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Background. Our previous studies have shown that islet stellate cell (ISC), similar to pancreatic stellate cell (PSC) in
phenotype and biological characters, may be responsible for the islet fibrosis in type 2 diabetes. To further identify the
differences between PSC and ISC and for better understanding of the physiological function of ISC, we employed genome-wide
transcriptional analysis on the PSCs and ISCs of Wistar rats. Method. PSCs and ISCs from each rat were primarily
cultured at the same condition. Genome-wide transcriptional sequence of stellate cells was generated. The identified
differentially expressed genes were validated using RT-PCR. Results. 32 significant differentially expressed genes between
PSCs and ISCs were identified. Moreover, collagen type 11a1 (COL11A1), was found to be expressed 2.91-fold higher in
ISCs compared with PSCs, indicating that COL11A1 might be a potential key gene modulating the differences between
PSC and ISC. Conclusions. Our study identified and validated the differences between PSC and ISC in genome-wide
transcriptional scale, confirming the assumption that ISC and PSC are similar other than identical. Moreover, our data
might be instrumental for further investigation of ISC and islet fibrosis, and some differential expressed genes may provide
an insight into new therapeutic targets for type 2 diabetes.

1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic disorder which
is characterized by β-cell dysfunction and insulin resistance
[1, 2]. As the prevalence of type 2 diabetes continues to
increase, it is imperative to seek a better understanding of
its pathogenesis and find more efficient treatments to
decrease the morbidity and ease the burden on the healthcare
systems. Pancreatic stellate cells (PSCs) have been shown to
play an important role in the pathogenesis of fibrosis in
chronic pancreatitis and pancreatic cancer [3].

In a recent study, we identified a population of stellate
cells growing outward of isolated islets which are similar,
but not identical to classical PSCs, during the culture of islets

from Wistar and Goto-Kakizaki (GK) rats. These cells are
named islet stellate cells (ISCs) [4, 5], which have been veri-
fied to play important roles in islet fibrosis that promotes
T2DM progression.

In normal conditions, PSCs stay quiescent and contain
vitamin A-storing lipid droplets in their cytoplasm. When
suffering from chronic inflammation or oxidative stress,
PSCs will be activated and turned into myofibroblast cells,
losing their vitamin A-storing lipid droplets, expressing α-
SMA, ECM components, vimentin, and GFAP, producing
cytokines and chemokines such as IL6, IL8, and monocyte
chemoattractant protein- (MCP-) 1, as well as having
higher proliferation and migration activities. Many recent
studies have also shown that there are α-SMA-positive

Hindawi
Journal of Diabetes Research
Volume 2018, Article ID 7361684, 8 pages
https://doi.org/10.1155/2018/7361684

http://orcid.org/0000-0002-6493-9776
http://orcid.org/0000-0003-1865-1429
https://doi.org/10.1155/2018/7361684


cells, identified as PSCs, in the models of islet fibrosis both
in humans and animals with T2DM [6–9].

In the previous study, we compared Wistar rat’s PSCs
with ISCs and found that ISCs contained fewer vitamin
A-storing lipid droplets and were more rapidly activated
than PSCs in vitro. Activated ISCs express α-SMA, ECM
components, vimentin, and GFAP, which is similar to acti-
vated PSCs. But ISCs have lower rates of proliferation and
migration than PSCs in vitro, suggesting that ISCs are
similar but not identical to PSCs in morphology and pheno-
type. In this study, we performed RNA-seq and real-time
PCR validation on cultured Wistar rat’s PSCs and ISCs to
determine the gene differences and splicing variations and
provided a global transcriptome comparison between ISCs
and PSCs.

2. Materials and Methods

2.1. Animals. Three 10-week-old healthy male Wistar rats
weighted 300–350 g were chosen for this study, yielding 3
biological duplicates. After measuring fasting blood glu-
cose, the rats were given anesthesia and sacrificed to collect
their pancreas. These rats were numbered A, B, and C, and
PSCs from A, B, and C were named A1, B1, and C1,
respectively. Similarly, the ISCs were named A12, B12,
and C12, respectively. Housing and animal experiments
were approved by Southeast University Animal Care and
Use Committee according to institutional guidelines and
national animal welfare.

2.2. Isolation and Culture of ISCs. Islets were isolated from
pancreas as previously described [10]. Briefly, pancreas
tissues were digested with collagenase V (1mg/mL, w/v)

(Sigma, St. Louis, MO, USA) at 37°C for 15 to 18min. Islets
were purified by handpicking twice under a stereomicro-
scope. Then, islets were precultured in RPMI-1640 supple-
mented with L-glutamine containing 10% (v/v) fetal bovine
serum (FBS) (Invitrogen, Carlsbad, CA, USA) overnight,
followed by handpicking.

After 48 h in culture, ISCs began to grow out of Wistar
islets. Five days later, cells were subcultured in DMEM/
Ham’s F12 (1 : 1, v/v) containing 10% FBS. Then, cells at pas-
sages 3 were used for experiments.

2.3. Isolation and Culture of PSCs. PSCs were isolated from
Wistar rats as described previously [11]. PSCs were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)/
Ham’s F12 (1 : 1, v/v) containing 10% fetal bovine serum
(FBS) (Invitrogen, Carlsbad, USA). The cells were cultured
at the same condition with ISCs. Cells at passages 3 were
used for experiments.

2.4. Identification of ISCs via Immunofluorescent Assay. Cells
were fixed in 4% paraformaldehyde in PBS for 20min at
room temperature. Immunofluorescent staining of stellate
cells for α-SMA was performed. Cells were incubated
overnight at 4°C with primary antibody (Abcam, 1 : 200),
followed by a 1 h treatment with secondary antibody
(Jackson ImmunoResearch Laboratories, 1 : 100). The sec-
tions in negative control group were incubated with PBS,
instead of primary antibody. And the results indicated that
the antibody and the staining worked well. Morphometric
analyses were performed using Image J software.

2.5. mRNA Library Construction and Sequencing. Using
the Trizol reagent (Invitrogen, CA, USA) according to the
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Figure 1: A random view of immunofluorescence visualization of α-SMA, a marker for ISCs, was performed. All of the ISCs were α-SMA-
positive cell.
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manufacturer’s protocol, the total RNA was extracted. The
purity and quantity of the total RNA were detected using
RNA 6000 Nano LabChip Kit (Agilent, CA, USA) and Bio
analyzer 2200 with RIN more than 7.0. Then, approximately
2μg of total RNA were subjected to isolate the PolyA mRNA
using polyT oligo-attached magnetic beads (Invitrogen).
After purification, the mRNA was firstly fragmented into
small pieces and then reverse-transcribed to create the final
cDNA library based on the protocol of the mRNA-Seq sam-
ple preparation kit (Illumina, San Diego, USA). The average
insert size for the paired-end libraries was about 300 bps.
We then performed the paired-end sequencing (100 bps)
using the Hiseq3000 platform.

2.6. Functional Enrichment Analysis. The sequenced raw
data were filtered to remove low-quality tags such as
reads with unknown nucleotides “N,” empty reads, and
reads with only one copy number. Then, we matched the

clean reads to the sequences in the Rattus genome database
by Tophat (version 2.0.4) allowing up to two base mis-
matches. The mapped clean reads were regarded as precise
clean reads. For two-factor analysis of variance, we calculated
and normalized the number of unambiguous clean reads for
each gene to log counts per million using the limma package
in R program.

All detected genes were used for the gene ontology
(GO) and Kyoto encyclopedia of genes and genomes
(KEGG) enrichment analyses. For the GO analysis, a cor-
rected P value of <0.05 was considered as the threshold to
determine significant enrichment of the gene sets. Similar
as GO analysis, a Q value ≤0.05 was considered as the thresh-
old to determine significant enrichment of the gene sets for
KEGG enrichment analysis.

2.7. Quantitative RT-PCR. Total RNA from the two types
of cells were isolated using a rapid extraction method

Table 1: Comparisons between clean data and Rattus genome sequences.

Mapped statistics A1 B1 C1 A12 B12 C12

Total reads
48,691,180
(100%)

53,917,892
(100%)

51,532,204
(100%)

50,777,686
(100%)

53,749,152
(100%)

54,5 36,444
(100%)

Total mapped
44,505,452
(91.4%)

49,095,515
(91.06%)

46,914,556
(91.04%)

46,188,430
(90.96%)

49,072,733
(91.3%)

49,552,463
(90.86%)

Multiple mapped
3,128,881
(6.43%)

3,429,714
(6.36%)

3,288,274
(6.38%)

3,172,290
(6.25%)

3,288,591
(6.12%)

3,290,626
(6.03%)

Uniquely mapped
41,376,571
(84.98%)

45,665,801
(84.7%)

43,626,282
(84.66%)

43,016,140
(84.71%)

45,784,142
(85.18%)

46,261,837
(84.83%)

94.02%

1.92%

A1 B1 C1

A12 B12 C12

4.06%

95.16%

1.64%
3.20%

95.22%

1.64%
3.14%

94.21%

1.79%
4.00%

94.44%

1.78%
3.78%

94.69%

1.71%
3.60%

Exonic
Intergenic
Intronic

Figure 2: Mapped read distribution of each read.

3Journal of Diabetes Research



(TRI-Reagent, Invitrogen). Real-time PCR was performed
on cDNA samples using the FastStart Universal SYBR
Green Master (Roche) on Step One Plus system (Applied
Biosystems, Foster City, CA, USA). Primers are described
in Table S1. The PCR settings used included denaturation
(95°C for 2min) and amplification steps repeated 40 times
(95°C for 15 s, 55°C for 30 s, 72°C for 30 s, and acquisition
temperature for 15 s). Analysis was conducted using the
sequence detection software supplied. For each sample, the
delta delta cycle of threshold (ddCt) (crossing point) values
were calculated as the Ct of the target gene minus the Ct of
the GAPDH gene, assuming PCR efficiency equals to 1. Gene
expression was derived according to the equation 2–ddCt, and
changes in gene expression were expressed relative to levels
of the other group.

3. Results

3.1. The Evaluation of the Cells’ Purity. The immunofluores-
cence visualization markers for PSCs are known to include α-
SMA, vimentin, and GFAP. In the previous study, we dem-
onstrated that these markers were also positive in population
of ISCs [4]. To identify the purity of the ISCs isolated from
islets of the Wistar rats, we used the α-SMA staining to con-
firm that the cells were the right ones we want to analyze by
sequencing. As shown in Figure 1, all the cells were positive
for α-SMA in a random view, indicating that the purity of
ISCs was fair.

3.2. Evaluation of Gene Expression Profiles. To verify the
sequencing data coverage area and the depth of coverage,
Tophat version 2.0.4 was used for analysis. Total numbers
of reads generated from each sample ranged from
48,691,180 to 54,536,444. The majority of reads (between
84.66% and 85.18%) were uniquely mapped to the reference
Rattus genome sequences across all samples (Table 1). Then,
we made statistical analysis on the mapped read distribution
from each sample (Figure 2). As shown in Figure 2, the per-
centage of exonic distribution was ranged from 94.02% to
95.16%. And the intronic distribution was varied from
3.14% to 4.06%. The remaining area was intergenic distrib-
uted because of the incompletion of the genetic annotation,
which may lead to the detection of new genes or new
lncRNA. The total number of detected gene from all the sam-
ples was 21,901. Specifically, the number of detected genes
from each sample was (A1: 18,603, B1: 18,395, C1: 18,305,
A12: 17,984, B12: 18,401, and C12: 18,304).

3.3. Analysis of Differentially Expressed Genes. To deter-
mine the differentially expressed genes (DEG) between
PSC and ISC specimens, negative binomial distribution
test (NB) was performed. After filtering differentially
expressed genes with FDR-adjusted (FDR false discovery
rate) P value <0.05 and fold change> 2, there were 32 sig-
nificant differentially expressed genes between PSCs and
ISCs. Among them, 14 genes were upregulated and 18 were
downregulated in Wistar rats’ ISCs (Table 2). The obtained
gene expression profiles were visualized in a heatmap and a
volcano figure (Figure 3).

3.4. The Differential Gene’s KEGG Biological Pathway
Enrichment Analysis. The biological pathway analysis was
referred to Kyoto encyclopedia of genes and genomes
(KEGG) database (http://www.genome.jp/). The top 3 most
enriched pathways were taurine and hypotaurine metabo-
lism, cysteine and methionine metabolism, and phototrans-
duction (Q value <0.05) (Table 3). Cdo1 was both involved
in taurine and hypotaurine metabolism and cysteine and
methionine metabolism, while Arrb1 was involved in photo-
transduction pathways.

3.5. The Gene Ontology Functional Enrichment Analysis of
DEGs. To explore the biological role of the genes modulated

Table 2: The significant differentially expressed genes between
PSCs and ISCs.

Genes Fold change Q value

Upregulated genes in Wistar rats’
ISCs

Rpl39l 77.34 0.014

Bin2 26.93 0.01

LOC102546539 7.10 1.00E − 21
Plscr2 3.76 8.13E − 15
Msc 3.49 0.01

Snx20 2.99 0.00

Col11a1 2.91 2.75E − 21
LOC102550510 2.84 0.00

Card10 2.59 0.03

Ldb2 2.32 2.65E − 05
Gpr39 2.23 0.00

RGD1560248 2.13 2.75E − 07
Irf8 2.09 8.20E − 05
Smoc2 2.03 0.03

Downregulated genes in Wistar rats’
ISCs

Rnf150 0.48 0.01

Adamts14 0.48 0.03

Arrb1 0.46 0.01

Spon2 0.44 5.93E − 10
Fibin 0.42 0.03

Ablim1 0.41 0.00

LOC100910790 0.39 3.53E − 05
Acan 0.38 0.04

Slc9a2 0.37 0.00

Actg2 0.32 0.03

Cdo1 0.32 0.00

Tnnc1 0.31 0.01

Plekhh2 0.29 5.72E − 07
Ebf2 0.27 0.00

Gja5 0.23 7.12E − 17
Tbx18 0.228723292 1.15E − 16
Prex2 0.203772172 0.002737756

Gsc 0 0.000404614
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in PSCs and ISCs at the transcriptional level, we made func-
tion annotation for each DGEs through gene ontology (GO)
functional enrichment analysis.

The top 10 categories of each part of GO analysis that
were significantly enriched with a Q value <0.05 are shown
in Figure 4.

3.6. Validation of mRNA-Seq Results. We confirmed the
expression level of 10 DEGs (5 upregulated and 5 downregu-
lated genes) using real-time PCR (Figure 5). The genes which

we validated should meet the following principles: firstly, the
fold change of DEGs was as large as possible. Secondly, the
gene expression, at transcription level, was enough to be
detected via real-time PCR. Thirdly, the genes were associated
with different biological features between Wistar rats’ PSCs
and ISCs, such as proliferation, migration, and apoptosis.

The results of the validation via real-time PCR showed
that, although the RQ was different from the fold change,
the tendency was in consistent with the results presented in
the transcriptional analysis.
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Figure 3: Heatmap and volcano plots showing DEGs between Wistar rats’ PSCs and ISCs. Heatmap shows the hierarchically clustered genes
(a). Upregulated levels of gene expression are displayed as red bars while downregulated levels are displayed as green bars. Volcano plot shows
the overall distribution of DEGs (b). Genes with fold change> 2 and statistical significance are marked with red dots.

Table 3: KEGG pathway analysis of DEGs in Wistar rats’ PSCs and ISCs.

Term ID Q value Gene ID Gene

Taurine and hypotaurine metabolism rno00430 0.008177 81,718 Cdo1

Phototransduction rno04744 0.025229 25,387 Arrb1

Cysteine and methionine metabolism rno00270 0.036734 81,718 Cdo1
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4. Discussion

There is the evidence that human fibroblasts exhibit topo-
graphic differentiation via genome-wide expression profiling
[12]. Fibroblasts from each site displayed distinct and charac-
teristic transcriptional patterns, suggesting that fibroblasts at

different locations in the body should be considered dis-
tinctly differentiated cell types. The topographic differentia-
tion of fibroblasts results in different biologic specificity. A
recent study using immunohistochemistry assay confirmed
that there exist α-SMA-positive cells in the fibrosis area of
islets, which are recognized to be involved in the progression
of islet fibrosis [13]. It seems likely that such myofibroblast-
like cells in islets should be different from PSCs, since the lat-
ter cells are located in the exocrine glands of the pancreas.

Our study showed that there was a difference in tran-
scription levels of Wistar rats’ PSCs and ISCs, and there
existed 32 differentially expressed genes, accounting for
0.1461% of all the 21,901 genes detected. The mRNA levels
of these genes were further confirmed by real-time PCR.
The results of the RNA-seq confirmed our hypothesis that
ISCs are similar but not identical to PSCs. In this experiment,
we focused on the difference at the transcription level
between these two types of fibroblasts. So we think that ISCs
and PSCs have the same origin but from different locations.
PSCs play a part in pancreatic exocrine glands, while ISCs
play a part in islets due to their location.

Our data also provided valuable information regarding
the subtle but important differences of islet stellate cells ver-
sus pancreatic stellate cells. We showed that COL11A1
expression was significantly upregulated in Wistar rats’ ISCs,
with a fold change of 2.91.
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Minor fibrillar collagens, type V and type XI, were con-
sidered to act as nucleators, controlling the assembly of colla-
gen fibrils and participating in proper type II collagen fibril
formation [14]. COL11A1 encodes one of the two chains of
collagen type XI, α1 chain [15]. Col11A1 is highly expressed
by activated stromal cells in multiple cancers which are
mostly invasive, such as oral cavity/pharynx, head and neck,
breast, lung, esophagus, stomach, colon, and ovary [16–26].
Recent research has emphasized the role of col11a1 in vari-
ous cancers. Coll11a1 may play roles in metastasis, angiogen-
esis, and drug resistance, as well as its potential value in
screening tests and as a therapeutic target [27]. One study
shows that proCOL11A1 presents a strong immunohisto-
chemical staining within the stroma cells/cancer-associated
fibroblasts (CAFs) of pancreatic ductal adenocarcinomas
(PDAC), but not strongly costaining with chronic pancreati-
tis [21]. ProCOL11A1-positive cells presented costaining
mesenchymal, stellate, and epithelial markers such as vimen-
tin, α-SMA, or desmin in different proportions, suggesting
that proCOL11A1-positive cells might be involved in
epithelial-mesenchymal transition (EMT).

In agreement with our previous experimental results,
this study showed that ISCs contain fewer vitamin A-
storing lipid droplets and are more rapidly activated than
PSCs in vitro. Activated ISCs express abundant quantity
of α-SMA and ECM components that may lead to fibrosis.
Taking the location of the ISCs into consideration, the
activated ISCs are the most likely causes of islet fibrosis
in the condition of diabetes. Given our result of mRNA
sequencing and considering previous findings, the upregu-
lated expression gene of Coll11a1 in Wistar rats’ ISCs is likely
to be a key gene underlying the differential pathophysiology
of ISCs and PSCs.

In conclusion, our data showed the differences of ISCs
and PSCs at the transcriptional level. Genes like Coll11a1
may be a key to differences in pathophysiology of ISCs
and PSCs. Identification of the gene expression profiles
would enrich our current understanding of the ISCs,
which also confirmed the previous assumption that ISC
and PSC are similar but not identical in morphology
and phenotype. In our previous study, comparing with
normal status, ISCs in diabetic status showed a signifi-
cantly greater migration, a larger rate of apoptosis and
viability, and a higher level of ECM component secretion
[28]. Provided that there existed a molecular switch that
can be used to reverse this phenomenon and subsequently
relieve the islet fibrosis in terminal stage of diabetes, this
could be a cue to develop novel efficiency therapy approaches
for diabetes.
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