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Alphaviruses contain many human and animal pathogens, such as CHIKV, SINV,

and VEEV. Accumulating evidence indicates that innate immunity plays an

important role in response to alphaviruses infection. In parallel, alphaviruses

have evolved many strategies to evade host antiviral innate immunity. In the

current review, we focus on the underlying mechanisms employed by

alphaviruses to evade cGAS-STING, IFN, transcriptional host shutoff,

translational host shutoff, and RNAi. Dissecting the detailed antiviral immune

evasion mechanisms by alphaviruses will enhance our understanding of the

pathogenesis of alphaviruses and may provide more effective strategies to

control alphaviruses infection.
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Introduction

Alphaviruses are positive-stranded RNA viruses and belong to the Togaviridae family

(1). It contains many important human and animal pathogens, such as chikungunya

virus (CHIKV), Sindbis virus (SINV), and Venezuelan equine encephalitis virus (VEEV).

Affected by geographical factors and climatic conditions, alphaviruses distribute on all

continents except Antarctica and many islands. CHIKV can be found in tropical and

subtropical regions of Africa and Southeast Asia, where winter temperatures are above

18°C. This virus is famous for causing Chikungunya fever, with the symptoms of acute

febrile illness, arthralgia, and severe neurological complications (2).SINV exists in

Europe, Asia, and Africa, including many Philippine Islands and the South Pacific

areas. Fever, malaise, rash, and chronic musculoskeletal pain are the main symptoms of

SINV (3). VEEV is mainly in circulation in the American continent and can cause severe

encephalitis (4). The major transmission vectors of alphaviruses are mosquitoes,

including Aedes aegypti, Aedes albopictus, and Aedes africanus (5).

Alphavirus particles are round with a diameter of about 70 nanometers. The viral

nucleocapsid has an icosahedral symmetry with a diameter of 30-40 nanometers.
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Alphavirus genome comprises a 5’-methylguanylate cap, a 3’-

polyadenylic acid tail, and two open reading frames (ORFs),

which encode four nonstructural proteins and six structural

proteins (6). Nonstructural proteins include nsP1, nsP2, nsP3

and nsP4, and they play critical roles in the transcription and

replication of the virus (7). nsP1 is required for cap synthesis and

plasma membrane-anchoring. nsP2 is necessary for polyproteins

processing as its C terminus obtains an N-terminal RNA helicase

and cysteine protease (8). ADP ribosyl-binding and hydrolase

activities in nsP3 are crucial for viral replication. nsP4 activity

depends on its RNA polymerase activity. Structural proteins of

alphaviruses are capsid, 6K, transferase protein (TF), E1, E2, and

E3 (7). The capsid protein is used for packaging the viral nucleic

acid (7). 6K participates in the infected cell surface’s vial

assembly and budding stages. Shared with the same coding

regions with 6K, TF is generated due to a ribosomal frameshift

and promotes virus replication by reducing the early IFN-I

response (9). E1 and E2 mediate the entry of the virus. 6K and

E3 work together to transport the precursor membrane protein

to the endoplasmic reticulum (ER) (7).

The host innate immune system is the first line of defense

against viral infection. For example, the Cyclic GMP-AMP

Synthase (cGAS)-stimulator of interferon genes (STING)

pathway could stimulate and promote the production of type I

interferon to achieve antiviral effects (10). Degradation of the

key regulator of eukaryotic messenger RNA transcription, RPB1,

will induce transcriptional host shutoff (11). Signal transduction

of the PKR-like ER kinases (PERK) pathway and the unfolded

protein response (UPR) phosphorylates eukaryotic translation

initiation factor 2 (eIF2), which causes translational shutoff (11).

RNA-induced silencing complex (RISC) can cleave viral RNA

and activate RNAi (12).

However, with the evolution of viruses and their long-term

confrontation with host cells, many viruses have established

effective antagonisms to host antiviral innate immune pathways

and immune factors (13–21). This review has summarized

different mechanisms of how alphaviruses antagonize the

host’s innate immunity. Alphavirus is highly infectious as it

can transmit by the mosquito and pose a huge threat to public

health. So understanding the antiviral innate immune pathway

and the antagonistic effects induced by the viral proteins of

alphaviruses could provide more strategies to control the

diseases caused by alphaviruses.
Restraint of cGAS-STING pathway

When infected by a virus, activation of cytoplasmic DNA

sensors such as cGAS in immune cells is adapted to intracellular

damage caused by the released viral DNA. The 2’-3’ cyclic-

guanosine monophosphate (GMP)-adenosine monophosphate

(AMP) (GAMP) is synthesized to bind to STING, which then

forms dimerization and translocates to the Trans-Golgi-
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Network (TGN) and associate with TANK-Binding Kinase 1

(TBK1), resulting in the phosphorylation of Interferon

Regulatory Factor 3 (IRF3) (22). The transcription and

expression of the cGAS-STING innate immune pathway could

inhibit virus replication, whereas viruses could antagonize

this process.

In the first four hours of CHIKV infection, the expression of

cGAS is reduced sharply, while there is no significant change in

the expression of STING (23). The degradation of cGAS is

mediated by capsid protein through ATG7-dependent

autophagy (Figure 1). When the chemical inhibitor of

autophagy 3-methyladenine (3-MA) is used, cGAS can be

restored. Capsid-mediated cGAS degradation directly limits

the antiviral effect of the cGAS-STING pathway (23). The

interaction between nsP1 and STING is mediated by the

cytoplasmic loop of STING, mainly due to the palmitoylation

that occurs at 88 and 91 amino acids. The level of viral protein

will be significantly reduced, and the cGAS-STING-mediated

induction of type I IFN will be impaired when this interaction is

lost (23). Interestingly, nsP1-STING interaction significantly

inhibits IFNb promotor activation induced by cGAS-STING

(23). Other viruses degrade components of the cGAS-STING

signaling to achieve evasion. For example, DENV NS2B3

protease inhibits type I IFN production in infected cells by

cleaving STING (23), and papain-like protease (PLpro)-

transmembrane domain (TM) in SARS disrupts IRF3

phosphorylation and dimerization (24). Interestingly, nsP2,

nsP4, and capsid proteins have separate or synergistic effects

on the degradation of cGAS, and their mechanisms are worthy of

further study and discussion.
Inhibition of IFN pathway

Type I interferon (IFN) is a cytokine is crucial for the

antiviral response and activation of the innate and adaptive

immune system. Its production is often triggered by pattern

recognition receptors (PRRs), including Toll-like receptors

(TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors

(RIG-I-like receptors, RLRs), nucleotide-binding and

oligomerization domain (NOD)-like receptors (NLRs), and

intracellular DNA receptors (25, 26). After the cytoplasmic

receptor recognizes the viral nucleic acid, melanoma

differentiation-associated gene 5 (MDA5) and RIG-I will

expose the caspase recruitment domain (CARD) domain to

induce the aggregation and activation of the mitochondrial

antiviral signal protein (MAVS). Then the signal is transmitted

downwards to activate TBK1 and IKKϵso that IRF3/7 is

phosphorylated and transported to the nucleus to promote the

transcription of type I interferons (27). The viral genome

contains two ORFs. The first encodes precursor proteins, and

the second encodes structural polyproteins, where the 6K

protein causes a ribosomal frameshifting during translation
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and produces the TF (9). Virus modification of host protein

often occurs through post-translational modifications, such as

palmitoylation and phosphorylation. Palmitoylation is a 16-

carbon palmitoyl covalent bond attached to cysteine residues.

This modification imparts hydrophobicity to the protein and is

usually targeted at the cell membrane (28). TF has been

demonstrated to be modified by palmitoylation (29, 30). 6K

mutation indicates that hexanucleotide cannot be reduced to

produce TF protein (31, 32). The loss of TF palmitoylation will

result in the enrichment of the type I IFN production and the

attenuation of toxicity caused by SINV infection (33).

Palmitoylated TF is necessary for its localization and the

subsequent production of virus particles, which also helps to

enhance the ability to antagonize the host interferon response.

Meanwhile, nsP2, E1, and E2 proteins of CHIKV can strongly

antagonize the activation of the IFN-b signaling pathway

(Figure 1). Co-expression of nsP2, E1, E2, and MDA5/RIG-I

allows the inhibition of more than 80% of the MDA5/RIG-I-

mediated IFN-b promoter activity in the presence of viral

proteins (34).

In response to IFN, IFN receptors phosphorylate signal

transducer and activator of transcription 1 (STAT1) (35).

Then the importin-a5 transports the phosphorylation form of

STAT1 (pSTAT1) to the nucleus, together with IFN response

factor 9 (IRF9), and binds to the IFN-stimulated response

element (ISRE) so that the transcription of the IFN-stimulated

genes (ISGs) is activated (35). With the help of chromosome

region maintenance 1 (CRM1), STAT1 is shuttled back into the

cytoplasm when achieving the goal of releasing from its target
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promoter (35). This signaling pathway restricts CHIKV

propagation and abolishes CHIKV-induced diseases (36).

However, CHIKV infection effectively inhibits IFN-mediated

phosphorylation of STAT1, thereby hindering the transmission

of JAK-STAT immune signals (36). CHIKV nsP2 is responsible

for regulating the IFN-induced JAK-STAT signaling (Figure 1)

(37). By mutating the KR649AA site in NLS of nsP2 or

redirecting nsP2 C-terminal methyltransferase-like domain

into the nucleus, JAK-STAT signaling is no longer inhibited

mechanically due to the reduction of pSTAT nuclear

accumulation (38, 39).

Antiviral effects of IFN are fulfilled by antiviral IFN-

stimulate genes (ISGs). One well-characterized ISG is bone

marrow stromal antigen 2 (BST-2). Its transmembrane domain

and lumenal GPI anchor allow virus particles to adhere to the

surface of infected cells, thereby preventing release and

bystander cells’ infection (40). Although BST-2 could block the

release of the virus, many of which have evolved multiple

mechanisms to antagonize the inhibitory effect (40, 41), which

is also the case for CHIKV. CHIKV protein co-localizes with

BST-2 when expressed in VLPs, namely E1 and nsP1 (42). There

are interactions between BST-2 and E1 and nsP1, but the protein

that antagonizes its inhibitory effect on virus release is nsP1. In

the presence of BST-2, a CHIKV virus-like particle (VLP) is

adhered to the cell membrane and cannot be released from the

surface. However, acting as an antagonist, upregulation of nsP1

counteracts the effect of BST-2, which enables the progeny

virions to attach to the membrane (Figure 1) (42). The same

effects can be observed in HIV-1 Vpu and HIV-2 Env, which can
FIGURE 1

A diagram of alphavirus-mediated inhibition of the innate immune pathways leading to the production of IFN and ISG induction.
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redirect the BST-2 from the cell surface and form a perinuclear

compartment (41, 43). The prerequisite is that Vpu must have

both transmembrane/ion channel domain and conserved

proteins (40).

In addition, the alphavirus can not only use its viral protein

to inhibit the production, translation, and transcription of

interferon but also use the host antiviral protein to achieve

immune escape, such as zinc-finger antiviral protein (ZAP). ZAP

is a host antiviral factor stimulated by IFN, inhibiting the

replication of some viruses, including HBV, Sindbis virus, and

Ebola (44–46). Due to the interaction between ZAP-responsible

elements (ZRE) and viral RNA, some exosomes are recruited to

degrade RNA substrates (44, 47). Sometimes ZAP could disturb

the polysome association/translation of RNA (45). In ZAP gene

knockout mice models, virus replications are greatly enhanced in

lymphoid tissues, while this phenomenon could not be observed

in brain tissues. Those results imply that viral infection can

evade immune surveillance by suppressing the expression of

ZAP antiviral protein in the brain tissues (47). However, there

may be other ways for the virus to achieve antiviral effects and

immune escape in the host, which requires further research.
Suppression of transcriptional host
shutoff pathway

A basic feature of massive alphavirus replication in

vertebrates is the cytopathic effect (CPE). Alphavirus inhibits

the occurrence and efficacy of the host antiviral response by

antagonizing cell transcription so that it can replicate in vivo,
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which is achieved through different mechanisms mediated by

alphavirus proteins.

nsP2 from old world alphaviruses, including SINV and SFV,

is the key regulator of the interaction between the virus and the

host cell. Not only does nsP2 serves as a component of the

replicase complex required for viral RNA replication and

transcription, but also it can directly participate in the

inhibition of host transcription (48, 49). As a subunit that

catalyzes the polymerase reaction, RPB1 determines the

initiation and extension of eukaryotic messenger RNA

transcription. nsP2 could induce the ubiquitination and

degradation of RPB1 (Figure 2) (50). In the experiment of

mice infected with SINV containing a single nsP2 substitution

(P726!G), a significant increase in the secretion of IFN can be

seen due to the shutdown of host transcription (50). Normally,

cells can remove the extended RNAPII complex during the

transcription-coupled repair. Once the complex is blocked by

large amounts of DNA damage, RPB1 can be modified by

ubiquitination and then degraded by the proteasome (51).

Mutating amino acids 674-688 can resist virus-induced

degradation of RPB1 and make SINV a powerful inducer of

type I interferon (48). It is worth noting that this phenomenon

does not affect virus replication.

The amino terminal region of alphavirus nsP3 has the effect

of a single ADP-ribosylhydrolase, and the N24Amutation in this

region eliminates the hydrolase activity (52). A single mutation

in N24A still induces the degradation of RPB1, while the double

mutation of SINV nsP2-683S and nsP3-N24A no longer

degrades RPB1 (48). Mayaro virus (MAYV) nsP2 associates

with RPB1 and transcription initiation factor IIE subunit 2
FIGURE 2

Inhibition of host transcriptional and translational shutoff by alphaviruses.
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(TFIIE2) (53). Overexpression of MAYV nsP2 mediates

inhibition of host cell transcription by reducing RPB1 and

TFIIE2 (53).

The cytotoxicity of the new world alphaviruses represented

by VEEV and EEEV differs from that of the old world

alphaviruses. VEEV and EEEV-derived replicons produce

fewer cytopathic changes, and at the same time, durable viral

nucleic acid replication can be established (54). This host

transcription shutoff in VEEV and EEEV depends on the

presence of viral capsid protein (55). The capsid is distributed

in the cytoplasm of infected cells and may interfere with the

antiviral response. Capsid could inhibit cell messenger and

ribosomal RNA transcription and downregulate RNA

synthesis. Interestingly, western equine encephalitis virus

(WEEV) inhibits the host transcription depending on both

nsP2 and capsid, consisting of the current concept of forming

WEEV from SINV- and EEEV-like ancestors (55).
Suppression of translational host
shutoff pathway

After mammals are infected with alphavirus, the replication

of viral RNA in the cell often leads to more serious cytopathic

changes. That is, selective inhibition of host protein synthesis

and viral mRNA will be in this case. The ER is responsible for the

proper folding and processing of polypeptide chains into

functional proteins. Factors affecting the function of the ER,

such as viral infection, will lead to the accumulation of misfolded

or unfolded proteins. To protect cells from over accumulation,

repression of protein synthesis, so-called (UPR), maintains

cellular protein homeostasis (56). These regulatory signalings

contain (PERK), transcription factor 6 (ATF6), and the ER

transmembrane protein kinase/endoribonuclease inositol-

requiring enzyme 1 (IRE1), with the involvement of ER

chaperone immunoglobulin heavy chain binding protein (BIP)

(56). PERK can be activated through self-dimerization and

phosphorylation, then pPERK can phosphorylate eIF2a on

amino acid 51, during which GADD34 can play an inhibitory

role against this process (57). Induction of C/EBP homologous

protein (CHOP) is to mediate apoptosis when ER is impaired

severely. The IRE pathway is activated similarly. The catalytic of

IRE will trigger a sequence of gene transcription, such as

components of ER-associated degradation (ERAD). ATF6

activates transcription of the chaperone, thus helping

translational recovery (58, 59).

However, the virus can regulate the activity of some key

factors to influence the antagonism of protein synthesis,

ensuring the effective translation of virus mRNAs and the

shutoff of host translation. CHIKV can regulate the signal

transduction of the PERK pathway by inhibiting the

phosphorylation of eIF2a during early infection (Figure 2).

Upon significant express ion of CHIKV nsP4, the
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phosphorylation of eIF2a on serine 51 regulating the signal

transduction of PERK is suppressed, thereby ensuring the

translation of viral proteins (58). Overexpression of CHIKV

nsP2 inhibits the expression of functional UPR transcription

factors ATF4 and activation of XBP1 and thus blocks the UPR,

which is another strategy to shut off host translation (60).
Inhibition of RNAi pathway

Eukaryotes have evolved many antiviral immune defenses to

prevent viral infection, such as RNA interference(RNAi) (12).

RNAi is a conservative post-transcriptional gene silencing

mechanism (12). As a member of the RNase III family of

nucleases, Dicer has a helicase domain and dual RNase III

motif, and it can cleave double-stranded RNAs specifically. In

the process of antiviral RNAi, host cells respond rapidly to the

dsRNA derived from the invading viruses, activating Dicer to

cleave the dsRNA into virus-derived small interfering RNA

(viRNA) with a size of 21 to 23 nucleotides, which is crucial

for the antiviral response (12). One of the components of the

RISC, Argonaute (AGO), plays an indispensable role in

degrading the target dsRNA achieved through the RNase-H-

like PiWi domain or recruiting additional proteins, thereby

inhibiting viral infection (12). However, protection against

RNAi attack enables the virus to encode specific virulence

proteins, the so-called viral suppressors of RNAi (VSRs) (12).

The Semliki forest virus (SFV) capsid protein is

demonstrated as VSR (61). SFV capsid protects viral RNA

from interpretation at two stages. On the one hand, capsid

binds to dsRNA to block Dicer cleavage and thus antagonizes the

production of viRNA (Figure 3). The experiments of SFV capsid

mutants suggest that K124/K128 and K139/K142 are essential

for VSR activity (61). On the other hand, capsid associates with

viRNA and thus prevents the interaction between viRNA and

RISC (61). Consequently, the inactivation of the VSR function

will inhibit SFV replication.
Conclusion and perspectives

In this review, we have described in detail the different

mechanisms by which each viral protein of alphavirus

antagonizes the host’s innate immunity. The host will

recognize virus invasion through the sensor proteins, including

cGAS and MAVS, and activate the antiviral innate immune

pathway. The downstream signals further activate the TBK1-

IRF3 and IKK-NF-kB pathways, increasing type I interferon

production and inhibiting viral infection. Almost all alphavirus

proteins antagonize innate immunity in different mechanisms

and degrees. Through the interaction with cGAS-STING, nsP1

degrades cGAS to stabilize the virus protein (Figure 1). nsP1 also

down-regulates the expression of BST-2 to inhibit the adhesion
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of VLPs on the plasma membrane and promote the release of the

virus. The mechanism of nsP2 antagonizing immune response is

more complex. The type I interferon response can be

counteracted by inhibiting the general transcription of host

cells and reducing the phosphorylation of STAT1 in the JAK-

STAT pathway (Figure 1). In addition, degradation of RPB1

occurs by nsP2-mediated ubiquitination, through which the

transcription of the host proteins can be shut down (Figure 2).

At the same time, nsP2 exerts a profound impact on the

phosphorylation of STAT1 and STAT2 and thus inhibits the

host translation (Figure 1). Both nsP3 and nsP4 could induce the

host transcriptional shutdown (Figure 2). NsP4 inhibits the

phosphorylation of eIF2alpha in the PERK pathway. Among

the structural proteins, the capsid protein can effectively inhibit

RNAi in insect and mammalian cells by separating double-

stranded RNA and small interfering RNA (Figure 3). E2 and E1

inhibit the activation of the IFN-b promoter induced by the

MDA5/RIG-I receptor signaling pathway. TF antagonizes the

host interferon response. In addition to the structural and

nonstructural proteins of alphavirus, the virus also uses the

immune escape phenomenon of ZAP to antagonize the host’s

antiviral response.

As more and more studies are performed, a deeper and more

comprehensive understanding of alphavirus antagonizing host

antiviral innate immunity is revealed. However, some

mechanisms are not clear enough, and there may be other

ways and mechanisms to antagonize antiviral immunity that

are worthy of further research and exploration. At the same time,

the strategies of antagonizing antiviral immunity by alphaviruses

will provide important insights into controlling viral infections.
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