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As the most prevalent internal eukaryotic modification, N6-methyladenosine (m6A) is installed by methyltransferases, removed by
demethylases, and recognized by readers. However, there are few studies on the role of m6A in clear cell renal cell carcinoma
(ccRCC). In this study, we researched the RNA-seq transcriptome data of ccRCC in the TCGA dataset and used bioinformatics
analyses to detect the relationship between m6A RNA methylation regulators and ccRCC. First, we compared the expression of
18 m6A RNA methylation regulators in ccRCC patients and normal tissues. Then, data from ccRCC patients were divided into
two clusters by consensus clustering. LASSO Cox regression analysis was used to build a risk signature to predict the prognosis
of patients with ccRCC. An ROC curve, univariate Cox regression analysis, and multivariate Cox regression analysis were used
to verify this risk signature’s predictive ability. Then, we internally validated this signature by random sampling. Finally, we
explored the role of the genes in the signature in some common pathways. Gene distribution between the two subgroups was
different; cluster 2 was gender-related and had a worse prognosis. IGF2BP3, IGF2BP2, HNRNPA2B1, and METTL14 were
chosen to build the risk signature. The overall survival of the high- and low-risk groups was significantly different
(p = 7:47e − 12). The ROC curve also indicated that the risk signature had a decent predictive significance (AUC = 0:72). These
results imply that the risk signature has a potential value for ccRCC treatment.

1. Introduction

As one of the most common types of kidney cancer in adults,
renal cell carcinoma (RCC) accounts for nearly 3% of adult
malignant tumors in the US [1]. Clear cell renal cell carci-
noma (ccRCC) is the most common histological subtype of
RCC [2]. The exact cause of ccRCC is uncertain, but smoking
and several genetic predisposition conditions may be related
to its development. ccRCC has the worst prognosis among all
renal epithelial tumors. At present, surgery is considered an

effective treatment, but there are still 20%–40% of patients
with postoperative metastasis or recurrence [3]. Therefore,
we aimed to find a way to evaluate the prognosis of ccRCC
(to make specific judgments of prognoses), determine accu-
rate biomarkers for patients, and reduce mortality.

N6-Methyladenosine (m6A) is a modified adenosine
residue, methylated at position N6 [4]. It is involved in a
series of mRNA metabolism processes, such as mRNA
stability, splicing, transport, and translation, and plays an
important role in the fate of mRNA. m6A is mainly located
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within the consensus sequence RRACH (R=G or A; H=A,
C, or U) [5, 6]. This sequence is enriched near 3′-untrans-
lated regions as well as in stop codon regions of protein-
encoded mRNAs [7, 8]; in addition, when present in the 5′
-UTR, mRNAs can be translated in a cap-independent man-
ner [9]. m6A is the most common and abundant internal
transcriptional modification found in RNAs in eukaryotic
cells [4, 10, 11]. There have been many recent studies on
m6A, and results indicate that m6A methylation contributes
to the pathogenesis and progression of tumors [12, 13] [14,
15] and even those cancer responses to treatments are related
to m6A [16–18].

The dynamic process of m6A modification is orches-
trated by writers (methyltransferase complexes), erasers
(demethylases), and readers (Figure 1(a)). Writers, such as
METTL14, WTAP, and KIAA1429, catalyze the adenylate
mRNA m6A modification, whereas the complex composed
of METTL3, METTL14, and KIAA1429 causes the m6A
methylated group to be written into RNA [19]. Erasers, such
as FTO and ALKHB5, cause the demethylation of the base
[10, 20, 21]. Finally, readers play an important role in RNA
metabolism; they recognize the base modified by m6A, bind
to the methylation site, and activate the downstream physical
process [22–24]; proteins from the YTH domain family,
together with IGF2BP1-3 and HNRNPA2B1, belong to the
group of reader proteins. Some studies have mentioned that
m6A regulators could be used as prognostic biomarkers in
ccRCC, but these studies only analyzed some m6A regulators
and did not make a complete risk signature. In this study, we
collected data from 539 patients with ccRCC from The
Cancer Genome Atlas (TCGA) and used bioinformatics
analysis to determine the connection between m6A regula-
tors and ccRCC in an attempt to identify a risk signature to
predict the prognosis of patients with ccRCC.

2. Materials and Methods

2.1. Ethics Statement. This study was approved by the Ethics
Committee of the First Affiliated Hospital of Dalian Medical
University and conducted in accordance with the principles
expressed in the Declaration of Helsinki. All datasets were
retrieved from published literature, and all written informed
consent was verified.

2.2. Data Acquisition. We systematically searched for RNA-
seq transcriptome data of ccRCC in the TCGA dataset
(https://cancergenome.nih.gov/) and downloaded all the
matching clinical information data. During the processing
of the clinical data in TCGA, we discounted patient samples
with missing clinical information. As the lymph node
metastasis status of most data is unknown, this factor was
later removed from the analysis.

We used the data from the cBioPortal (https://www
.cbioportal.org/) to verify the correlation between METTL14
and YTHDC1. To further understand the biological func-
tions of these regulators, we used KOBAS (http://kobas.cbi
.pku.edu.cn/index.php) to analyze the data obtained from
GO, KEGG, and Reactome. We also searched the data on
GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/)

to identify those pathways in which the 18 regulators used
in this study are active and those drugs to which they are
sensitive to, and to further detect the roles of the four chosen
genes in cell signaling pathways.

2.3. Bioinformatics Analyses. First, we used the Perl package
to merge all the data and extract the information of the 18
m6A RNA methylation regulators for further study.

We then used R (version 3.5) software to compare the
expression levels of the regulators in 539 patients with ccRCC
and 72 normal kidney tissues and construct a cluster analysis
tree, followed by a vioplot to clearly visualize differential
expression. We also analyzed the correlation between these
18 regulators.

The consistent clustering algorithm was used to deter-
mine the clustering number of samples under the following
classification parameters: (1) the growth rate of the cumula-
tive distribution function (CDF) value was slow; (2) no small
clusters were allowed; (3) the data in a cluster needed to have
good clustering, implying a high correlation within the
cluster. Then, we performed principal component analysis
(PCA) to verify the clustering results.

Aiming to build a proper risk signature using m6A RNA
methylation regulators in ccRCC, we used the least absolute
shrinkage and selection operator (LASSO) Cox regression
algorithm to choose the appropriate risk factors. The associ-
ation between regulators and survival was first identified.
Then, the coefficient was determined using the minimum
standard. The best penalty parameter λwas selected to obtain
the final risk score. Then, we used the risk signature to divide
the patients into two subgroups and compared the overall
survival (OS) of these two subgroups. Then, the receiver
operating characteristic (ROC) curve was estimated, and uni-
variate and multivariate Cox regression analyses were per-
formed to verify the predictive ability of the risk signature.
Finally, we use the GSE22541 dataset in the GEO database
for external verification and random internal verification on
the ccRCC dataset in the TCGA database. All these were also
executed using R software package.

2.4. Statistical Analyses. The expression of m6A RNAmethyl-
ation regulators in tumor tissues and normal tissues was
compared by one-way ANOVA. Kaplan-Meier analysis was
used to obtain survival curves [25]. t-tests were used to com-
pare the expression levels in ccRCC for different clinical
characteristics. We obtained the optimal cut-off value of each
risk score in the training group using R software to build the
risk signature. Cox regression analysis was used to evaluate
the association between the risk score, other clinical charac-
teristics, and OS. The log-rank tests were used to perform
survival analyses. In all our analyses, p < 0:05 was considered
statistically significant.

3. Results

3.1. The Panorama of m6A RNA Methylation Regulators in
ccRCC. First, we compared the expression of the 18 m6A
RNA methylation regulators in 539 ccRCC cancer tissues
against the expression in 72 normal kidney tissues obtained
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from the TCGA database. Compared with normal tissues, the
expression of ALKBH5, KIAA1429, RBM15B, IGF2BP2,
HNRNPA2B1, YTHDF2, METTL4, ZC3H13, YTHDF3,
IGF2BP3, RBMX, FTO, WTAP, and RBM15 showed signifi-
cant statistical differences (Figures 1(b) and 1(d)). Next, we
further explored the interactions between the 18 m6A RNA
methylation regulators and found that such interactions
could be positive, negative, or irrelevant (Figure 1(c)). We
found that the two most relevant regulators were YTHDC1
andRBM15, with amutual reinforcement correlation. To ver-
ify this conclusion, we explored the cBioPortal data and found
that these two regulators had a strong expression correlation.

3.2. Consensus Clustering of m6A RNA Methylation
Regulators Identified Two Clusters of ccRCC. Next, we used
consensus clustering to group the 539 ccRCC tissues.
According to Figures 2(b) and 2(c), k = 2 or k = 3 values
would be acceptable; however, after dividing the samples into
3 groups, some data could not be well clustered; therefore, we
decided to separate our data into 2 groups. The matrix shown
in Figure 2(a) represents the consensus for k = 2 and
indicates a well-defined 2-block structure. Then, we used
PCA to verify whether the grouping was appropriate
(Figure 2(d)). As there were little overlapping area between
clusters 1 and 2, and the data in each group gathered well,
we concluded that grouping by m6A RNA methylation
regulator expression was appropriate (k = 2).

3.3. Groups Determined by Consensus Clustering Are Closely
Related to the Prognosis of ccRCC and Clinicopathological
Features. According to consensus clustering, we compared
the expression levels of m6A RNA methylation regulators
between clusters 1 and 2. Other factors such as gender, age,
tumor grade, fustat, cancer stage status, and T, M, and N
status were also taken into account for the comparison. We
found that the expression levels of m6A RNA methylation
regulators in clusters 1 and 2 were indeed different, and that
cluster 2 was correlated with gender (Figure 3(a)). The
detailed information of gene expression in clusters 1 and 2
is summarized in Supplementary Material Table S1. As
shown in Figure 3(b), the OS of cluster 2 is shorter than
that of cluster 1, indicating a worse clinical outcome.

3.4. The Role of m6A RNA Methylation Regulators in Various
Physiological Processes or Signaling Pathways and Drug
Sensitivities of m6AMethylation Regulators. To better under-
stand the function of m6A RNA methylation regulators,
we analyzed the 18 regulators using KOBAS and visualized
the results using R language. Relevant data was obtained
from Gene Ontology (GO), KEGG, and Reactome
(Figures 3(c) and 3(d)) databases. According to the results
from pathway enrichment, studied regulators are mainly
involved in RNA regulation and metabolism processes,
such as RNA binding, poly(A) RNA binding, and gene
expression.
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Figure 1: The panorama of m6A RNA methylation regulators in ccRCC. (a) The m6A RNA methylation process and the regulators
involved. (b) Expression levels of 18 m6A RNA methylation regulators in ccRCC and normal tissues. The upper tree diagram
represents grouping results for the samples, whereas the tree on the left represents cluster analysis results for regulators. Highly
expressed genes are represented by a red-colored gradient: the highest the expression, the darker the red tone. In contrast, lowly
expressed genes are represented by a green-colored gradient, being the genes with the lowest expression the darker ones. (c)
Spearman correlation analysis of the 18 m6A RNA methylation regulators in ccRCC and verification of the correlation between YTHDC1
and RBM15. (d) Vioplot visualizing differentially expressed m6A RNA methylation regulators in ccRCC. The x-axis represents different
genes, the y-axis represents gene expression, blue represents normal kidney tissue, and red represents ccRCC tissue. ∗p < 0:05, ∗∗p < 0:01,
and ∗∗∗p < 0:001.
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Then, we analyzed the data on GSCALite and found that
m6A RNA methylation regulators play important roles in
many cell signaling pathways and physiological activities.
HNRNPA2B1, for example, can activate apoptosis and
DNA damage response, and it is also engaged in the cell cycle
(Figures 4(a) and 4(b)). In addition, m6A RNA methylation
regulators are sensitive targets for common chemotherapy
drugs and targeted agents (Figure 4(c)).

3.5. A Risk Signature Built with Four Regulators to Evaluate
Clinical Outcomes. We tried to determine whether m6A
methylation regulators can play a prognostic role in
ccRCC. Therefore, we performed a univariate Cox regres-
sion analysis on the expression levels of these regulators.
As shown in Figure 5(a), patients with high expression
of KIAA1429 (hazard ratio ½HR� = 0:869, 95%confidence
interval ½CI� = 0:80 − 0:95), YTHDC1 (HR = 0:922, 95%CI
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Figure 2: Identification of consensus clusters by m6A RNA methylation regulators. (a) When k = 2: correlation between groups. (b) Relative
change in the area under the cumulative distribution function (CDF) curve for k values from 2 to 9. (c) Consensus clustering CDF when k
value ranges from 2 to 9. (d) Principal component analysis of the total RNA expression profile in the TCGA dataset (cluster 1 is marked
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= 0:88 − 0:96), YTHDF2 (HR = 0:955, 95%CI = 0:92 − 0:99
), METTL14 (HR = 0:662, 95%CI = 0:58 − 0:76), ZC3H13
(HR = 0:892, 95%CI = 0:84 − 0:95), YTHDF3 (HR = 0:953,
95%CI = 0:92 − 0:99), RBMX (HR = 0:971, 95%CI = 0:95 −
0:99), and FTO (HR = 0:945, 95%CI = 0:91 − 0:99) have a
better prognosis than patients with high expression of
IGF2BP2 (HR = 1:087, 95%CI = 1:06 − 1:12), HNRNPA2B1
(HR = 1:016, 95%CI = 1:01 − 1:02), IGF2BP1 (HR = 1:14,
95%CI = 1:02 − 1:28), and IGF2BP3 (HR = 1:415, 95%CI
= 1:27 − 1:58).

Next, we used the LASSO Cox regression algorithm to
analyze the 18 regulators in the TCGA dataset and chose four
of them, IGF2BP3, IGF2BP2, METTL14, and HNRNPA2B1,
to build the risk signature. Selection was based on the mini-
mum criteria and the coefficients obtained from the LASSO
algorithm that were used to calculate the risk score for the
TCGA dataset (Figures 5(b) and 5(c)).

To verify the prognostic ability of the four-regulator risk
signature, we graded the data in the TCGA dataset and
divided them into two groups according to the risk signature,
the high-risk and low-risk groups, and drew the correspond-
ing survival curves. We found that the clinical outcomes of
the high-risk group were significantly worse than those of
the low-risk group (Figure 5(d)).

3.6. The Prognostic Value of the Risk Signature Built with
Four m6A RNA Methylation Regulators. We compared the
expression of the four selected regulators between the low-
risk and the high-risk groups. We also compared the expres-
sion considering several characteristics, such as T and M
statuses, the clinical stage and grade of the tumor, the
patients’ age, gender, and fustat, and the cluster (1 or 2) to
which the regulators belonged. After noticing that most of
the data in the TCGAdataset were NX, we decided not to con-
sider this factor in our analysis. We found that there was a
high expression of IGF2BP3, IGF2BP2, and HNRNPA2B1
and a low expression of METTL14 in the high-risk group.
The high-risk group also showed stronger correlations with
M and T statuses, tumor stage and grade, fustat, and cluster
of origin than the low-risk group (Figure 6(a)).

Receiver operating characteristic (ROC) curves were used
to test the accuracy and specificity of the four-gene risk signa-
ture. The AUC = 0:72 indicated that the risk score could
efficiently predict the 5-year survival of patients with ccRCC
(Figure 6(b)). Then, we performed univariate and multivariate
Cox regression analyses of the data from the TCGA dataset to
determine whether the risk signature could be useful as an
independent factor to predict the clinical outcome
(Figures 6(c) and 6(d)). Results from the univariate Cox
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identified by m6A RNA methylation regulators. (b) Kaplan-Meier overall survival (OS) rate curve of patients with ccRCC (cluster 1
patients: red; cluster 2 patients: blue). (c, d) Results from pathway enrichment of the data using Gene Ontology (GO), KEGG, and
Reactome. The size of each dot represents the pathway count. High p values are represented by a red-colored dot: the highest the value,
the darker the red tone. In contrast, low p values are represented by a blue-colored dot, being the lowest values the darker ones. ∗p < 0:05,
∗∗p < 0:01, and ∗∗∗p < 0:001.

9Journal of Immunology Research



38 41 25 4 4 10
19

16

16

29 38 25 7 16 4 0

19

22
4 16 22

19 35 16

19

25 54 22 0

4 19

25
13 22 0 4 10 10

22 32 22 4 0

0 0 16 16

0 −3 −6 −15 −18 −15
0

−3

−3

0 −3 −3 −15 −6 −28 −25

−3

0
−15 −3 0

0 0 −6

−3

0 −3 0 −31

−15 0

0
−12 0 −18 −25 −15 −12

0 0 −6 −15 −21

−21 −31 −6 −6FTO
HNRNPA2B1

HNRNPC
IGF2BP1
IGF2BP2
IGF2BP3

KIAA1429
METTL14

RBM15
RBM15B

RBMX
WTAP

YTHDC1
YTHDF1
YTHDF2
YTHDF3

Pathway (A:Activate; I:Inhibit)

Sy
m

bo
l

−25 0 25 50
Percent

A
po

pt
os

is_
A

A
po

pt
os

is_
I

Ce
ll 

Cy
cl

e_
A

Ce
ll 

Cy
cl

e_
I

D
N

A
 d

am
ag

e r
es

po
ns

e_
A

D
N

A
 d

am
ag

e r
es

po
ns

e_
I

EM
T_

A

EM
T_

I

H
or

m
on

e A
R_

A

H
or

m
on

e A
R_

I

H
or

m
on

e E
R_

A

H
or

m
on

e E
R_

I

PI
3K

/A
KT

_A

PI
3K

/A
KT

_I

RA
S/

M
A

PK
_A

RA
S/

M
A

PK
_I

RT
K_

A

RT
K_

I

TS
C/

m
TO

R_
A

TS
C/

m
TO

R_
I

(a)

Figure 4: Continued.

10 Journal of Immunology Research



A
po

pt
os

is

Ce
ll 

cy
cl

e

D
N

A
 d

am
ag

e r
es

po
ns

e

EM
T

H
or

m
on

e A
R

H
or

m
on

e E
R

PI
3K

/A
KT

RA
S/

M
A

PK

RT
K

TS
C/

m
TO

R

ALKBH5

FTO

HNRNPA2B1

HNRNPC

IGF2BP1

IGF2BP2

IGF2BP3

KIAA1429

METTL14

RBM15

RBM15B

RBMX

WTAP

YTHDC1

YTHDF1

YTHDF2

YTHDF3

ZC3H13

Activation
Inhibition
None

(b)

Figure 4: Continued.

11Journal of Immunology Research



Dasatinib
TAK−715
Talazoparib
CP466722
AZD8055
OSI−027
Midostaurin
Sorafenib
Foretinib
Masitinib
XMD14−99
BHG712
QL−XI−92
TG101348
WZ3105
I−BET−762
NSC−207895
(5Z)−7−Oxozeaenol
Elesclomol
FH535
MLN4924
FTI−277
QL−XII−61
T0901317
DMOG
BAY 61−3606
QL−XII−47
17−AAG
TL−1−85
BIX02189
CX−5461
KIN001−236
KIN001−260
QL−X−138
YM201636
BMS345541
JW−7−24−1
NG−25
SNX−2112
TPCA−1
XMD13−2
Bleomycin (50 uM)
Etoposide
Camptothecin
5−Fluorouracil
Methotrexate
THZ−2−49
AT−7519
PHA−793887
THZ−2−102−1
TW 37
PAC−1
Navitoclax
UNC0638
Epothilone B
PF−562271
GSK429286A
Docetaxel
IPA−3
Y−39983
CAL−101
TGX221
GSK2126458
KIN001−244
ZSTK474
GSK690693
PIK−93
PI−103
BX−912
KIN001−102
CI−1040
Dabrafenib
PLX4720
AZ628
TL−2−105
PD−0325901
Selumetinib
RDEA119
Trametinib
Afatinib
Gefitinib
EKB−569
Erlotinib
Lapatinib
LAQ824
Belinostat
CUDC−101
CAY10603
Tubastatin A
AR−42
Vorinostat
S−Trityl−L−cysteine
VX−680
ZM−447439
MPS−1−IN−1
Genentech Cpd 10
Ispinesib mesylate
GSK1070916
NPK76−II−72−1
AICAR
Phenformin
FK866

YT
H

D
C1

RB
M

15

M
ET

TL
14

RB
M

X

H
N

RN
PC

W
TA

P

YT
H

D
F2

RB
M

15
B

H
N

RN
PA

2B
1

KI
A

A
14

29

IG
F2

BP
1

YT
H

D
F3

IG
F2

BP
3

IG
F2

BP
2

−log10 (FDR)
10
20

30
40

−0.4 −0.2 0.0 0.2

Spearman correlation

(c)

Figure 4: Physiological processes, signaling pathways, and drug sensitivities relevant to m6A methylation regulators. (a) Effect of m6A
methylation regulators on physiological processes and signaling pathways. A: active; I: inhibited; the darker the color, the stronger the
inhibition (blue) or activation (red). If a regulator activates a process or a pathway, the activation index is higher than the inhibition index.
On the contrary, if the inhibition index has the highest value, then the process is inhibited. (b) Pie chart showing the results from (a) (red:
activation; green: inhibition). (c) Drug sensitivities of m6A methylation regulators (ordinate axis: various drugs; abscissa axis: regulators).
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regression analysis showed that age (HR = 1:031, 95%CI =
1:02 − 1:05), grade (HR = 2:296, 95%CI = 1:87 − 2:82), stage
(HR = 1:865, 95%CI = 1:63 − 2:13), T status (HR = 1:893, 95
%CI = 1:60 − 2:24), M status (HR = 4:407, 95%CI = 3:22 −
6:03), and risk score (HR = 2:209, 5%CI = 1:85 − 2:64) corre-
lated with OS. In addition, results from the multivariate Cox
regression analysis indicated that age (HR = 1:037, 95%CI =
1:02 − 1:05) and risk score (HR = 1:88, 95%CI = 1:51 − 2:25)
were associated with OS. Therefore, we can conclude that
the risk signature can predict the prognosis of patients with
ccRCC independently and in combination with other risk
factors (Figures 6(c) and 6(d)).

3.7. Random Sampling Verification and External Verification
Based on the Signature. To verify the accuracy of the signa-
ture, we tested it over randomly sampled data from TCGA.
Survival curves indicated that the OS of the high-risk group
was lower than the low-risk group (Figure 7(a)). Figure 7(b)
shows the expression levels of the four genes in the chosen
samples. The high-risk group contained 24 samples, and
the low-risk group contained 26 samples. Compared with
the low-risk group, the high-risk group had lower expression
of METTL14 and higher expression of IGF2BP3, IGF2BP2,
and HNRNPA2B1. To further extend the performance of
the risk signature, we made a nomogram to take other clini-
copathological factors into account. By using this nomogram,
we could calculate the 5-year survival, 7-year survival, and
10-year survival of the patients (Figure 8). Then, we used
GSE22541 for external verification. Since this dataset only
contained patient DFS information and not OS information,
we verified the DFS of the risk model and the four genes in
ccRCC and drew the corresponding survival curve (Supple-
mentary Materials Figure S1(A–E)). Surprisingly, we found

that the external verification results also support the results
obtained through the TCGA database in the early stage.

3.8. GSEA Pathway Analysis of the Four Genes. We selected
five signaling pathways for evaluating changes in the expres-
sion of the four genes belonging to the newly described signa-
ture. An open-up parabola indicates that the gene activates
the pathway, whereas an open-down parabola indicates that
the gene can inhibit the pathway (Figures 9(a)–9(d)). For
instance, IGF2BP3 has a positive regulatory effect on the cal-
cium signaling pathway, glycosaminoglycan degradation,
P53 signaling pathway, and steroid biosynthesis; however,
high levels of IGF2BP3 can inhibit glycerolipid metabolism.
Finally, in order to show the process of this research more
clearly, we draw a corresponding flow chart (Figure 10).

4. Discussion

Evidence shows that m6A RNA methylation has various
functions in the occurrence, development, and proliferation
of cancer [26, 27]. It may also affect cancer stem cell pluripo-
tency and cell differentiation [16, 28], promote cancer cell
migration [29], and contribute to tumor immunity [30].
m6A RNA methylation regulators include three major
elements: writers, erasers, and readers. Writers catalyze the
formation of m6A, erasers remove m6A from RNAs, and
readers recognize and bind m6A sites. As writers, the com-
plex formed by METTL14 and METTL3 recognizes the
substrate [31], WTAP ensures that the complex is located
exactly on the nuclear speckle [32], RBM15 attaches to the
WTAP-METTL3 complex and engages it to specific RNA
sites [33], ZC3H13 mediates the combination of WTAP
and Spenito [34], and KIAA1429 is related to the selectivity
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Figure 5: Risk signature for ccRCC. (a) Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using univariate Cox
regression. (b, c) Coefficients calculated by the least absolute shrinkage and selection operator (LASSO) multivariate Cox regression
algorithm. (d) Kaplan-Meier overall survival (OS) rate curve for high-risk (red) and low-risk (blue) groups of patients.
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of m6A modified sites [35]. As erasers, FTO controls mRNA
splicing and regulates adipogenesis [36], and ALKBH5
participates in the process of splicing and the production of
longer 3′-UTR mRNAs [37]. Finally, as readers, YTH
domain family members are the first to recognize m6A [38],
IGF2BPs bind to m6A and enhance RNA stability of the
target mRNA [23], HNRNPA2B1 mediates the splicing of
RNAs and enhances primary miRNA processing [39], and
HNRNPC and RBMX regulate the processing of m6A-con-
taining RNA transcripts indirectly [40] [41].

In the United States, the estimated number of new
patients with kidney and renal pelvis cancer in 2019 was
73,820 (44,120 males and 29,700 females), whereas the esti-
mated death toll was 14,770 (9,820 males and 4,950 females)

[1]. Compared with data from previous years, morbidity and
mortality have increased. In China, the number of new
patients with renal cancer in 2014 was about 6:8 × 104
(4:3 × 104 males and 2:6 × 104 females) and the estimated
death toll was 2:6 × 104 (1:6 × 104 males and 0:9 × 104
females) [42]. At present, the main treatment for kidney
cancer is surgery, and an adjuvant therapy, including immu-
notherapy and chemotherapy, can be chosen according to the
disease stage. However, there is a possibility of recurrence to
the surgical treatment and some patients are initially refrac-
tory to immunotherapy and chemotherapy [43]. Among
renal cancers, ccRCC is the main histological subtype,
accounting for 75% of all cases [44]. However, compared
with other cancers, there are few studies on ccRCC. In
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Figure 6: Prognosis value and accuracy of the risk signature. (a) Comparison of clinicopathological characteristics and expression of
IGF2BP3, IGF2BP2, HNRNPA2B1, and METTL14 between the two groups defined by the risk signature. (b) ROC curve representing the
efficiency and accuracy of the risk signature: the ROC curve for 5-year survival prediction by risk signature (date from TCGA). (c)
Univariate Cox regression analysis of the association between clinicopathological factors, risk score, and overall survival of patients from
TCGA datasets. (d) Multivariate Cox regression analysis of the association between clinicopathological factors, risk score, and overall
survival of patients from TCGA datasets. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Figure 7: Random sampling of data in TCGA to validate the accuracy of the signature. (a) Kaplan-Meier overall survival (OS) rate curve of
high-risk (red) and low-risk (blue) patients with ccRCC. Data was obtained by random sampling from TCGA. (b) Heat map of
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addition, there are few articles on bioinformatics analyses of
ccRCC. In this study, we analyzed a dataset of ccRCC
patients from TCGA, grouped the data by consensus cluster-
ing, and built a risk signature with m6A RNA methylation
regulators to predict the prognosis of patients with ccRCC.
We hope that this can suggest ideas for future research.

Considering the close relationship between m6A and
cancer, we wanted to explore the linkage between m6A
RNA methylation regulators and ccRCC. In this study, 18
m6A RNA methylation regulators were chosen. To better
understand the important role of m6A RNA methylation
regulators in ccRCC, we first compared the expression of
these regulators in normal and tumor tissues and found that
most of them are differentially expressed among both kinds
of tissues. Besides, correlation analyses revealed that these 18
regulators interact with each other. Therefore, it is suggested
that these 18 m6A RNA methylation regulators could either
act independently or interactively to play a role in the occur-
rence and development of ccRCC. To further determine the
effects of m6A RNA methylation regulators on the clinico-
pathological characteristics and prognosis of the patients,
we separated our data into two groups by consistent cluster-
ing. The expression levels of m6A RNA methylation regula-
tors in the two clusters were different, and most of the
regulators had a higher expression in cluster 2. Moreover,
a survival curve showed that cluster 2 had a significantly
worse prognosis that cluster 1.

Next, we tried to determine the function of these regula-
tors in ccRCC by integrating their functions in GO, KEGG,
and Reactome. We found that they can play roles in DNA
repair, RNA splicing, and other physiological processes such
as apoptosis, cell cycle, and epithelial mesenchymal transfor-
mation (EMT), and even inhibit or activate cell signaling
pathways, including the PI3K/Akt pathway. Therefore, we
proposed that these regulators affect the occurrence and
development of ccRCC by intervening in the above processes.
We also determined the drug sensitivities of these regulators,
aiming to provide some ideas for future targeted drug
research for ccRCC.

To build a risk signature, we used the LASSO Cox
regression algorithm over the 18 regulators in the TCGA
dataset. We then chose four regulators (IGF2BP3, IGF2BP2,
METTL14, and HNRNPA2B1) to build the signature, and
separated patients into high-risk and low-risk groups
according to it. Characteristically, patients from the high-
risk group had a worse prognosis, having increased expres-
sion levels of IGF2BP3, IGF2BP2, and HNRNPA2B1 and
decreased expression levels of METTL14 compared to those
in normal tissues.

The risk signature can be used independently or com-
bined with other indicators to predict patient prognosis. To
determine this, the signature was tested against randomly
sampled data from TCGA. In these random samples, the
prognosis predicted by the signature was found to be in
accordance with the actual prognosis of the patients, and
the expression levels of the four chosen genes were also con-
sistent with previous results. All these results show that the
risk signature can effectively judge the prognosis of patients
with ccRCC. We believe that this risk signature can be used
to predict the five-year survival rate of patients in the clinical
practice. Finally, we enriched the function of the four signa-
ture genes in five different pathways; similar to previous
results, we found that in patients with ccRCC, these genes play
a positive or negative role in many physiological processes.

According to other studies, IGF2BP2 and IGF2BP3
belong to the IGF2BP protein family, formed by IGF2BP1-3.
As readers, IGF2BPs recognize GGC sequences and target
thousands of mRNA transcripts; they can regulate the stabil-
ity, translation, and storage of RNA, thereby affecting the
expression of genes (recognition ofRNAN6-methyladenosine
by IGF2BP proteins enhances mRNA stability and transla-
tion). Huang et al. found that in pancreatic ductal adenocarci-
noma, the expression of IGF2BP2was upregulated and led to a
poor outcome [45]. In addition, in patients with acute myelo-
cytic leukemia, the overexpression of IGF2BP2 indicates poor
survival, and IGF2BP2 expression is associated with muta-
tions in FLT3-ITD and IDH1, which are also indicators of
poor prognosis [46]. These results are consistent with our
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18 Journal of Immunology Research



results, that is, IGF2BP2 and IGF2BP3 play a positive regula-
tory role in the process of tumor occurrence and development.
These conclusions are urging us to carry out relevant research
to verify whether inhibiting the expression of IGF2BP2 and
IGF2BP3 can inhibit the growth of the tumor.

HNRNPA2B1 binds m6A-containing sites on nuclear
RNAs. HNRNPA2B1 can also regulate alternative splicing
of exons in a set of transcripts, similar to METTL3; conse-
quently, METTL3 depletion together with a diminishment
in HNRNPA2B1 concentration may have a close correlated
impact in the cell [47]. Previous studies have shown that
HNRNPA2B1 is overexpressed in breast cancer tissue, and
that its encoded protein can activate the STAT3 and

ERK1/2 signaling pathways, thereby promoting the tumori-
genic potential of cancer cells. Here, we found that the
expression of HNRNPA2B1 in the high-risk group was also
significantly increased, and that the prognosis of the group
with high levels of this regulator is worse than that of the
group with low levels. Therefore, studying the pathways
related to this reader and finding possible inhibitors could
also be a breach in the treatment of ccRCC.

As a writer, METTL14 plays a role by tightly combining
with METTL3. Studies have revealed that METTL14 and
ALKBH5 control the expression of each other and inhibit
the expression of YTHDF3, thereby blocking RNA demethyl-
ation to degrade cancer cells [48]. Compared with studies
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Figure 9: GSEA pathway analysis of IGF2BP3, IGF2BP2, HNRNPA2B1, and METTL14 genes. (a–d) An upward parabola indicates that the
indicated gene promotes the pointed pathway; otherwise, the pathway is suppressed.
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focused in METTL3, research on METTL14 has only been
gradually carried out in the last ten years. However, many
articles have reported that METTL14 can mediate the self-
renewal of HSCs (hematopoietic stem cells) by upregulating
the expression of regulators such as BMI-1 and PRDM16
[49]. A study on leukemia also found that METTL14 can
block myeloid differentiation and promote the self-renewal
of normal HSPCs and LSCs/LICs (leukemia stem cells/leuke-
mia-induced cells) [50]. In addition, downregulation of
METTL14 can promote metastasis of liver cancer cells,
whereas its overexpression significantly reduces tumor inva-
sion and metastasis (METTL14 suppresses the metastatic
potential of hepatocellular carcinoma by modulating N6-
methyladenosine-dependent primary microRNA process-
ing). These data are consistent with our results that suggest
that a high expression of METTL14 can inhibit tumor growth
or other harmful physiological processes. Therefore, improv-
ing the expression of METTL14 could be an effective thera-
peutic strategy to treat some diseases.

Although there are few studies on ccRCC and m6A, a
high expression of IGF2BP2 and IGF2BP3 has been
reported in many kinds of tumors. Consequently, it is
thought that IGF2BP2 and IGF2BP3 are closely related to
the occurrence and development of tumors. In addition,
there are few studies about HNRNPA2B1, but according
to our results and those from breast cancer studies, we
believe that it is also an important regulator that promotes
tumorigenesis. METTL14 may inhibit tumor development
and metastasis. Compared with normal tissues, its expres-

sion is significantly reduced in tumor tissues; therefore,
invasion and metastasis of the tumor are more likely to
occur. In the future, we will further explore the relationship
between these regulators and the occurrence and develop-
ment of ccRCC, trying to identify the specific mechanisms
that underlie this disease.

This study has some limitations. For example, it only
discusses data at the gene and mRNA levels. Overcoming
technical problems around the complexity of protein expres-
sion modification is needed to further analyze the relation
between the selected m6A regulators and ccRCC at the pro-
tein level. Additionally, the AUC value of the ROC curve just
exceeded 0.7; the sample size needs to be increased in the
future to further confirm the sensitivity and specificity of this
signature. However, we believe that the establishment of this
signature will play a great role in predicting the five-year
survival rate of patients with ccRCC and improving their
treatment. This signature may also be a good starting point
for new studies on ccRCC.

5. Conclusion

m6A RNA methylation regulators are closely related to the
occurrence and development of ccRCC. The newly defined
risk signature can predict the prognosis of patients with
ccRCC. Regulators used to build the risk signature may
also become targets for the diagnosis and treatment of
ccRCC.

Download RNA sequence data and
clinicopathological information
from TCGA: (539 cancer tissues,

72 normal tissues)

18 m6A regulators

KOBAS (GO, KEGG, Reactome): The
role of 18 m6A regulators in various 

physiological processes, signaling 
pathways and drug sensitivities.

Univariate Cox
Multivariate Cox LASSO String, GSEA, GO, KEGG

Interaction and correlation
of 18 m6A regulators

IGF2BP3, IGF2BP2,
METTL14,

HNRNPA2B1

Use the four regulators to
build a risk signature

Univariate Cox
Multivariate Cox

Validation of the risk signature could be used as
an independent predictable factor

GSEA pathway analysis of
the four genes

Consensus clustering of
18 m6A RNA methylation
regulators identified two

clusters of CCRCC

Figure 10: The flowchart of this study.
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