
F1000Research

Open Peer Review

, Michigan State UniversityTitus Brown

USA

, University of Chicago USADaniel Katz

Discuss this article

 (1)Comments

2

1

OPINION ARTICLE

 Rampant software errors may undermine scientific
 results [version 2; referees: 2 approved]

David A. W. Soergel1,2

Department of Computer Science, University of Massachusetts Amherst, Amherst, USA
Current address: Google, Inc., Mountain View, CA, USA

Abstract
The opportunities for both subtle and profound errors in software and data
management are boundless, yet they remain surprisingly underappreciated.
Here I estimate that any reported scientific result could very well be wrong if
data have passed through a computer, and that these errors may remain
largely undetected. It is therefore necessary to greatly expand our efforts to
validate scientific software and computed results.

 David A. W. Soergel ()Corresponding author: david@davidsoergel.com
 Soergel DAW. How to cite this article: Rampant software errors may undermine scientific results [version 2; referees: 2 approved]

 2015, :303 (doi:)F1000Research 3 10.12688/f1000research.5930.2
 © 2015 Soergel DAW. This is an open access article distributed under the terms of the , whichCopyright: Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 The author(s) declared that no grants were involved in supporting this work.Grant information:

 Competing interests: No competing interests were disclosed.

 11 Dec 2014, :303 (doi:) First published: 3 10.12688/f1000research.5930.1

1,2

1

2

 Referee Status:

 Invited Referees

version 2
published
29 Jul 2015

version 1
published
11 Dec 2014

 1 2

report

report

report

report

 11 Dec 2014, :303 (doi:)First published: 3 10.12688/f1000research.5930.1
 29 Jul 2015, :303 (doi:)Latest published: 3 10.12688/f1000research.5930.2

v2

Page 1 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

http://f1000research.com/articles/3-303/v2
http://f1000research.com/articles/3-303/v2
http://dx.doi.org/10.12688/f1000research.5930.2
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.5930.1
http://f1000research.com/articles/3-303/v2
http://f1000research.com/articles/3-303/v1
http://dx.doi.org/10.12688/f1000research.5930.1
http://dx.doi.org/10.12688/f1000research.5930.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.5930.2&domain=pdf&date_stamp=2015-07-29

Computational results are particularly prone to
misplaced trust
Perhaps because of ingrained cultural beliefs about the infallibility
of computation1, people show a level of trust in computed outputs
that is completely at odds with the reality that nearly zero provably
error-free computer programs have ever been written2,3.

It has been estimated that the industry average rate of program-
ming errors is “about 15 – 50 errors per 1000 lines of delivered
code”4. That estimate describes the work of professional software
engineers-—not of the graduate students who write most scientific
data analysis programs, usually without the benefit of training in
software engineering and testing5,6. The recent increase in atten-
tion to such training is a welcome and essential development7–11.
Nonetheless, even the most careful software engineering practices
in industry rarely achieve an error rate better than 1 per 1000 lines.
Since software programs commonly have many thousands of lines
of code (Table 1), it follows that many defects remain in delivered
code–even after all testing and debugging is complete.

Software errors and error-prone designs are compounded across
levels of design abstraction. Defects occur not only in the top-level

program being run but also in compilers, system libraries, and even
firmware and hardware–and errors in such underlying components
are extremely difficult to detect12.

How frequently are published results wrong due to
software bugs?
Of course, not every error in a program will affect the outcome
of a specific analysis. For a simple single-purpose program, it is
entirely possible that every line executes on every run. In general,
however, the code path taken for a given run of a program executes
only a subset of the lines in it, because there may be command-
line options that enable or disable certain features, blocks of code
that execute conditionally depending on the input data, etc. Further-
more, even if an erroneous line executes, it may not in fact manifest
the error (i.e., it may give the correct output for some inputs but
not others). Finally: many errors may cause a program to simply
crash or to report an obviously implausible result, but we are really
only concerned with errors that propagate downstream and are
reported.

In combination, then, we can estimate the number of errors that
actually affect the result of a single run of a program, as follows:

Number of errors per program execution =
 total lines of code (LOC)
 * proportion executed
 * probability of error per line
 * probability that the error
 meaningfully affects the result
 * probability that an erroneous result
 appears plausible to the scientist.

For these purposes, using a formula to compute a value in Excel
counts as a “line of code”, and a spreadsheet as a whole counts as a
“program”—so many scientists who may not consider themselves
coders may still suffer from bugs13.

All of these values may vary widely depending on the field and the
source of the software. Consider the following two scenarios, in
which the values are nothing more than educated guesses (informed,
at least, by deep experience in software engineering).

 Amendments from Version 1

I agree with both reviewers that my claims were too strongly
worded. I have softened the language throughout (including
simply adding “may” to the title), and revised the abstract
accordingly. I believe it is now clear that I am expressing a
justifiable anxiety about computational errors affecting scientific
results, but that I do not provide empirical evidence as to how
often results really are invalid for this reason.

I added the entire section: “Popular software is not necessarily
less bug-prone.”

In the conclusion, I clarified the relationship between correct
results (our ultimate goal), software verification, and shared
workflow systems.

See referee reports

REVISED

Table 1. Number of lines of code in typical classes of computer programs (via
informationisbeautiful.net).

Software Type Lines of Code

Research code supporting a typical bioinformatics study, e.g. one graduate
student-year. O(1000) – O(10,000)

Core scientific software (e.g. Matlab and R, not including add-on libraries). O(100,000)

Large scientific collaborations (e.g. LHC, Hubble, climate models). O(1,000,000)

Major software infrastructure (e.g. the Linux kernel, MS Office, etc.). O(10,000,000)

Page 2 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Scenario 1: A typical medium-scale bioinformatics analysis
• 100,000 total LOC (neglecting trusted components such as

the Linux kernel).

• 20% executed

• 10 errors per 1000 lines

• 10% chance that a given error meaningfully changes the
outcome

• 10% chance that a consequent erroneous result is plausible

Multiplying these, we expect that two errors changed the output of
this program run, so the probability of a wrong output is effec-
tively 100%. All bets are off regarding scientific conclusions drawn
from such an analysis.

Scenario 2: A small focused analysis, rigorously executed
Let’s imagine a more optimistic scenario, in which we write a sim-
ple, short program, and we go to great lengths to test and debug it.
In such a case, any output that is produced is in fact more likely to
be plausible, because bugs producing implausible outputs are more
likely to have been eliminated in testing.

• 1000 total LOC

• 100% executed

• 1 error per 1000 lines

• 10% chance that a given error meaningfully changes the
outcome

• 50% chance that a consequent erroneous result is plausible

Here the probability of a wrong output is 5%.

The factors going into the above estimates are rank speculation,
and the conclusion varies widely depending on the guessed values.
Measuring such values rigorously in different contexts would be
valuable but also tremendously difficult. Nonetheless it is sobering
that some plausible values can produce high total error rates, and that
even conservative values suggest that an appreciable proportion of
results may be erroneous due to software defects–above and beyond
those that are erroneous for more widely appreciated reasons.

Put another way: publishing a computed result amounts to asserting
that the likelihood of error is acceptably low, and thus that the vari-
ous factors contributing to the total error rate are low. In the context
of a specific program, the first three factors (# LOC, % executed,
and errors/line) can be measured or estimated. However the last two
(“meaningful change” and “plausible change”) remain completely
unknown in most cases. In the following two sections I argue that
these two factors are likely large enough to have a real impact.
It is therefore incumbent on scientists to validate computational
procedures–just as they already validate laboratory reagents,
devices, and procedures–in order to convince readers of the absence
of serious bugs.

Software is exceptionally brittle
A response to concerns about software quality that I have heard fre-
quently—-particularly from wet-lab biologists—-is that errors may
occur but have little impact on the outcome. This may be because
only a few data points are affected, or because values are altered
by a small amount (so the error is “in the noise”). The above esti-
mates account for this by including a term for “meaningful changes
to the result”. Nonetheless, in the context of physical experiments,
it is tempting to believe that small errors tend to reduce precision
but have less effect on accuracy–i.e. if the concentration of some
reagent is a bit off then the results will also be just a bit off, but not
completely unrelated to the correct result.

But software is different. We cannot apply our physical intuitions,
because software is profoundly brittle: “small” bugs commonly
have unbounded error propagation. A sign error, a missing semico-
lon, an off-by-one error in matching up two columns of data, etc.
will render the results complete noise16. It is rare that a software
bug would alter a small proportion of the data by a small amount.
More likely, it systematically alters every data point, or occurs in
some downstream aggregate step with effectively global conse-
quences. In general, software errors produce outcomes that are
inaccurate, not merely imprecise.

Many erroneous results are plausible
Bugs that produce program crashes or completely implausible
results are more likely to be discovered during development, before
a program becomes “delivered code” (the state of code on which
the above errors-per-line estimates are based). Consequently, pub-
lished scientific code often has the property that nearly every pos-
sible output is plausible. When the code is a black box, situations
such as these may easily produce outputs that are simply accepted
at face value:

• An indexing off-by-one error or other data management
mistake associates the wrong pairs of X’s and Y’s14,15.

• A correlation is found between two variables where in fact
none exists, or vice versa.

• A sequence aligner reports the “best” match to a sequence
in a genome, but actually provides a lower-scoring match.

• A protein structure produced from x-ray crystallography is
wrong, but it still looks like a protein16.

• A classifier reports that only 60% of the data points are
classifiable, when in fact 90% of the points should have
been classified (and worse, there is a bias in which points
were classified, so those 60% are not representative).

• All measured values are multiplied by a constant factor,
but remain within a reasonable range.

Software errors and statistical significance are
orthogonal issues
A software error may produce a spurious result that appears signifi-
cant, or may mask a significant result.

Page 3 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

If the error occurs early in an analysis pipeline, then it may be
considered a form of measurement error (i.e., if it systematically
or randomly alters the values of individual measurements), and so
may be taken into account by common statistical methods.

However: typically the computed portion of a study comes after
data collection, so its contribution to wrongness may easily be
independent of sample size, replication of earlier steps, and other
techniques for improving significance. For instance, a software
error may occur near the end of the pipeline, e.g. in the computation
of a significance value or of other statistics, or in the preparation of
summary tables and plots.

The diversity of the types and magnitudes of errors that may occur17–21
makes it difficult to make a general statement about the effects of
such errors on apparent significance. However it seems clear that,
a substantial proportion of the time (based on the above scenarios,
anywhere from 5% to 100%), a result is simply wrong—-rendering
moot any claims about its significance.

Popular software is not necessarily less bug-prone
The dangers posed by bugs should be obvious to anyone working
with niche or custom software, such as one-off scripts written by a
graduate student for a specific project. Still it is tempting to think
that “standard” software is less subject to these concerns: if every-
one in a given scientific field uses a certain package and has done
so for years, then surely it must be trustworthy by now, right? Sadly
this is not the case.

In the open-source software community this view is known as
“Linus’s Law”: “Given enough eyeballs, all bugs are shallow”. The
law may in fact hold when there are really many eyeballs reading
and testing the code. However widespread usage of the code does
not produce the same effect. This has been recently demonstrated
by the discovery of major security flaws in two extremely widely
used open-source programs: the “Shellshock” bug in the bash com-
mand line shell and the “Heartbleed” bug in the OpenSSL encryp-
tion library. In both cases, code that runs on a substantial fraction
of the world’s computers is maintained by a very small number of
developers. Despite the code being open-source, “Linus’s Law” did
not take effect simply because not enough people read it–even over
the course of 25 years, in the case of Shellshock.

This principle applies not only to the software itself, but also to
computed results that are reused as static artifacts. For instance,
it took 15 years for anyone to notice errors in the ubiquitous
BLOSUM62 amino acid substitution matrix used for protein
sequence alignment22.

Furthermore, even popular software is updated over time, and
is run in different environments that may affect its behavior.
Consequently, even if a specific version of a package running on

a specific computer is considered reliable, that trust cannot neces-
sarily be extended to other versions of the same software, or to the
software when run on a different CPU or on a different operating
system23.

What can be done?
All hope is not lost; we must simply take the opportunity to use
technology to bring about a new era of collaborative, reproduc-
ible science24–26. Open availability of all data and source code used
to produce scientific results is an incontestable foundation27–31. A
culture of comprehensive code review (both within and between
labs) can certainly help reduce the error rate, but is not a pana-
cea. Beyond that, we must redouble our commitment to replicat-
ing and reproducing results, and in particular we must insist that
a result can be trusted only when it has been observed on multi-
ple occasions using completely different software packages and
methods.

A flexible and open system for describing and sharing computa-
tional workflows32 would allow researchers to more easily examine
the provenance of computational results, and to determine whether
results are robust to swapping purportedly equivalent implemen-
tations of computational steps. A shared workflow system may
thereby facilitate distributed verification of individual software
components. Projects such as Galaxy33, Kepler34, and Taverna35
have made inroads towards this goal, but much more work is
needed to provide widespread access to comprehensive provenance
of computational results. Perhaps ironically, a shared workflow sys-
tem must itself qualify as a “trusted component”–like the Linux
kernel–in order to provide a neutral platform for comparisons, and
so must be held to the very highest standards of software quality.
Crucially, any shared workflow system must be widely used to be
effective, and gaining adoption is more a sociological and economic
problem than a technical one36. The first step is for all scientists
to recognize the urgent need to verify computational results–a
goal which goes hand in hand with open availability of compre-
hensive provenance via workflow systems, and with verification
of the individual components of those workflows.

Competing interests
No competing interests were disclosed.

Grant information
The author(s) declared that no grants were involved in supporting
this work.

Acknowledgements
Thanks to Annaliese Beery, Chris Warren, Eli Dart, and the review-
ers C. Titus Brown and Daniel Katz for helpful comments on the
manuscript.

Page 4 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

References

1. Toby SB: Myths about computers. SIGCAS Comput Soc. 1975; 6(4): 3–5.
Publisher Full Text

2. Bird J: How many bugs do you have in your code? Java Code Geeks. 2011.
Reference Source

3. Fishman C: They write the right stuff. fastcompany. 1996.
Reference Source

4. McConnell S: Code complete. Microsoft Press, Redmond, Wash. 2004.
Reference Source

5. Merali Z: Computational science: Error, why scientific programming does not
compute. Nature. 2010; 467(7317): 775–777.
PubMed Abstract | Publisher Full Text

6. Joppa LN, McInerny G, Harper R, et al.: Computational science. Troubling trends
in scientific software use. Science. 2013; 340(6134): 814–5.
PubMed Abstract | Publisher Full Text

7. Baxter SM, Day SW, Fetrow JS, et al.: Scientific software development is not an
oxymoron. PLoS Comput Biol. 2006; 2(9): e87.
PubMed Abstract | Publisher Full Text | Free Full Text

8. Seemann T: Ten recommendations for creating usable bioinformatics
command line software. Gigascience. 2013; 2(1): 15.
PubMed Abstract | Publisher Full Text | Free Full Text

9. Stodden V, Miguez S: Best practices for computational science: Software
infrastructure and environments for reproducible and extensible research.
J Open Res Softw. 2014; 2(1): e21.
Publisher Full Text

10. Wilson G: Software carpentry: Getting scientists to write better code by making
them more productive. Comput Sci Eng. 2006; 8(6): 66–69.
Publisher Full Text

11. Wilson G, Aruliah DA, Brown CT, et al.: Best practices for scientific computing.
PLoS Biol. 2014; 12(1): e1001745.
PubMed Abstract | Publisher Full Text | Free Full Text

12. Thimbleby H: Heedless programming: ignoring detectable error is a widespread
hazard. Software: Practice and Experience. 2012; 42(11): 1393–1407.
Publisher Full Text

13. Zeeberg BR, Riss J, Kane DW, et al.: Mistaken identifiers: gene name errors
can be introduced inadvertently when using excel in bioinformatics. BMC
Bioinformatics. 2004; 5: 80.
PubMed Abstract | Publisher Full Text | Free Full Text

14. Hall BG, Salipante SJ: Retraction: Measures of clade confidence do not correlate
with accuracy of phylogenetic trees. PLoS Comput Biol. 2007; 3(7): e158.
PubMed Abstract | Publisher Full Text | Free Full Text

15. Hutson S: Data handling errors spur debate over clinical trial. Nat Med. 2010;
16(6): 618.
PubMed Abstract | Publisher Full Text

16. Chang G, Roth CB, Reyes CL, et al.: Retraction. Science. 2006; 314(5807): 1875.
PubMed Abstract | Publisher Full Text

17. Beizer B: Software testing techniques. Van Nostrand Reinhold, New York, 1990.
Reference Source

18. Khannur A: Structured Software Testing The Discipline of Discovering. Partridge
Pub. 2014.
Reference Source

19. Spinellis D: Code Quality: The Open Source Perspective. Adobe Press, 2006.
Reference Source

20. Vipindeep V, Jalote P: List of common bugs and programming practices to
avoid them. Electronic, March, 2005.
Reference Source

21. Ray B, Posnett D, Filkov V, et al.: A large scale study of programming languages
and code quality in github. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014. New
York, NY, USA, ACM, 2014; 155–165.
Publisher Full Text

22. Styczynski MP, Jensen KL, Rigoutsos I, et al.: BLOSUM62 miscalculations
improve search performance. Nat Biotechnol. 2008; 26(3): 274–275.
PubMed Abstract | Publisher Full Text

23. Gronenschild EH, Habets P, Jacobs HI, et al.: The effects of FreeSurfer version,
workstation type, and Macintosh operating system version on anatomical
volume and cortical thickness measurements. PLoS One. 2012; 7(6):
e38234.
PubMed Abstract | Publisher Full Text | Free Full Text

24. Hey T, Tansley S, Tolle K: The fourth paradigm: data-intensive scientific
discovery. Microsoft Research, Redmond, Wash. 2009.
Reference Source

25. Mesirov JP: Computer science. Accessible reproducible research. Science.
2010; 327(5964): 415–6.
PubMed Abstract | Publisher Full Text | Free Full Text

26. Nielsen MA: Reinventing discovery: the new era of networked science.
Princeton University Press, Princeton, N.J. 2012.
Publisher Full Text

27. Barnes N: Publish your computer code: it is good enough. Nature. 2010;
467(7317): 753.
PubMed Abstract | Publisher Full Text

28. Ince DC, Hatton L, Graham-Cumming J: The case for open computer programs.
Nature. 2012; 482(7386): 485–8.
PubMed Abstract | Publisher Full Text

29. Lees JM: Open and free: Software and scientific reproducibility. Seismol Res
Lett. 2012; 83(5): 751–752.
Publisher Full Text

30. Morin A, Urban J, Adams PD, et al.: Research priorities. Shining light into black
boxes. Science. 2012; 336(6078): 159–160.
PubMed Abstract | Publisher Full Text | Free Full Text

31. Sonnenburg S, Braun ML, Ong CS, et al.: The need for open source software in
machine learning. J Mach Learn Res. 2007; 8: 2443–2466.
Reference Source

32. Ludäscher B, Altintas I, Bowers S, et al.: Scientific process automation and
workflow management. Scientific Data Management: Challenges, Existing
Technology, and Deployment, Computational Science Series, 2009; 476–508.
Publisher Full Text

33. Goecks J, Nekrutenko A, Taylor J, et al.: Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational research
in the life sciences. Genome Biol. 2010; 11(8): R86.
PubMed Abstract | Publisher Full Text | Free Full Text

34. Altintas I, Berkley C, Jaeger E, et al.: Kepler: an extensible system for design
and execution of scientific workflows. In Scientific and Statistical Database
Management, 2004. Proceedings. 16th International Conference on, IEEE, 2004;
423–424.
Publisher Full Text

35. De Roure D, Goble C: Software design for empowering scientists. Software
IEEE. 2009; 26(1): 88–95.
Publisher Full Text

36. Stodden VC: The scientific method in practice: Reproducibility in the
computational sciences. 2010.
Publisher Full Text

Page 5 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

http://dx.doi.org/10.1145/958785.958786
http://www.javacodegeeks.com/2011/08/how-many-bugs-do-you-have-in-your-code.html
http://www.fastcompany.com/28121/they-write-right-stuff
http://aves.ktu.edu.tr/ImageOfByte.aspx?Resim=8&SSNO=16&USER=7686
http://www.ncbi.nlm.nih.gov/pubmed/20944712
http://dx.doi.org/10.1038/467775a
http://www.ncbi.nlm.nih.gov/pubmed/23687031
http://dx.doi.org/10.1126/science.1231535
http://www.ncbi.nlm.nih.gov/pubmed/16965174
http://dx.doi.org/10.1371/journal.pcbi.0020087
http://www.ncbi.nlm.nih.gov/pmc/articles/1560404
http://www.ncbi.nlm.nih.gov/pubmed/24225083
http://dx.doi.org/10.1186/2047-217X-2-15
http://www.ncbi.nlm.nih.gov/pmc/articles/4076505
http://dx.doi.org/10.5334/jors.ay
http://dx.doi.org/10.1109/MCSE.2006.122
http://www.ncbi.nlm.nih.gov/pubmed/24415924
http://dx.doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pmc/articles/3886731
http://dx.doi.org/10.1002/spe.1141
http://www.ncbi.nlm.nih.gov/pubmed/15214961
http://dx.doi.org/10.1186/1471-2105-5-80
http://www.ncbi.nlm.nih.gov/pmc/articles/459209
http://www.ncbi.nlm.nih.gov/pubmed/17658946
http://dx.doi.org/10.1371/journal.pcbi.0030158
http://www.ncbi.nlm.nih.gov/pmc/articles/1924872
http://www.ncbi.nlm.nih.gov/pubmed/20526299
http://dx.doi.org/10.1038/nm0610-618a
http://www.ncbi.nlm.nih.gov/pubmed/17185584
http://dx.doi.org/10.1126/science.314.5807.1875b
http://dl.acm.org/citation.cfm?id=79060
http://www.knetbooks.com/structured-software-testing-discipline/bk/9781482833119
https://www.zotero.org/jkeiper/items/itemKey/9KHD6IXG
https://www.iiitd.edu.in/~jalote/papers/CommonBugs.pdf
http://dx.doi.org/10.1145/2635868.2635922
http://www.ncbi.nlm.nih.gov/pubmed/18327232
http://dx.doi.org/10.1038/nbt0308-274
http://www.ncbi.nlm.nih.gov/pubmed/22675527
http://dx.doi.org/10.1371/journal.pone.0038234
http://www.ncbi.nlm.nih.gov/pmc/articles/3365894
http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20093459
http://dx.doi.org/10.1126/science.1179653
http://www.ncbi.nlm.nih.gov/pmc/articles/3878063
http://dx.doi.org/10.5062/F4NK3BZP
http://www.ncbi.nlm.nih.gov/pubmed/20944687
http://dx.doi.org/10.1038/467753a
http://www.ncbi.nlm.nih.gov/pubmed/22358837
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1785/0220120091
http://www.ncbi.nlm.nih.gov/pubmed/22499926
http://dx.doi.org/10.1126/science.1218263
http://www.ncbi.nlm.nih.gov/pmc/articles/4203337
http://www.jmlr.org/papers/volume8/sonnenburg07a/sonnenburg07a.pdf
http://dx.doi.org/10.1201/9781420069815-c13
http://www.ncbi.nlm.nih.gov/pubmed/20738864
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://www.ncbi.nlm.nih.gov/pmc/articles/2945788
http://dx.doi.org/10.1109/SSDM.2004.1311241
http://dx.doi.org/10.1109/MS.2009.22
http://dx.doi.org/10.2139/ssrn.1550193

F1000Research

Open Peer Review

 Current Referee Status:

Version 2

 29 October 2015Referee Report

doi:10.5256/f1000research.7365.r9698

 Titus Brown
Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA

This is a sober (and sobering) perspective on the likely frequency of software errors, and the author has
addressed all of my concerns in the revision.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 04 August 2015Referee Report

doi:10.5256/f1000research.7365.r9699

 Daniel Katz
Computation Institute, University of Chicago, Chicago, IL, USA

This version of the paper is much improved, and in general, I agree with the author's response comments.
 I still have some concerns with two issues, and reading the paper made me think of one more point of
interest, but in general, I am satisfied to see this paper move forward as accepted.

The first issue I have is in the description of the scenarios, where the first says that in a somewhat typical
analysis, the probability of a wrong output is 100%. This says to me that there is something wrong with
the calculations, as I don't think typical outputs are 100% likely to be incorrect.

My second issue is the discussion of workflows in the final paragraph. While there are indeed a set of
computations that are described as workflows, particularly data analysis applications, there is also a large
set that are not workflows, particularly simulation applications, that are much better described as
monolithic programs (though using subroutines, methods, objects, etc. internally). I don't think the
workflow discussion is needed in this paper, or that it really helps make the key points.

Finally, as an additional point, it would be interesting to compare this paper with work done in fault
tolerance (aka resilience) where errors in hardware lead to different types of errors in the application,
ranging from hangs and crashes to detectable errors to insignificant or significant undetectable errors.

 From my own work, provides anhttp://www.slideshare.net/danielskatz/aft-dsk-reefinalreviewmay2001

Page 6 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

http://dx.doi.org/10.5256/f1000research.7365.r9698
http://dx.doi.org/10.5256/f1000research.7365.r9699
http://www.slideshare.net/danielskatz/aft-dsk-reefinalreviewmay2001

F1000Research

 From my own work, provides anhttp://www.slideshare.net/danielskatz/aft-dsk-reefinalreviewmay2001
example of this, though there are likely many peer-reviewed published works that could also be used for a
source of a comparison.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1

 22 December 2014Referee Report

doi:10.5256/f1000research.6338.r7096

 Daniel Katz
Computation Institute, University of Chicago, Chicago, IL, USA

This opinion article makes a number of good qualitative points, and while I completely agree that there are
errors in most software, I think the chances of those errors leading to incorrect published results are
completely unknown, and could potentially be much smaller than the this paper claims. I think the basic
claim in the title and the body of the paper may be dramatically overstated. The abstract says "most
scientific results are probably wrong," but this itself seems wrong.

The author states, "we must insist that a result can be trusted only when it has been observed on multiple
occasions using completely different software packages and methods."

First, I think this statement is overly focused on software. One method for developing trust in results from
a particular code is that they match results from other codes. Another method is that they match results
from experiment. A third method might be based on code review.

Second, this statement is not only true for software, it is also true for this complete paper. In order to
believe the chances for errors claimed here, this paper itself needs to be verified, and not at the level of
each assumption made internally (in the "How frequently ..." section), but at the level of the overall claim.
This is not easy, but it would be worthwhile, similar to the author's statement, "Measuring such values
rigorously in different contexts would be valuable but also tremendously difficult" (but at a different
level). If "most scientific results are probably wrong," the author should be able to select a relatively small
number of papers and demonstrate how software errors led to wrong results. I would like to see such an
experiment, which would serve to verify this paper, rather than it standing as an unverified claim about
verification.

Finally, there is the classic problem with verification of a model (software, in this case): that fact that it
works well in one domain is no guarantee that it will work well in another domain.

Having made these objections to the degree of the illness of the patient, I mostly agree with remedies
discussed in the last section. Open available of data and code is clearly good for both trust and
reproducibility. Running (computational) experiments multiple ways can help finds any errors in any one
of them, assuming they do not use common components (e.g., libraries, tools, or even hardware) that
could lead to systematic biases. But how this should be done is less clear. For example, we have

Page 7 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

http://www.slideshare.net/danielskatz/aft-dsk-reefinalreviewmay2001
http://dx.doi.org/10.5256/f1000research.6338.r7096

F1000Research

could lead to systematic biases. But how this should be done is less clear. For example, we have
enough workflow systems that I don’t see any need for any one of them to be more trusted than the code
that runs on them; we can just use different workflow systems with different code as part of the testing.

Back to the author’s last point, I agree that "to recognize the urgent need" is essential, but to me, the need
is verification; I could read this closing comment as saying that the need is widely adopted and widely
trusted workflow tools. This should be clarified.

In summary, this paper could be better titled and less strongly worded in places, and the paper itself
needs to be verified. An alternate title would be one that makes the point, “Software, like other
experiments, must be verified to be trusted”

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 20 Jul 2015
, David Soergel

Thanks very much for your insightful comments, and apologies for the long-delayed response. I
believe I have addressed the main point about softening the claims throughout the paper. Some
further thoughts follow:

"First, I think this statement is overly focused on software. One method for developing trust in
results from a particular code is that they match results from other codes. Another method is that
they match results from experiment. A third method might be based on code review."

I focus on software because I think it is commonly trusted far out of proportion with its level of
validation. Everyone understands that physical measurements must be validated, devices must be
calibrated, experiments should ideally be reproduced in other labs, etc.-- but code seems to be a
cultural blind spot in this regard.

When a computational result can be directly compared to an experimental result, then of course
agreement should increase trust in both. More commonly, I think, a given result arises from a
combination of experiment ("data collection") and computation ("data analysis"), and comparisons
can only be made between attempts incorporating both. Again agreement from multiple attempts
should increase trust--but only if the analysis steps lack common components. This is another
reason to focus on software: software is typically used downstream of data collection, so a bug can
easily mask whatever signal is present in the underlying data, producing spurious agreement or
spurious disagreement in the final result. Because software often has the last word in generating a
result, then, it demands an even higher level of trust than upstream inputs.

Code review is certainly a good thing, but in my view is never sufficient to generate trust.
 Anecdotally, I've found plenty of bugs in code that was already reviewed. In any case, "code
review" means many things to many people, and obviously the likelihood of finding bugs varies
widely with the skill of the reviewer.

"Second, this statement is not only true for software, it is also true for this complete paper. In order

Page 8 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

F1000Research

"Second, this statement is not only true for software, it is also true for this complete paper. In order
to believe the chances for errors claimed here, this paper itself needs to be verified, and not at the
level of each assumption made internally (in the "How frequently ..." section), but at the level of the
overall claim. This is not easy, but it would be worthwhile, similar to the author's statement,
"Measuring such values rigorously in different contexts would be valuable but also tremendously
difficult" (but at a different level). If "most scientific results are probably wrong," the author should
be able to select a relatively small number of papers and demonstrate how software errors led to
wrong results. I would like to see such an experiment, which would serve to verify this paper, rather
than it standing as an unverified claim about verification."

This is an opinion piece; I hope the more speculative language now makes clear that I am
expressing justifiable anxiety that a serious problem may exist, rather than asserting that it
definitely does exist. I certainly agree that verifying my estimates would be a great thing to do
(particularly the aggregate error rate, not just the individual factors, as you point out). However I
think that would be a major undertaking that is not tractable for me to do in this paper.

I do already cite a number of cases where software bugs resulted in wrong results, but these are
basically anecdotal, and of course they are the ones that have already been found and reported.
 The proportion of these to the overall literature is vanishingly small. There are surely many more
papers where an author or reader is privately aware of an error. And a still much larger proportion
of papers, I believe (but cannot prove), contain errors that remain completely unknown.

I can think of only two ways to determine that proportion empirically. The first is to identify existing
attempts to reproduce results, confirm that they are not subject to common sources of error, and
track down the causes of any disagreement. This method may be subject to selection bias (i.e. in
general, only important or controversial results get replication attempts in the first place).

The second is to take a random sample of papers and attempt to fully reproduce them, or at least
to carefully review the code in search of errors. That would be really a lot of work-- in one example,
an . A systematicindependent reproduction of a single computational study took 3 months
campaign to reproduce computational results would be great, inspired by similar efforts focusing
on reproducing experimental results (e.g. the and the).Amgen study OSF Reproducibility Project

But I can't take it on alone! Rather I hope this paper helps to demonstrate the need for
researchers, funders, and publishers to take code verification more seriously, and to foster the
reproduction studies that would be needed to confirm or deny my estimates. Crucially, it's not just
a matter of successfully running a study author's code (which, in the example case of in ACM
conferences and journals, can be downloaded and compiled for only about half of the papers
anyway). requiring at least that level of replication would be a good start. ButJournal policies
really the point here is to use different code to generate the same result.

So I think we agree: I am making an unverified claim about verification, and I too would like to see it
verified.

"Finally, there is the classic problem with verification of a model (software, in this case): that fact
that it works well in one domain is no guarantee that it will work well in another domain."

True, we can never make absolute guarantees. But we can do better than the status quo, which all
too often provides no verification at all. Also, this point opens the question of the breadth of

applicability of a given software artifact: some software does only a very specific thing, and so can

Page 9 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350388/
http://www.nature.com/nature/journal/v483/n7391/full/483531a.html
https://osf.io/ezcuj/
http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf
http://www.sandia.gov/~maherou/docs/TomsRcrEditorIntro.pdf

F1000Research

applicability of a given software artifact: some software does only a very specific thing, and so can
be thoroughly verified within its single domain, while other software is very generic and so is much
harder to verify across domains. I don't address this in the paper, except to the extent that the
factor for "proportion of lines executed" is tangentially related (e.g., successful tests exercising
some code paths say nothing about runs taking different code paths). That factor could be thought
of more abstractly as the likelihood that verification in one domain should generate trust in another.

"Having made these objections to the degree of the illness of the patient, I mostly agree with
remedies discussed in the last section. Open available of data and code is clearly good for both
trust and reproducibility. Running (computational) experiments multiple ways can help finds any
errors in any one of them, assuming they do not use common components (e.g., libraries, tools, or
even hardware) that could lead to systematic biases. But how this should be done is less clear.
 For example, we have enough workflow systems that I don’t see any need for any one of them to
be more trusted than the code that runs on them; we can just use different workflow systems with
different code as part of the testing."

I agree that the ideal way to gain trust in a particular result is to observe agreement from two
experiments in which *everything* differs, even the workflow system and the hardware (at some
length:
http://davidsoergel.com/posts/confirmation-depth-as-a-measure-of-reproducible-scientific-research
, but just see Fig. 2 there for the main point).

However: if we could agree on a common, trusted workflow system, that would make it much
easier both to verify software components and to track down sources of error, simply by swapping
out individual components of workflows with purportedly equivalent alternative implementations.
 When components are reused across workflows (and across labs, etc.), crowdsourced results
from such component-swap experiments would quickly reveal which components are most
commonly associated with robust results. I'll have to describe that vision more thoroughly
elsewhere, but for now I hope it points at one thing I hope we could gain from standardizing
workflow and provenance descriptions. Perhaps more simply: researchers are more likely to
examine (and perhaps tweak and reuse) a workflow written in a language (or graphical notation,
etc.) with which they are already familiar; Balkanization of workflow systems largely defeats their
purpose.

"Back to the author’s last point, I agree that "to recognize the urgent need" is essential, but to me,
the need is verification; I could read this closing comment as saying that the need is widely
adopted and widely trusted workflow tools. This should be clarified."

I did really mean both things--I've tried to clarify that.

Thanks again for the very helpful comments!

 No competing interests were disclosed.Competing Interests:

 16 December 2014Referee Report

doi:10.5256/f1000research.6338.r7019

 Titus Brown

Page 10 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

http://davidsoergel.com/posts/confirmation-depth-as-a-measure-of-reproducible-scientific-research
http://davidsoergel.com/posts/confirmation-depth-as-a-measure-of-reproducible-scientific-research
http://dx.doi.org/10.5256/f1000research.6338.r7019

F1000Research

1.

2.

 Titus Brown
Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA

David Soergel's opinion piece applies numerical calculations and common (software engineering) sense
to thinking about errors in scientific software. I have seen no other piece that so simply and brutally
summarizes the likely problems with current software development approaches in science, and I
wholeheartedly agree with his recommendations. I think that the recommendation for a common trusted
workflow system is an interesting one; I am particularly impressed by the point that we need separate
implementations of important software, as this is often neglected by funding agencies and
non-computational scientists.

The large majority of the points in the paper are well taken and should not be controversial except
perhaps in aggregate!

The only major flaw in the paper is an overstatement of the central thesis. For example,
The title is too definite; it needs a "probably" (which may decrease pithiness);
Same with the abstract. One fix might be to eliminate the first sentence and move the last sentence
to the top.
For scenario 1, it's a pity there are no citations for these numbers, because they are nonintuitive (I
found 20% executed to be too low, until I really thought it through, and then I agreed; but I'm not
sure many people will believe). Is there any way to either bound or "suppose" these numbers a bit
more?

I would say that if the statements can be softened a bit to indicate that all of this is *almost 100% certainly
the case but we can't actually say it definitely* then the article would be very acceptable.

I didn't see the reference to the sign error debacle at the appropriate "sign error" point in the paper:
http://boscoh.com/protein/a-sign-a-flipped-structure-and-a-scientific-flameout-of-epic-proportions.html

Another reference that could be usefully added, given space:
http://www.fastcompany.com/28121/they-write-right-stuff

It might be worth adding a reference to the recent SSH debacle, where it turned out that incredibly well
used software had a significant flaw. In other words, it's not enough for software to be well used for it to
be correct! (Space permitting.)

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 18 Dec 2014
, David Soergel

Thanks for the kind and helpful comments! The editors prefer to wait for more reviews before
issuing a revision, but in the meantime:

In the title, I could go with "...may undermine...". (The loss in pithiness is indeed a shame,
but so be it).

Agreed re rearranging and toning down the abstract.

Page 11 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

http://boscoh.com/protein/a-sign-a-flipped-structure-and-a-scientific-flameout-of-epic-proportions.html
http://www.fastcompany.com/28121/they-write-right-stuff

F1000Research

1.

2.

3.

Agreed re rearranging and toning down the abstract.

I'll do another search for references and justifications for the ballpark estimates of % LOC
executed and so on, but I expect this one will be hard because there's so much variation.
 For now the numbers are just my intuitions based on experience; I can try to clarify that at
least. I think the fuzziest one is the plausibility term-- I know of no effort to measure that, and
am not even sure how you'd go about it. In the course of code development and data
analysis, how often do you look at a result and think "that's just not right"? That one varies
too with the paranoia level of the scientist. (e.g., I'm a big fan of doing sanity checks that
may reveal that some result is not plausible, even if that fact was not immediately obvious).

Thanks for the citation suggestions. They're both already in there, actually (15 and 3, respectively),
but I'll cite them from additional places as you suggest.

And yes, I'll add a para mentioning "Linus's Law" ("Given enough eyeballs, all bugs are shallow")
and the recent counterexamples (Heartbleed, Goto Fail, and Shellshock). These are notable
because they're all security vulnerabilities, which (perhaps rightly) get a lot more press than bugs of
other kinds. There's also a world of difference between widespread *usage* and widespread
reading the code-- a distinction that is sometimes glossed over in these discussions.

Thanks again for the comments!

 No competing interests were disclosed.Competing Interests:

Author Response 20 Jul 2015
, David Soergel

Thanks again for the comments, and apologies for the long-delayed response. The changes
described above are reflected in the new version.

 No competing interests were disclosed.Competing Interests:

Discuss this Article
Version 1

Reader Comment 22 Dec 2014
, Centre de Biophysique Moléculaire (CNRS), FranceKonrad Hinsen

The problem discussed in this article is important indeed, and deserves experimental verification. The
most obvious approch in my opinion is to have some computational method implemented twice, using tool
chains as different as possible, and then compare the outcomes.

I have participated recently in two such experiments, for code of modest size but using a significant
amount of infrastructure (compilers, libraries, ...). In both cases I wrote a Python implementation, using the
Scientific Python ecosystem. In one case the other implementation was written in Matlab, in the other

Mathematica was used. Each of these implementations was written by a person with significant experience

Page 12 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

F1000Research

Mathematica was used. Each of these implementations was written by a person with significant experience
with his/her chosen platform.

For each problem, both authors tested their implementation until they considered it good for use in
published work. Upon comparison, small differences were found and tracked down - fortunately they
weren't just due to uncontrollable differences in floating-point computations. In both cases, both
implementations turned out to have minor bugs. However, when the results ultimately agreed and more
tests had been done, the final "official" results were not very different from what the original
implementations had produced. The bugs were of the kind described in this article: an average computed
over a data series minus the last point (off-by-one error), a wrong criterion in a data filter, a typo in a
numerica constant, etc.

I think it would be interesting to do such studies on a much larger scale, and see if the article's estimates
turn out to be reasonable.

 No competing interests were disclosed.Competing Interests:

Page 13 of 13

F1000Research 2015, 3:303 Last updated: 29 OCT 2015

