of particle release imposed by proteasome

inhibitors, or to obviate the requirement for an L-domain in particle

release [44,48].

Other observations suggest that PPxY and ubiquitin ligase-

dependent budding may involve mechanisms other than direct Gag

ubiquitination. In particular, overexpression of wild-type WWP1

stimulates PPxY-dependent particle production by a lysine-free Gag

protein [29] in the absence of detectable Gag ubiquitination. This

finding suggests the possibility that HECT ligases may promote

budding by catalyzing the ubiquitination of specific trans-acting

host factors, rather than Gag. Additionally, a HECT-truncated

WWP1 protein, lacking the entire HECT domain, inhibits murine

leukemia virus (MLV) budding more potently than the full length

WWP1 protein with a disrupted active site [17], suggesting that

HECT domains may possess activities other than ubiquitin

conjugation that are important for their function in viral budding.

Moreover, HECT domains localize to aberrant endosomal (so

called class E) compartments induced by overexpression of

catalytically inactive ATPase VPS4 [17], which is required for the

disassembly of ESCRT complexes after each round of budding

[49,50]. Since many VPS factors are trapped on VPS4-induced

compartments, HECT domains may be recruited to these

compartments by interaction with VPS proteins, either directly or

through unidentified bridging factors. It has also been reported that

HECT ubiquitin ligases can bind to, and/or catalyze the ligation of

ubiquitin to, certain class E VPS factors [31,32,51]. Thus, the

ubiquitin ligases might act as recruitment factors rather than, or in

addition to, conjugating ubiquitin to key target proteins.

In this study we investigated the role of PPxY motifs, HECT

ubiquitin ligase domains and ubiquitin in viral budding, using a

lysine-free viral protein from the prototypic foamy virus (PFV), in

which the attachment of ubiquitin to Gag can be rather precisely

controlled. We show that the catalytic activity of a variety of HECT

domains, targeted to a PPxY motif in assembling particles via a

common C2/WW domain fragment of WWP1, is essential for their

ability to promote PPxY-dependent VLP release. In each case,

however, Gag ubiquitination is dispensable for their activity. Rather,

the ability of the chimeric ubiquitin ligases to promote budding

correlated broadly, albeit imperfectly, with their ability to catalyze

autoubiquitination, Moreover, we show that artificial recruitment of

an isolated HECT domain can also stimulate budding, while a

HECT domain becomes dispensable for PPxY motif dependent

budding if the C2/WW domains of WWP1 are directly linked to the

C-terminal domain of Tsg101, an ESCRT-I subunit. Finally, we

demonstrate that direct fusion of a single ubiquitin moiety to the C-

terminus of PFV Gag is also capable of promoting budding, in a

manner that recapitulates the ESCRT protein requirement for

budding induced by PPxY-dependent ubiquitin ligase recruitment in

the absence of ubiquitin acceptors in Gag. These results support a

model in which PPxY motif-induced HECT ubiquitin ligase

recruitment leads to the deposition of ubiquitin at or near the site

of viral budding. However, the identity of the protein to which

ubiquitin is attached, be it Gag or a bystander protein, perhaps

including the HECT ubiquitin ligase itself, does not appear to be

critical in order for subsequent recruitment of ubiquitin-binding class

E VPS proteins and viral budding to proceed.

Results

Chimeric ubiquitin ligases encoding a panel of HECT
domains stimulate PPxY-dependent budding with
variable efficiency

To ascertain what properties of HECT domains are important

for stimulation of virus particle release, we compared the properties

of a panel of HECT domains. Nine members of the Nedd4-like

HECT ubiquitin ligase family have been described in humans and

these have the same domain organization as a single prototype

member of this family in yeast, namely Rsp5 (reviewed in [52]).

Specifically, an N-terminal C2 domain directs the protein to

membranes, a central cluster of ‘WW’’ domains binds ligands, such

as PPxY motifs, and a C-terminal HECT domain harbors the E3

ubiquitin ligase activity. Some of the intact ubiquitin ligases have

been shown to vary in their ability to promote PPxY-dependent

MLV virion release, due at least in part to differences in the affinities

of their WW domains for the MLV L-domain [17], but whether the

various the C-terminal HECT domains are equivalently able to

induce particle release has not been investigated. We reasoned that

variation in the ability of HECT domains to stimulate virus

budding, correlated with a given property of the HECT domains,

might suggest properties that are important for inducing virion

release. Since WWP1 has been previously shown to be efficiently

recruited by a number of PPxY-type L-domains, including that of

MLV [17], we constructed a panel of chimeric ubiquitin ligases,

consisting of membrane targeting and PPxY motif-binding domains

(C2 and WW domains) of human WWP1, coupled to various

catalytic HECT domains derived from human WWP2, Nedd4,

Nedd4L, Itch, Smurf1, Bul2 or yeast Rsp5 HECT ligases (Fig. 1A).

Author Summary

The release of an enveloped virus particle from an infected
cell requires the separation of the viral and cell mem-
branes. Many enveloped viruses accomplish this by
parasitizing a set of cellular proteins, termed the ESCRT
pathway, that normally separates cellular membranes from
each other. In some cases, viral structural proteins encode
peptides motifs that bind directly to, and thereby recruit,
the ESCRT machinery. Alternatively, viruses can recruit
enzymes, termed ubiquitin ligases, that bind to other
proteins, and catalyze the addition of ubiquitin to them. It
has, heretofore, been somewhat unclear precisely how the
recruitment of ubiquitin ligases leads to the engagement
of the ESCRT machinery. We show that the simple
recruitment of a fragment of a ubiquitin ligase that is
responsible for the addition of ubiquitin to other proteins
is sufficient to drive virus particle release, even when it is
not possible to attach ubiquitin to viral proteins. Paradox-
ically, we also found that simple attachment of ubiquitin to
the same viral protein can also drive particle release. These
results show that there is flexibility in the ways in which
the ESCRT machinery can be recruited and how ubiquitin
can be co-opted to enable this.

Role of Ubiquitin Ligases in Viral Budding

PLoS Pathogens | www.plospathogens.org 2 October 2010 | Volume 6 | Issue 10 | e1001153



Figure 1. Constructs used in this study. (A) Schematic representation of YFP-fused chimeric ubiquitin ligases containing the membrane targeting
(C2) and late domain binding (WW) domains of WWP1 and the indicated catalytic HECT domains. Wild type and catalytically inactive mutant versions
of each HECT ligase were constructed. (B) Schematic representation of the PFV Gag-derived proteins used in this study, containing a single K396R
mutation, an Lck-derived membrane targeting peptide appended to the N-terminus, and the indicated late domains.
doi:10.1371/journal.ppat.1001153.g001

Role of Ubiquitin Ligases in Viral Budding
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To determine whether these chimeric ubiquitin ligases could

support viral budding, we co-expressed each of them with a

plasmid expressing a modified PFV Gag protein. Importantly,

PFV Gag offers the advantage that it is naturally almost devoid of

lysine resides. While PFV Gag normally requires a cognate Env

protein for particle release, we have previously shown that

appending a myristoylated, palmitoylated peptide from Lck at its

N-terminus can overcomes this requirement by directing PFV Gag

to the plasma membrane and thereby allowing the generation of

extracellular particles in the absence of any other viral protein

[29]. Throughout this study we used this N-terminally modified

Gag protein, termed Lck-Gag, bearing a K396R mutation that

renders the PFV Gag completely lysine-free. Examples of

engineered variants of this Gag protein are illustrated in Fig. 1B,

and include those that is otherwise unmodified and encode the

natural PSAP late domain (Lck-Gag(PSAP)), a PSAP mutant that

contains no known L-domain (Lck-Gag(L-)) or another variant

that has a PPxY late domain derived from MLV Gag appended to

its C-terminus (Lck-Gag-PY, Fig. 1B). In addition, we used an Lck-

Gag-PY derivative containing three lysine residues adjacent to a

PPxY late domain (Lck-Gag-PY-3K) to assess HECT ligase-

induced Gag ubiquitination ([29], illustrated in Fig. 1B).

Overexpression of ubiquitin ligases encoding a variety of

HECT domains (WWP1 itself, WWP1/Nedd4, WWP1/

Nedd4L, WWP1/Itch, WWP1/Smurf1, or WWP1/Bul2) stim-

ulated PPxY-dependent budding of lysine-free Lck-Gag-PY

(Fig. 2A,B). Conversely, WWP1/WWP2 and WWP1/Rsp5 did

not stimulate budding or had marginal activity. The strongest

stimulation was observed using chimeric ligases containing the

Nedd4L and Itch HECT domains. Importantly, overexpression

of chimeric ligases in which the catalytic cysteine was mutated to

serine, failed to stimulate PPxY-dependent particle release

(Fig. 2A), indicating that the catalytic activity of each HECT

domains was required, even when the viral structural proteins

lack ubiquitin acceptors.

Stimulation of Lck-Gag budding and HECT ubiquitin
ligase autoubiquitination

To assess the relative catalytic activities of the chimeric HECT

ligases, and assess whether this correlated with their differential

ability to promote budding, we compared their abilities to carry

out autoubiquitination and to ubiquitinate a Gag substrate

encoding three lysine residues in close proximity to a PPxY late

domain (Lck-Gag-PY-3K, see Fig. 1B). To accomplish this, we

immunoprecipitated either Gag or HECT ubiquitin ligases from

293T cell lysates, prepared 36 hours after co-transfection with

plasmids expressing Lck-Gag-PY-3K, HA-tagged ubiquitin, and

each of the YFP-fused chimeric HECT ligases. Cell lysates were

prepared using denaturing, detergent-rich buffer (containing 0.5%

SDS) to ensure dissolution of protein complexes, and ubiquitinated

species were detected by immunoprecipitation with either aPFV

Gag or aGFP antibodies followed by immunoblot analysis of the

precipitates with an aHA antibody (Fig. 3).

Each of the chimeric HECT ubiquitin ligases was able to

reasonably efficiently catalyze the addition of 1 to 3 ubiquitin

moieties to the Lck-Gag-PY-3K substrate (Fig. 3A, upper panels).

There was some variation in the ability of the HECT domains to

catalyze the ligation of ubiquitin to Lck-Gag-PY-3K, with

WWP1/Rsp5 and WWP1/Bul2 catalyzing the highest and

WWP1/Nedd4 the lowest levels of ubiquitin ligation to Lck-

Gag-PY-3K (Fig. 3A). However, there was no correlation between

the extent to which each HECT domain stimulated Lck-Gag-PY-

3K ubiquitination (Fig. 3A) and the degree to which it stimulated

the release of VLPs assembled using Lck-Gag-PY or Lck-Gag-PY-

3K (Fig. 2A and data not shown). For example, WWP1/Bul2 and

WWP1/Nedd4, which induced the highest and lowest levels of

Gag ubiquitination, respectively (Fig. 3A), stimulated budding to a

similar extent (about 6-fold, Fig. 2A). Moreover, WWP1/Rsp5,

which efficiently catalyzed Gag ubiquitination (Fig. 3A), enhanced

particle release only marginally (Fig. 2A), much less efficiently than

the WWP1/Nedd4L that induced comparatively modest levels of

Gag ubiquitination (Fig. 3A).

We observed a better, albeit imperfect, correlation between the

ability of the chimeric HECT ligases to catalyze autoubiquitina-

tion and to stimulate VLP production (Fig. 3B, Fig. 2B). Chimeric

ligases that strongly promoted Lck-Gag-PY VLP release (e.g.

WWP1/Itch and WWP1/Nedd4L) were more heavily autoubi-

quitinated, while those that failed or only marginally promoted

VLP release (WWP1/WWP2 and WWP1/Rsp5, Fig. 2) exhibited

the lowest levels of autoubiquitination (Fig. 3B). The correlation

was imperfect, however, since WWP1/Nedd4, which moderately

enhanced particle release (Fig. 2), was consistently highly auto-

ubiquitinated (Fig. 3B). Notably, there was no correlation between

the ability of the HECT ubiquitin ligases to catalyze autoubiqui-

tination, and their ability to catalyze ubiquitin ligation to Lck-Gag-

PY-3K (Fig. 3A, B). Overall, these data confirm our previous

finding that direct Gag ubiquitination is dispensable for HECT

ligase-dependent budding [29] and further indicates that intrinsic

catalytic activity of the HECT ubiquitin ligases is critical for their

ability to stimulate budding.

Reciprocal exchange of HECT ubiquitin ligase and Tsg101
domains results in functional hybrid L-domain cofactors
that can promote viral budding

We next asked whether the need to recruit a HECT domain in

the context of PPxY/WWP1 interaction was necessary for

particle release, or whether the HECT domain could be bypassed

by direct recruitment of putative downstream effectors. Addi-

tionally, we asked whether recruitment of a HECT domain in the

absence of the other domains (C2 and WW) found in the Nedd4-

like family of proteins was sufficient to stimulate particle budding.

To accomplish this, we constructed hybrid L-domain cofactors in

which the essential domains were split and linked to putatively

complementing domains in another L-domain cofactor (Fig. 4A).

Specifically, Tsg101 is a core component of ESCRT-I and

contains two domains that are functionally important with respect

to viral budding. The N-terminal ubiquitin E2 variant (UEV)

domain interacts directly with P(T/S)AP peptide motifs and

ubiquitin [7], while the C-terminal portion of the protein is a key

structural component of ESCRT-I, interacting with other

components, e.g. VPS28 and VPS37 [53,54,55] and is essential

to support Tsg101 dependent budding. We constructed an

artificial putative chimeric L-domain cofactor in which the C2/

WW domains of WWP1 were linked to the C-terminal portion of

Tsg101 (Tsg-C) that constitutes the core structural component of

ESCRT-I (residues 157–390, Fig. 4A). Notably, overexpression of

this chimeric protein, termed WWP1-Tsg-C, stimulated Lck-

Gag-PY particle release in a dose-dependent manner but had no

effect on particle production by the L-domain-deficient Lck-

Gag(L-) protein (Fig. 4B, left and middle panels). This chimeric

protein, therefore, appeared capable of recruiting a functional

ESCRT-I complex to PPxY L-domains and thereby stimulating

particle production. Conversely, WWP1-Tsg-C overexpression

inhibited Lck-Gag(PSAP) budding in a dose-dependent manner

(Fig. 4B, right panel). We surmise that since this chimeric protein

lacks the domains required for interaction with PT/SAP motifs, it

acts as an inhibitor of PSAP-dependent budding by sequestering

endogenous components (e.g. VPS28 and VPS37) into retargeted

Role of Ubiquitin Ligases in Viral Budding
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Figure 2. Stimulation of PPxY-dependent VLP production by chimeric HECT ubiquitin ligases. (A) Quantitative Western blot (LICOR)
analysis of VLP release from 293T cells co-expressing Lck-Gag-PY and either YFP alone (None) or the indicated YFP-fused WWP1 C2/WW domains
linked to the indicated HECT domains. Note that the unfused YFP is not visible in the ‘‘None’’ lane because it migrates to a different position on the
blot. (B) Quantitation of Lck-Gag-PY protein in particles by quantitative Western blot analysis (LICOR). Values plotted are the levels of VLP associated

Role of Ubiquitin Ligases in Viral Budding
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ESCRT-I complexes that can be recruited to PPxY, but not PT/

SAP, L-domains. Thus, these experiments demonstrate that the

requirement for a HECT domain (and, by inference, the

requirement for ubiquitin ligation) in PPxY/ubiquitin ligase

dependent viral budding can be bypassed, if an alternative link to

the ESCRT machinery is provided.

Figure 3. Chimeric HECT ligases catalyze varying levels of Lck-Gag-PY-3K ubiquitination and autoubiquitination. Quantitative
Western blot analysis of lysine-containing Lck-Gag-PY-3K proteins (A) and chimeric HECT ligase proteins (B), immunoprecipitated from 293T cells
following cotransfection with plasmids expressing Lck-Gag-PY-3K, HA-ubiquitin, and the indicated chimeric YFP-WWP1/HECT ubiquitin ligases. The
aPFV Gag immunoprecipitates were probed with an aHA monoclonal antibody (A, top panel) or aPFV serum (A, middle panel). The aGFP
immunoprecipitates were probed with aHA (B, top panel) and aGFP (B, middle panel) monoclonal antibodies. Alternatively, unfractionated cell
lysates were probed with aPFV serum or aGFP antibody (A and B, bottom panels). Lanes marked ‘‘none’’ contain immunoprecipitates or lysates from
cells transfected with unfused YFP in place of a YFP-fused ubiquitin ligase. Note that the unfused YFP is not visible in these lanes because is migrates
to a different position on the blot. Charts below each plot show quantitation (mean+SD of two experiments) of the total signals in each lane of the
blots in the upper panels that were probed for HA-ubiquitin. The levels of Gag ubiquitination and autoubiquitination are presented relative to that
observed in the presence of intact WWP1, which was assigned a value of 1.
doi:10.1371/journal.ppat.1001153.g003

Lck-Gag-PY protein generated in the presence of the indicated YFP-fused chimeric ubiquitin ligase, relative to that generated in the presence of YFP
only (None). Data represent the mean and standard deviation of four independent experiments.
doi:10.1371/journal.ppat.1001153.g002
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In a reciprocal experiment, we asked whether the PPxY motif

and the C2/WW domains of WWP1 could be functionally

replaced in the context of HECT domain/ubiquitin dependent

budding. In other words, we determined whether recruitment of a

HECT domain is sufficient to stimulate particle release, in the

absence of the other protein domains (C2 and WW) to which it

would ordinarily be linked. Specifically, we attempted to redirect

P(T/S)AP-dependent particle production through a HECT

domain-dependent pathway, by constructing chimeric proteins,

termed Tsg-WWP1, Tsg-Itch and Tsg-Nedd4L, that contained the

N-terminal UEV domain (residues 1–157) of Tsg101 linked to one

of the three respective HECT domains (Fig. 4A). To test the

function of these artificial putative L-domain cofactors, we also

constructed an attenuated ‘‘leaky’’ mutant of the PT/SAP motif in

the Lck-Gag(PSAP) protein, namely Lck-Gag(ASAP), by mutating

the first proline residue of the PSAP motif to alanine. In the

context of the HIV-1 PTAP motif, such a mutation reduces the

affinity for, but does not eliminate binding to the Tsg101 UEV

domain [7]. Correspondingly, the budding of Lck-Gag(ASAP),

was attenuated as compared to Lck-Gag(PSAP), but the ASAP

motif clearly retained some weak residual ability to stimulate

budding (Fig. 4C, leftmost three lanes), suggesting that it retains

some residual ability to recruit the Tsg101 UEV domain.

Overexpression of Tsg-WWP1, Tsg-Itch or Tsg-Nedd4L,

respectively) resulted in clear stimulation of Lck-Gag(ASAP)

budding (Fig. 4C). Tsg101-Itch was the most potent of the three

Tsg101-HECT proteins tested by this approach, and its

overexpression resulted in a particle yield that matched or even

exceeded that observed in the presence of the intact PSAP motif

(Fig. 4C). In contrast, expression of catalytically inactive versions

of Tsg-WWP1, Tsg-Itch or Tsg-Nedd4L inhibited rather than

enhanced Lck-Gag(ASAP) particle production (Fig. 4C). Because

the Tsg101 UEV domain contains ubiquitin-binding activity that

might complicate the interpretation of these results, we repeated

these experiments using a mutant Tsg101 UEV domain (N45A)

that is defective for ubiquitin binding, linked to a WWP1 HECT

domain. The mutant Tsg(N45A)-WWP1 fusion stimulated bud-

ding at least as efficiently as did the unmanipulated Tsg-WWP1

protein (Fig. 4D).

Overall, the experiments in Fig. 4 demonstrate that the domains

of the PTAP and PPxY binding cofactors can be functionally split

into modular, interchangeable domains that are (i) necessary for

binding to the L-domain and (ii) interface with downstream

effectors that are critical for budding. Most notably, these findings

suggest that simple recruitment of a HECT domain to sites of

particle budding, irrespective of its mode of recruitment, and in

the absence of ubiquitin acceptors on the viral protein, is sufficient

to stimulate particle release and that other HECT ubiquitin ligase

domains are dispensable for budding.

Direct fusion of ubiquitin to Lck-Gag promotes particle
release

The aforementioned experiments demonstrated that the

requirement for a catalytically active HECT domain could be

obviated by direct recruitment of ESCRT-I to a viral protein (Lck-

Gag-PY) whose budding would normally be dependent on such

recruitment. We next asked whether the requirement for HECT

domain recruitment could similarly be obviated, in the context of a

nearly identical viral protein, by simply depositing ubiquitin at the

site of particle assembly, in the absence of ubiquitin ligase

recruitment. To mimic the deposition of ubiquitin at sites of virion

assembly, in the absence of ubiquitin ligase recruitment, we

expressed an Lck-Gag protein, lacking L-domains, with a single

ubiquitin appended at its C-terminus (Lck-Gag-Ub, Fig. 5A).

Ubiquitin is normally conjugated to proteins by an isopeptide

bond between the C-terminal glycine residue of ubiquitin and the

e-amino group of a lysine residue within the substrate protein.

Therefore, to avoid aberrant conjugation of our Gag-ubiquitin

chimeras to other proteins we deleted two glycine residues from

the C-terminus of ubiquitin (Fig. 5A).

Cells expressing ubiquitin-fused, but L-domain-deficient Gag

(Lck-Gag-Ub) generated extracellular particles while those ex-

pressing the unfused, L-domain deficient counterpart Lck-Gag(L-)

protein did not (Fig. 5B). Directly fused ubiquitin-dependent

particle release was strongly inhibited, in a dose dependent

manner, by expression of a catalytically inactive version of the

ATPase VPS4 (Fig. 5C), indicating that the ESCRT pathway was

required for Lck-Gag-Ub particle release. Thus, in the context of

Lck-Gag, direct ubiquitin fusion appeared capable of substituting

for a PSAP or PPxY containing L-domain. These results are

similar to findings made by Joshi et al. who showed that direct

fusion of ubiquitin to EIAV Gag can functionally substitute for the

ALIX-binding YPDL L-domain encoded therein [48]. Similarly,

we also found that ubiquitin-dependent budding was dependent

on the ubiquitin hydrophobic patch residues (L8 and I44) and

additionally, marginally dependent on residues (Q62 and E64) that

have been implicated in ubiquitin-Tsg101 UEV domain interac-

tion (Fig. 5D). However, lysine residues (K48 and K63) that are

often important for the conjugation of further ubiquitin molecules

could be mutated without affecting fused ubiquitin-dependent

particle release (Fig. 5D).

Ubiquitin and PSAP motifs synergize to stimulate Lck-
Gag VLP release

Next we analyzed the effect of combining L-domains and

ubiquitin on VLP release. To accomplish this, Lck-Gag proteins

containing various combinations of the L-domains and C-

terminally fused ubiquitin (Fig. 6A) were expressed. Quantitative

analyses revealed that directly fused ubiquitin-dependent (Lck-

Gag-Ub) particle release was at least as efficient as that driven by

PSAP (Lck-Gag(PSAP)) or PPxY (Lck-Gag-PY) L-domains

(Fig. 6B). Moreover, and in contrast to the previous report with

EIAV Gag [48], we found that the combined presence of fused

ubiquitin and a PSAP L-domain (in Lck-Gag(PSAP)-Ub) resulted

in strongly synergistic effects on particle release (Fig. 6B).

Specifically, Lck-Gag(PSAP)-Ub generated ,20-fold and ,6-fold

more particles than Lck-Gag(PSAP) and Lck-Gag-Ub, respectively

(Fig. 6B). No such synergy was observed when a PPxY L-domain

Figure 4. Exchange of functional domains in L-domain cofactors. (A) Schematic representation of chimeric proteins designed to recruit
ESCRT-I to PPxY motif (WWP1-Tsg-C), and isolated catalytic domain of a HECT ubiquitin ligase to a PTAP motif (Tsg-WWP1, Tsg-Itch and Tsg-Nedd4L).
(B) Stimulation of PPxY-dependent budding in the absence of a HECT domain by direct recruitment of ESCRT-I. Specifically, VLP production from 293T
cells expressing Lck-Gag-PY, Lck-Gag(L-) or Lck-Gag(PSAP) and increasing amounts of YFP-fused WWP1-Tsg-C (the amount of cotransfected WWP1-
Tsg-C expression plasmid (in mg) is indicated) was assessed by western blotting. (C,D) VLP production from 293T cells expressing Lck-Gag containing
either a wild-type (Lck-Gag(PSAP)), inactive Lck-Gag(L-), or attenuated Lck-Gag(ASAP) late domain and the indicated WT or catalytically inactive
mutant (C/S) chimeric Tsg-WWP1, Tsg-Itch and Tsg-Nedd4L proteins was assessed by western blotting. The three leftmost lanes in (C) and the single
leftmost lane in (D) contain lysates from cells transfected with unfused YFP as a control in place of a YFP-fused Tsg-HECT protein. Note that the
unfused YFP is not visible in these lanes because it migrates to a different position on the blot.
doi:10.1371/journal.ppat.1001153.g004
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and ubiquitin were combined in the same Gag protein. In fact, the

Lck-Gag-Ub and the Lck-Gag-PY-Ub generated extracellular

particles with approximately the same efficiency (Fig. 6B). Less

dramatic, but nonetheless synergistic enhancement of particle

release was evident when PPxY and PSAP motifs were both

present (in the absence of ubiquitin fusion, Fig. 6B). In this case,

the presence of the PPxY motif (in Lck-Gag(PSAP)-PY) enhanced

particle release approximately ,5-fold as compared to the

situation where the PSAP motif was the only L-domain (in Lck-

Gag(PSAP), Fig. 6B). Overall these results are consistent with the

notion that ubiquitin behaves essentially like an L-domain, and

further suggests that it functions synergistically with a PT/SAP

motif, and redundantly with a PPxY motif.

We next attempted to mimic a situation that is somewhat typical

of retroviruses, where only a fraction of Gag expressed in cells

carries ubiquitin. This was done by co-expressing ubiquitin-fused

and unfused Lck-Gag proteins in varying proportions. When this

was done in the context of a Lck-Gag proteins lacking a PSAP

Figure 5. Direct fusion of ubiquitin to Lck-Gag stimulates L-domain-dependent and -independent budding. (A) Schematic
representation of the Lck-Gag-Ub protein with a single ubiquitin moiety fused at the carboxyl terminus. Two glycine residues were removed from the
C-terminus of ubiquitin to prevent its conjugation to other proteins. (B) VLP production from 293T cells expressing the Lck-Gag-Ub protein, or a
control Lck-Gag(L-) protein was assessed by western blotting. (C) VLP production from 293T cells expressing Lck-Gag-Ub and increasing amounts of
GFP-Vps4 (E228Q). (D) VLP release from 293T cells expressing Lck-Gag-Ub containing the indicated mutations in C-terminally fused ubiquitin.
doi:10.1371/journal.ppat.1001153.g005
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motif (by co-expressing Lck-Gag(L-) and Lck-Gag-Ub), particle

production was most efficient when a large fraction of the total

Lck-Gag protein carried ubiquitin, and no stimulation of particle

production was detectable when less than 25% of the Gag protein

carried fused ubiquitin (Fig. 6C, left panel). When similar

experiments were done in the presence of a PSAP late domain,

by co-expressing Lck-Gag(PSAP) and Lck-Gag(PSAP)-Ub, stimu-

lation of particle release was observed when smaller fractions of

Gag, as little as a few percent, carried ubiquitin (Fig. 6C, right

panel). Nonetheless, larger fractions of ubiquitin fused Gag had

larger stimulating effects on particle release. Thus, these

experiments suggest that the greater the number of ubiquitin

molecules that are present at sites of particle assembly, the more

efficient is particle release; however, relatively modest amounts of

ubiquitin can significantly enhance particle budding in the

presence of a PSAP motif.

PPxY L-domain-dependent and directly fused ubiquitin-
dependent particle release are similarly dependent on
particular ubiquitin binding class E VPS factors

Several class E vacuolar protein-sorting factors have been

reported to possess ubiquitin binding activity (Table 1). Although

the affinity of such domains for monoubiquitin is generally quite

weak (Kd.100mM), several class E factors form multiprotein

complexes with several ubiquitin-binding surfaces, which could

provide sufficient avidity for their retention at sites of virion

assembly. Under such a scenario, efficient recruitment of ESCRT

complexes might require deposition of relatively large numbers of

ubiquitin molecules in the vicinity of the assembling particle, a

notion that is consistent with the finding that a large fraction of

Gag must carry ubiquitin to compensate for the absence of a late

domain (Fig. 6C).

To determine which of the mammalian ESCRT complexes and

associated proteins might be most important for ubiquitin

dependent budding, we performed a directed yeast two-hybrid

screen in which ubiquitin binding to a range of human class E

VPS factors and associated proteins was surveyed. These included

components of ESCRT-0 (Hrs, HBP/STAM), ESCRT-I (Tsg101,

VPS28, VPS37A,B,C, Mvb12), ESCRT-II (Eap20, Eap30, Eap45)

ESCRT-III (CHMP1A, 1B, 2A, 2B, 3, 4A, 4B, 4C, 5, 6), as well as

several ESCRT-associated proteins or proteins that are known to

bind to components of the class E VPS pathway (ALIX, LIP5,

VPS4, UBPY,CMS, CIN85). Most of these proteins, including

known ubiquitin binding factors (Table 1), gave either weak or

non-specific signals. Since we were testing ubiquitin binding by

each protein individually and outside of its natural context and in

the absence of ESCRT complex partners, it was perhaps to be

expected that this assay would fail to detect ubiquitin interactions

in at least some instances. Nonetheless, HBP/STAM, ALIX, and

UBPY binding gave robust signals in WT ubiquitin binding assays,

and binding was abolished when the ubiquitin hydrophobic patch

was mutated (I44A), (Fig. 7A).

We next determined the effect of siRNA mediated disruption of

known ubiquitin-binding complexes, as well the additional

ESCRT-associated factors that were positive in our yeast 2-hybrid

survey (ALIX and UBPY), on PPxY-dependent and fused

ubiquitin-dependent Lck-Gag budding. The core components of

the known ubiquitin binding ESCRT complexes (ESCRT-0,

ESCRT-I and ESCRT-II) were targeted using pools of four

siRNAs directed to Hrs, Tsg101 and Eap45, respectively. The

potency of the siRNA pools was estimated by cotransfecting them

with plasmids expressing YFP-tagged target proteins, followed by

quantitative western blotting. By these criteria the Tsg101, Eap45,

ALIX and UBPY siRNAs appeared effective (Fig. 7B). However,

knockdown of Hrs was inefficient, so its effect on budding could

not be reliably assessed. Because antibodies to Tsg101 and ALIX

were available, the level of endogenous proteins could also be

monitored in these siRNA experiments. Quantitative western

blotting analyses (examples are shown in Fig. 7C) indicated that

Tsg101 and ALIX proteins were reduced to 3869% and 1664%

of endogenous levels, respectively. Notably, control experiments

showed that Lck-Gag(PSAP) particle release was specifically

Table 1. Class E VPS factors and associated proteins encoding ubiquitin binding domains.

Protein Domain type Kd Methods References

Tsg101 UEV ,500mM SPR, NMR, structure [7,34,59,60]

Hrs DUIM, VHS ,300mM, ,1.4mM IP, SPR, structure [34,35,36,61,62,63]

STAM UIM, VHS, ,430mM, ,220mM IP, NMR, Y2H [33,64,65,66], this study

Eap45 GLUE ,300mM IP, SPR, structure [37,67,68]

Eps15 UIM ,0.36mM IP, SPR [35,36]

ALIX Unknown IP, Y2H [48], this study

CIN85 SH3 IP [69]

SPR: surface plasmon resonance; NMR: nuclear magnetic resonance; IP: immunoprecipitation or bead based ‘pull-down’ assays; Y2H: yeast 2-hybrid.
doi:10.1371/journal.ppat.1001153.t001

Figure 6. Synergy between a PSAP motif and ubiquitin during viral budding and effect of Gag-ubiquitin levels on particle release.
(A) Schematic representation of some examples of the Lck-Gag proteins used in these experiments, encoding PSAP and/or PPxY L-domains and a
single ubiquitin moiety fused at the carboxyl-terminus. (B) VLP release from by 293T cells expressing Lck-Gag proteins containing the indicated L-
domains that were present alone or in combination with each other and/or directly fused ubiquitin (see panel A), measured by quantitative western
blotting. The chart to the right of the blot shows the yield of VLPs (mean+SD of 2 experiments) and values are presented relative to the VLP yield
obtained in the presence of both L-domains and ubiquitin (Lck-Gag(PSAP)-PY-Ub), which was assigned a value of 1. (C) VLP production from 293T
cells expressing Lck-Gag(L-) or Lck-Gag(PSAP) proteins, where the total amount of Gag protein expressed was constant, but varying proportions
carried a fused ubiquitin. Cells were transfected with equal total amounts of Lck-Gag(L-)+Lck-Gag-Ub (left panels) or Lck-Gag(PSAP)+Lck-Gag(PSAP)-
Ub expression plasmids, and the indicated fraction of the total transfected plasmid mixture expressed the ubiquitin fused form of the Gag protein.
VLPs were harvested both at 24h and 48h after transfection and subjected to western blot analysis with aPFV antiserum.
doi:10.1371/journal.ppat.1001153.g006
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Figure 7. Role of ubiquitin-binding class E VPS factors in ubiquitin-dependent and PPxY-dependent particle release. (A) Yeast two-
hybrid analysis of the interaction between the indicated class E VPS factors and ubiquitin containing either an intact (Ub WT) or disrupted (Ub I44A)
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inhibited (,5-fold) by Tsg101 siRNA, but only marginally affected

by EAP45, ALIX and UBPY depletion (Fig. 7C,D), while EIAV

Gag particle release was specifically inhibited (,3-fold) by ALIX

depletion, but not by depletion of the other ESCRT-associated

proteins (Fig. 7C,D).

Ubiquitin-dependent (Lck-Gag-Ub) budding was modestly

inhibited (,3-fold) by depletion of either Tsg101 or ALIX but

was barely affected by UBPY or Eap45 siRNAs (Fig. 7C,D),

suggesting that ubiquitin binding to ESCRT-I and ALIX

contributes to its ability to mediate particle release. This finding

mirrors a previous report using ubiquitin fused to EIAV Gag [48].

Additionally, however, we further found that Lck-Gag-PY

exhibited a similar pattern sensitivity to class E factor-targeting

siRNAs, in that it was modestly sensitive to Tsg101 and ALIX but

not Eap45 or UBPY siRNAs (Fig. 7C,D). Similarly, the budding of

an MLV Gag protein, that carries the same PPxY L-domain was

also modestly sensitive to depletion of Tsg101 and ALIX

Fig. 7C,D).

Because ESCRT-I and ALIX perturbation both affected

ubiquitin and PPxY-dependent budding, we sought to determine

whether their simultaneous depletion would exhibit a stronger

inhibitory effect. Unfortunately, cotransfection of the two pools of

siRNAs (or each pool together with normalizing control RNA

duplexes,) rendered each somewhat less effective, perhaps due to

dilution of the active siRNAs (Fig. 8A). Specifically, Tsg101

protein levels were reduced to 4262% and 5062% of endogenous

levels, while ALIX protein levels were reduced to 3063% and

2762% of endogenous levels, when the Tsg101 or ALIX targeted

siRNAs were cotransfected together or with normalizing control

siRNAs, respectively (Fig. 8A). Thus, under these conditions,

siRNAs targeting ALIX did not inhibit Lck-Gag-Ub or Lck-Gag-

PY particle release (Fig. 8A,B). Nevertheless, simultaneous (albeit

partial) depletion of Tsg101 and ALIX had a significantly stronger

inhibitory effect on Lck-Gag-Ub, Lck-Gag-PY and MLV Gag

budding (Fig. 8A, B) than did the more effective individual

depletion of either Tsg101 or ALIX alone (Fig. 7C, D), suggesting

that they both proteins contribute to optimal PPxY and ubiquitin-

dependent budding.

Discussion

The precise role of HECT ubiquitin ligases in promoting PPxY-

dependent virion release has, heretofore, been somewhat unclear.

Our previous studies suggest that their ubiquitin ligase activity is

critical for their ability to stimulate budding [17,29], but the

functionally relevant substrate for ubiquitination has been difficult

to define. Additionally, there is some evidence suggesting that

HECT ubiquitin ligases may also function as adaptors for bridging

factors that recruit ESCRT proteins to assembling virions

[17,32,51].

We compared the activities of HECT domains from various

Nedd4-like family HECT ubiquitin ligases by fusing them to the

C2 and WW domains of WWP1. While this strategy does not

illuminate which ubiquitin ligases are responsible for viral budding

in the natural context, it does allow an assessment of HECT

domain function in a uniform background. We found that HECT

domains varied significantly in their ability to stimulate PPxY-

dependent particle release in this context. This variability was

evident when there were no ubiquitin acceptors in the Gag protein

and correlated better with the ability of the HECT domains to

drive autoubiquitination than with their ability to ubiquitinate a

modified Gag substrate that contained lysines proximal to a PPxY

motif. The correlation between autoubiquitination and budding

was imperfect, however, and it is possible that variation among the

HECT domains in their ability to catalyze different lengths and

types of ubiquitin chains (e.g. K48 versus K63-linked chains), or

their ability to ubiquitinate other bystander proteins, could

influence their ability to stimulate viral budding. In this regard it

was notable that there was no correlation between the ability of the

HECT domains to undergo autoubiquitination versus their ability

to catalyze ubiquitin ligation to Lck-Gag-PY-3K. It was nonethe-

less true that the ability of the HECT domains to stimulate

budding was, in every case, absolutely dependent on their ability to

catalyze the ligation of ubiquitin to a substrate. This suggests that

the proposed role of HECT domains as adaptors that bind directly

to downstream factors is of secondary importance in stimulating

budding, or that this adaptor function requires catalytic activity.

This latter scenario could, conceivably, be operative as a result of

HECT autoubiquitination.

These studies underscore the remarkable flexibility in the ways

that the ESCRT pathway can be engaged to achieve viral budding

(Fig. 9) Using a single viral Gag protein as a model, particle

budding could be achieved by: (i) conventional direct recruitment

of the ESCRT pathway via PTAP binding to Tsg101, (ii) direct

recruitment of the ESCRT pathway via PPxY binding to a hybrid

cofactor consisting of the C2/WW domains of WWP-1 linked to

the C-terminal domain of Tsg101, (iii) recruitment of a HECT

ubiquitin ligase via a PPxY motif, (iv) recruitment of an isolated

HECT domain to a PTAP motif using a hybrid L-domain cofactor

consisting of the UEV domain of Tsg101 linked to a HECT

domain or (v) direct fusion of ubiquitin to Gag. These results

suggest that the cellular factors (in this case Tsg101, ubiquitin

ligases and ubiquitin) that are either directly recruited or deposited

at the site of viral particle budding behave as modular entities,

with domains that are necessary and sufficient for their own

recruitment, and distinct domains that are necessary and sufficient

for the subsequent recruitment of downstream effectors of particle

release (Fig. 9).

When HECT domains were used to promote budding, the

requirement for catalytic activity was absolute, irrespective of how

they were recruited to Gag and, importantly, in the absence of

ubiquitin acceptors on the viral Gag protein. This finding suggests

that ligation of ubiquitin to trans-acting factors, perhaps including

the HECT domain itself (i.e. autoubiquitination), rather than Gag

hydrophobic patch. b-galactosidase expression was measured (as optical density at 540nm (OD540)) in Y190 cells transformed with the indicated
Gal4-DNA binding domain-ubiquitin and VP16 activation domain (-HBP, -ALIX, and -UBPY) fusion constructs. Absence of a bar indicates background
levels of b-galactosidase expression. A single representative of two independent experiments is shown. (B) Validation of siRNAs targeting ubiquitin-
binding ESCRT-complexes or other class E VPS factors. Lysates of 293T cells transfected with GFP-Tsg101 or YFP-Hrs, -ALIX, -UBPY, or -Eap45
expression plasmids and siRNAs targeting either luciferase (2) or the specified class E VPS factors (+) were probed with an aGFP monoclonal
antibody. (C) L-domain-specific inhibition of Gag budding by class E factor depletion. Quantitative Western blot analysis of VLP production from 293T
cells transfected with plasmids expressing Lck-Gag(PSAP), EIAV Gag, Lck-Gag-Ub, Lck-Gag-PY or MLV Gag-HA and siRNAs directed against the
indicated class E VPS protein. Corresponding cell lysates were also probed with antibodies to PFV, EIAV, HA, Tsg101 and/or ALIX, as appropriate. (D)
Quantitation of VLP release following knockdown of the indicated class E VPS proteins. Values are plotted the mean+SD of two or three independent
experiments and represent the levels of particles released relative to those released from cells transfected with control luciferase siRNAs, which was
assigned a value of 1.
doi:10.1371/journal.ppat.1001153.g007
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is important for viral budding. It is superficially paradoxical,

therefore, that ubiquitin could promote budding of the very same

Gag protein even when ubiquitin was not ligated to a trans-acting

factor, but rather was directly fused to Gag. These findings suggest

that the identity of the protein(s) to which ubiquitin is attached is

not of critical importance, and ubiquitination substrates can, in

principle, include Gag, the ubiquitin ligase itself, or other trans-

acting proteins. The mere presence of ubiquitin at the site of

particle assembly appears sufficient to engage the ESCRT

pathway and stimulate budding.

The intrinsic manipulability of L-domains, the proteins that

bind to them (specifically ESCRT-I and HECT ubiquitin ligases)

and the apparent lack of importance of the identity of

ubiquitination substrate suggests that each serve simply as

recruitment factors to engage the downstream machinery that

mediates membrane fission and particle release. Since ubiquitin

binds to the very same factors (ESCRT-I and ALIX) that are

bound by PT/SAP and YPXL type L-domains, and depends on

them to stimulate budding, then ubiquitin itself can be

conceptually viewed, in the context of viral budding, as a

Figure 8. Effect of simultaneous ESCRT-I and ALIX disruption on ubiquitin-dependent and PPxY-dependent particle release. (A)
Quantitative Western blot analysis of VLP production from 293T cells transfected with plasmids expressing Lck-Gag-Ub, Lck-Gag-PY or MLV Gag-HA
and siRNAs targeting Tsg101, ALIX or both. Corresponding cell lysates were also probed with antibodies to PFV, HA, Tsg101 and/or ALIX, as
appropriate, and as indicated. (B) Quantitation of VLP release following knockdown of Tsg101, ALIX or both. Values are plotted as the mean+SD of
two or three independent experiments and represent the levels of particles released relative to those released from cells transfected with control
luciferase siRNAs, which was assigned a value of 1.
doi:10.1371/journal.ppat.1001153.g008
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Figure 9. Diversity of pathways that can be used to engage the ESCRT machinery. The ESCRT pathway can be engaged by Gag using a
variety of natural and artificial mechanisms (i)–(v) that include ubiquitin ligation to trans-acting proteins, (perhaps including the ubiquitin ligase itself)
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transferable L-domain that acts in a position-independent manner.

In essence, this notion is a simple extension of the concept

originally demonstrated by Parent et al, who showed that

conventional L-domains function in a position independent,

transferable manner [56].

A finding that is consistent with the aforementioned arguments,

is that budding that was dependent either on a PPxY motif or a

ubiquitin fused directly to Gag exhibited similar dependence on

particular components of the ESCRT pathway. Notably, pertur-

bation of individual segments of the pathway (ESCRT-I and

ALIX) caused partial inhibition of ubiquitin-dependent Lck-Gag-

PY, Lck-Gag-Ub and MLV Gag particle release. Previous work

has shown that Mason-Pfizer monkey virus particle release, which

is dependent on a PPxY motif, is quite strongly inhibited by

depletion of Tsg101 [31] and that budding of a EIAV Gag-

ubiquitin fusion protein is modestly inhibited by Tsg101 or ALIX

depletion [48]. We found that simultaneous perturbation of

ESCRT-I and ALIX resulted a stronger suppression of Lck-Gag-

PY, Lck-Gag-Ub and MLV Gag particle release than did

depletion of either protein alone, suggesting that both ESCRT-I

and ALIX can contribute to optimal PPxY- and ubiquitin-

dependent budding (Fig. 9). Indeed, the class E VPS pathway

includes multiple ubiquitin-interacting factors, each of which

could, in principle, provide parallel mechanisms for engaging the

ESCRT machinery. While ESCRT-I and ALIX appeared to be

most important for PPxY- and ubiquitin-dependent budding, these

experiments do not exclude a contributory role for other ubiquitin

binding complexes in the ESCRT pathway. A similar notion was

recently demonstrated in yeast, where simultaneous disruption of

ubiquitin binding by ESCRT-I, -II and Bro1 (the yeast homologue

of ALIX) was necessary to block the sorting of ubiquitinated cargo

to the lysosome [57]. Thus, ubiquitin has several potential entry

points into the ESCRT pathway, and it appears that multiple

interactions must be simultaneously inhibited in order to

profoundly inhibit ubiquitin- or HECT ligase-dependent budding.

Since ubiquitin-binding class E VPS factors generally have a

low affinity for individual ubiquitin molecules (Table 1), the

efficiency with which they are recruited to, and retained at, sites of

particle assembly is likely related to the number of ubiquitin

molecules that are locally present. Indeed, in the context of direct

ubiquitin fusion to Lck-Gag, particle release efficiency increased as

the proportion of Gag molecules that carried a ubiquitin was

increased, and directly fused ubiquitin could effectively bypass the

need for a conventional L-domain only when a large fraction

(.50%) of the Gag molecules were fused to ubiquitin. This

approximates to ,1000 to 2500 ubiquitin molecules per

assembling virion.

Previous studies have shown that direct ubiquitin fusion to RSV

or EIAV Gag can alleviate a late budding defect imposed by

proteasome inhibitors or functionally replace a YPDL L-domain

[44,48]. However, this study is the first to demonstrate that

ubiquitin can act synergistically with a PTAP motif, resulting in

dramatically enhanced particle release when both are present.

Moreover, the ability of fused ubiquitin to stimulate budding

became evident at significantly lower Gag-ubiquitin abundance

(5% to 25% of total Gag) when a PTAP motif was also present in

Gag. Since ubiquitin could serve as an additional docking site for

Tsg101, it might synergize with PTAP motifs by increasing the

overall affinity of the assembling Gag lattice for individual

ESCRT-I complexes. In fact, this property was predicted by

previous binding studies involving Tsg101 UEV domain, PTAP

containing peptides and ubiquitin [7]. Ubiquitin might also

synergize with PTAP motifs by providing binding sites for distinct

class E VPS factors (e.g. ALIX), thereby optimally utilizing all the

available components of the ESCRT machinery. Consistent with

these ideas, PTAP and PPxY L-domains behaved synergistically in

driving particle release, as did PTAP and Gag-fused ubiquitin.

However, a PPxY motif and Gag-fused ubiquitin behaved

redundantly, consistent with the notion that that they ultimately

function through the same mechanism.

Materials and Methods

Plasmid construction
pCAGGS-based expression plasmids encoding Lck-Gag(PSAP),

Lck-Gag(L-), Lck-Gag-PY, and Lck-Gag-PY-3K plasmids have

been described previously [29]. The Lck-Gag(ASAP) plasmid was

derived from Lck-Gag(PSAP) by PCR-based site-directed muta-

genesis. The Lck-Gag(PSAP)-PY plasmid was generated by

replacement of a StuI/XhoI fragment from the Lck-Gag(PSAP)

plasmid with the corresponding fragment from the Lck-Gag-PY

plasmid. cDNAs expressing Lck-Gag-Ub (ubiquitinDGG) fusion

proteins were generated by overlap-extension PCR, using

pCAGGs-Lck-Gag(PSAP), Lck-Gag(L-), and Lck-Gag(PSAP)-PY

as templates for the N-terminal portions and pHA-ubiquitin as the

template for the C-terminal portion. The K48R, K63R, F4A, L8A,

I44A, and QE62,64AA point mutations were introduced into the

Lck-Gag-Ub construct by PCR-based mutagenesis. Each cDNA

was cloned into pCAGGs for expression in mammalian cells.

DNAs encoding the HECT domains from WWP1 (residues

543–922), WWP2 (491–870), Nedd4 (520–902), Nedd4L (593–

975), Itch (483–862), Smurf1 (374–757), and Rsp5 (431–809) were

amplified from plasmids encoding the full-length HECT ligases

[17,58]. The Bul2 HECT domain (encoding residues 1189–1572)

was PCR amplified from 293T cell cDNA. The catalytically

inactive WWP1 HECT domain (C890S) was amplified from a

previously described full-length mutant WWP1 ligase [17].

Catalytic point mutants of the remaining HECT domains were

made by PCR-based mutagenesis. Chimeric ubiquitin ligases,

comprising the C2 and WW domains (residues 1–542) of WWP1

and each of the HECT domains described above were generated

by overlap PCR. Likewise, plasmids expressing Tsg-WWP1, Tsg-

Nedd4L and Tsg-Itch (residues 1–157 of Tsg101 fused to HECT

domains of WWP1, Nedd4L, or Itch) as well as WWP1-Tsg-C

(residues 1–542 of WWP1 fused to residues 157–390 of Tsg101)

were constructed by overlap-extension PCR. All cDNAs encoding

chimeric proteins were inserted into pCR3.1/YFP, to express

proteins fused to the C-terminus of YFP, for in mammalian cells.

The class E VPS factor yeast two-hybrid library and plasmids

expressing Vps4 E228Q, Tsg101, Hrs, ALIX, UBPY, and Eap45

fluorescent fusion proteins in mammalian cells have been

described previously [8,12,54]. Yeast two-hybrid plasmids encod-

ing wild type and I44A mutant ubiquitin were constructed by PCR

amplification of ubiquitinDGG from the pHA-ubiquitin plasmid

using 59 and 39 primers appended with EcoRI restriction sites and

cloning into the pGBKT7 (Clontech) and pVP16 vectors [8].

Virus release assays
For Gag particle release assays, 56105 293T cells in six-well

plates were transfected using polyethylenimine (Polysciences) with

or fusion to Gag. These studies suggest that ubiquitin functions like a transferable L-domain, recruiting class E VPS factors such as ESCRT-I and ALIX,
independently of the identity if the protein to which it is attached.
doi:10.1371/journal.ppat.1001153.g009
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1 mg of pCAGGs/Gag-derived plasmids, alone or with 1 mg of

pCR3.1/YFP, pCR3.1/YFP-WWP1/HECT, pCR3.1/YFP-Tsg-

HECT, or pCR3.1/YFP-C2-WW-Tsg-C plasmids, or the indi-

cated amounts of pCR3.1/YFP-Vps4 E228Q plasmid. For EIAV

and MLV VLP release assays, 293T cells were transfected in the

same format with 500ng of, pCR3.1/EIAVGag or pCR3.1/

MLVGag-HA plasmids. VLPs were pelleted by ultracentrifugation

of 2 ml of 0.22-mm-filtered culture supernatants, collected

48 hours after transfection, over a 2ml 20% sucrose cushion for

90 min at 115,0006g. VLP and cell lysates were analyzed by

Western blotting.

Ubiquitination assay
293T cells (56105) in six-well plates were cotransfected with

1 mg of pCAGGs/Lck-Gag-PY-3K, 500 ng of pHA-ubiquitin, and

1 mg of the indicated chimeric pCR3.1-WWP1-HECT ligase. At

36h after transfection, cells were thoroughly lysed at room

temperature in detergent-rich RIPA buffer (50mM Tris pH 7.4,

150mM NaCl, 1mM EDTA, 1.0% glycerol, 0.5% SDS,

supplemented with protease inhibitor tablets (Roche) and 5mM

N-ethylmaleimide to inhibit deubiquitination) and cleared of

cellular debris by microcentrifugation. The lysates were then

diluted 5-fold in the same buffer containing NP-40 rather than

SDS, to adjust the concentration of SDS to 0.1% and NP-40 to

1.0%, and split into two fractions. From one fraction, Gag proteins

were immunoprecipitated with aPFV serum and protein G-

Sepharose beads. From the other fraction, YFP-HECT ligase

proteins were immunoprecipitated with aGFP monoclonal

antibody and protein G-Sepharose beads. Immunoprecipitates

and unfractionated cell lysates were analyzed by Western blotting.

siRNA transfections
293T cells (36105) in six-well plates were transfected with

siGENOME siRNAs targeting Luciferase, Tsg101, Hrs, Alix,

UBPY, or Eap45 (Dharmacon) using Lipofectamine 2000

(Invitrogen). After 24h, cells were transfected with the same

siRNAs and the indicated Gag expression plasmids. VLP and cell

lysates were prepared 48 h after the second transfection. To assess

knockdown efficiency, 293T cells were transfected once with YFP-

Tsg101, -Hrs, -ALIX, -UBPY, or -Eap45 expression plasmids and

corresponding siRNAs. GFP expression in cell lysates harvested

48 h after transfection was assayed by quantitative Western

blotting.

Western blot analyses
Virion and cell lysates and immunoprecipitates were separated

on polyacrylamide gels, transferred to nitrocellulose membranes,

and probed with various antibodies: anti-PFV human serum, anti-

HIV-1 p24CA (183-H12-5C), anti-EIAV equine serum (VMRD,

Inc.), anti-GFP (Roche), and anti-HA (HA.11, Covance) anti-

Tsg101 (4A10, Abcam, Cambridge, MA) or anti-ALIX rabbit

serum (a gift from Wes Sundquist). Subsequently, the blots were

probed with species-specific peroxidase-conjugated secondary

antibodies and chemiluminescent substrate reagents. Alternatively,

for quantitative Western blotting, membranes were probed with

species-specific antibodies conjugated to IRDye800CW, and

fluorescent signals were detected and quantified using a LICOR

Odyssey scanner.

Yeast two-hybrid analyses
Yeast cells (Y190) were transformed with the pGBKT7- and

pVP16-derived plasmids described above. Transformants were

selected and protein-protein interactions were assayed by b-

galactosidase reporter activity as previously described [8].
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