
Advanced Review

Multiscale modeling methods
in biomechanics
Pinaki Bhattacharya* and Marco Viceconti

More and more frequently, computational biomechanics deals with problems
where the portion of physical reality to be modeled spans over such a large
range of spatial and temporal dimensions, that it is impossible to represent it as
a single space–time continuum. We are forced to consider multiple space–time
continua, each representing the phenomenon of interest at a characteristic
space–time scale. Multiscale models describe a complex process across multiple
scales, and account for how quantities transform as we move from one scale to
another. This review offers a set of definitions for this emerging field, and pro-
vides a brief summary of the most recent developments on multiscale modeling
in biomechanics. Of all possible perspectives, we chose that of the modeling intent,
which vastly affect the nature and the structure of each research activity. To the
purpose we organized all papers reviewed in three categories: ‘causal
confirmation,’ where multiscale models are used as materializations of the causa-
tion theories; ‘predictive accuracy,’ where multiscale modeling is aimed to
improve the predictive accuracy; and ‘determination of effect,’ where multiscale
modeling is used to model how a change at one scale manifests in an effect at
another radically different space–time scale. Consistent with how the volume of
computational biomechanics research is distributed across application targets,
we extensively reviewed papers targeting the musculoskeletal and the cardiovas-
cular systems, and covered only a few exemplary papers targeting other organ
systems. The review shows a research subdomain still in its infancy, where
causal confirmation papers remain the most common. © 2017 The Authors. WIREs Sys-
tems Biology and Medicine published by Wiley Periodicals, Inc.
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INTRODUCTION

As per March 2016, PubMed indexed 2180 papers
including the word ‘multiscale’ in the title, and

5457 anywhere in the PubMed record. While the first
of these papers was published in 1979, it is only in the
last ten years that the biomedical research community
has started to think across scales (Figure 1). Biome-
chanics research follows similar trends.

The aim of this study is to provide a systematic
review of the multiscale modeling methods reported

so far in biomechanics research. It also aims to offer
a set of candidate definitions for this emerging field.
As a lot of multiscale biomechanics involves either
the musculoskeletal or the cardiovascular system, we
will systematically review these two specific areas.
However, we will also provide an overview of other
interesting applications.

Definitions
The definition of scale varies widely depending on
the context; in its simplest instance, it can be defined
in term of grain and extent, both in space and time.
The grain can be defined as largest value between the
lower limit of spatial/temporal resolution allowed by
the instrumentation, and the smallest/fastest feature
of interest to be observed. Similarly, the extent can
be defined as the smallest value between the upper
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limit of spatial/temporal resolution (i.e., the volume
of interest in a four-dimensional space) and the size
of the largest/slowest feature of interest to be
observed. Resolution is defined as ‘the smallest inter-
val of a measured signal that will still cause a change
in the measurement result.’1 In a perfect world, we
would not need to worry about scales, because we
would be free from the ‘curse of resolution.’1 Because
our ability to resolve quantities in space and time is
limited, ‘to explore from the infinitely small to the
infinitely large with a finite resolution we need
scales.’1

Most engineering theories avoid this complexity
through one fundamental, and often implicit,
assumption: scale separation. In a steel beam the
microstructure grain size is 105 times smaller than
the beam length. This means that every small portion
of the macrostructure contains thousands of micro-
structural elements, whose properties can be
described statistically within that small volume. In
other words, we do not need to have a detailed
description of the microstructure to calculate the
mechanical behavior of the macrostructure, but only
its average properties as they manifest at the macro-
scopic scale. In every biological material of interest in
biomechanics research, the degree of scale separation
is much smaller, typically around 102, so making this
assumption is much less safe.

From a computational point of view, it is fre-
quently more convenient to build a multiscale model
not as a monolithic object, but rather as the orches-
tration of multiple models, each typically capturing
the causal relation at a given space–time scale. In this
case we refer to each single-scale model as a hypomo-
del, and to their orchestration as a hypermodel.2

Also in some implementations it is more con-
venient to separate the models that capture the causal

relation at each space–time scale, from those that
capture the transformation on the quantities involved
from one scale to another (sometimes referred to as
homogenization, when they transform from small to
large, and particularization, when they transform
from large to small). In this case, we call component
models those capturing single-scale causation,
and relation models those capturing the scale
transformation.

For the purpose of this study, we define a
model as any causal quantitative relation M between
an input set I and an output set O, so that:

O0 = M Ið Þ

In the physical and natural sciences M captures some
knowledge about nature; such knowledge can be
phenomenological (purely based on induction,
i.e., exclusively on experimental observations), or
mechanistic (based on deduction, i.e., on theoretical
reasoning), although in practice ‘both phenomeno-
logical and mechanistic approaches are inherently
present in any model.’3 The variable I represents a
set of necessarily measurable quantities, whereas O0

is the prediction of a set of desirably measurable
quantities O.

As most of biomechanical models tend to be
complex, most often M(I) is not computable in closed
form, and we need to resort to some numerics N:

O00 = N M Ið Þð Þ

O00 differs from the true value O for three reasons:
(1) the approximation due to N; (2) the aleatory
uncertainty associated with the measurement of I
(and if possible O); and (3) the epistemic uncertainty
associated with the model M. We use verification,
uncertainty quantification (also called sensitivity
analysis), and validation (when a measure of O is
available) methods respectively to estimate these
three sources of predictive inaccuracy.4

Structure
The biomechanical multiscale modeling literature is
highly heterogeneous, and presents regularities only
if you compare papers dealing with the same prob-
lem. This makes any attempt to review the overall
field quite challenging. In the following we will
review the relevant literature along two dimensions.
First, we divide papers by organ system; we review in
detail papers targeting the musculoskeletal and the
cardiovascular systems, by far the most popular in
the literature. However, we offer only an overview,

FIGURE 1 | Incidence of multiscale papers indexed in PubMed
from 1991 to 2015. Incidence is obtained by dividing for each year the
number of papers retrieved with the search ‘Multiscale [ALL]’ by the
total number of papers indexed in that year.
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without any pretence of being exhaustive, for the
other organ systems.

The second and more important dimension we
used in this review is that of the modeling intent,
expressed in terms of operational motivations.
Reviewing the literature, we found that of all differ-
ences this is the most profound, as it severely influ-
ences the difficulty of the challenge involved. But
what are the operational motivations that require the
building of models where I and O are defined at radi-
cally different space–time scales? We have identified
three common motivations:

1. Causal confirmation. When we need a causal
explanation of why O is observed given I, and
O and I are defined on different space–time
scales, the experimental testing of causal
hypotheses can be quite challenging. In these
cases, multiscale models are used as materiali-
zations of the causation theories, whose falsifi-
cation is attempted by measuring a large set of
I and O values (possibly independently), and
then by comparing the range of observed O
values with the range of O00 values predicted by
the model for the range of I values. If the range
of O and O00 differ considerably, this means
that the causal theory the model materializes is
not compatible with the observations, which
‘falsifies’ such a theory.

2. Predictive accuracy. In all problems where we
need to know the quantity O with a given
accuracy, O is difficult to measure directly, but
other measurable quantities are known to be
causally related to O, we can use that causal
knowledge to build a model that predicts O
given some other measurable quantities I. In
many cases, we can obtain accurate predictions
using a causal knowledge entirely defined with
a single space–time scale. However, in some
cases the only way to obtain the necessary
accuracy is to stop assuming scale separation,
and extend the predictive model to account for
causation across multiple scales.

3. Determination of effect. In other problems, the
need for a multiscale model does not come
from the desire of improving the predictive
accuracy of O, but rather from the need to
develop a predictor of the effect of quantity I
defined at the scale S1 on the quantity O
defined at the scale S2.

As these motivations are fairly different, and this
reflects deeply on the approach used to develop and

evaluate multiscale models in the following, we will
review the literature by highlighting which of these
three aims is pursued in each paper.

The vast majority of the body of multiscale
modeling research has been motivated by causal con-
firmation. In the following we briefly review these
studies, and emphasize the relatively fewer studies
which went beyond causal confirmation and were
motivated by predictive accuracy or determination of
effect in their modeling efforts.

MULTISCALE MODELS OF THE
MUSCULOSKELETAL SYSTEM

The musculoskeletal system is considered herein to
comprise of the following tissue types: bone, carti-
lage, skeletal muscle (i.e., excluding smooth muscle
and cardiac muscles), tendon, and ligament. Without
any pretence to being exhaustive, we highlight below
recent advances relating to bone mechanics, bone
adaptation and remodeling, fracture healing, skeletal
muscle remodeling, electromechanical behavior of
skeletal muscle, tendon mechanics, tendon remodel-
ing, and the mechanics of tendon under conditions of
homeostasis and pathological mineralization.

Causal Confirmation

Bone Mechanics
The goal of predicting whole bone mechanics from
information on bone material and structural compo-
sition is motivated by its clinical relevance in fracture
prediction. That a relationship between apparent
scale mechanical response and the material and
structural properties at the microscale should exist is
intuitively clear. However, the challenge is to base
the relationship on microscale variables that are
either measurable nondestructively, or are ‘universal’
(not specimen-specific) in nature. The groundwork
for this approach was first laid in the 1990s by
Crolet and coworkers5,6 following the work on
microscale structural and material characterization
done in the decades prior (reviewed by Currey7).
Crolet and coworkers5,6 applied the theory of
micromechanics8–10 previously developed for the
analysis of engineered composite materials compris-
ing distinct phases (e.g., mineral, matrix, and voids).
Causal confirmation of multiscale models based on
such homogenization approaches was demonstrated
in the works of Hamed et al.,11 Martinez-Reina
et al.,12 and Sansalone et al.13
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Bone Adaptation and Remodeling
The process of natural bone adaptation (bone remod-
eling) is driven by underlying cellular processes which
are in turn influenced by biochemical and mechano-
sensitive activation. In modeling bone adaptation,
one approach is to explicitly account for bone
remodeling although mathematical models of bone
remodeling are themselves relatively untested.14

Various authors adopted a multiscale modeling
approach,15–17 implementing analytical scale-bridging
relationships from the mineral constituent scale
through the bone tissue scale along with a cell-scale
bone remodeling algorithm. Due to challenges in mea-
suring bone remodeling activity parameters in a speci-
men specific manner, the above model predictions
relating to the evolution of bone mineral content with
time could only be compared against a micro finite
element simulation with identical initial bone mineral
content and cellular activity parameters. Hambli18

introduced a multiscale model that coupled a finite
element model at the whole bone scale to a neural
network surrogate model at the tissue scale which
was trained using micro FE simulations on high-
resolution image-based models of cancellous bone.
Thus, the mechanobiology approach to bone adapta-
tion has yielded only causal confirmation to date.

A different approach to bone adaptation is based
on the hypothesis that local microarchitecture of bone
is governed by a material redistribution problem that
seeks to simultaneously minimize material used, maxi-
mize resistance to applied loading, and control bone
surface area and permeability. This approach—which
is blind to the details of the cell-scale bone remodeling
process—was first proposed in Fyhrie et al.19 Coelho
et al.20 recently advanced this approach by implement-
ing a multiscale model where at selected locations of
the bone, microscale material redistribution problems
were solved given the state of stress transferred from
the bone scale due to physiological activity (normal
walking and stair climbing). The resulting steady state
periodic microstructures were used to compute the
apparent scale density and orthotropic elastic stiffness
tensor components. The predicted bone density distri-
butions, and the power law relationship between pre-
dicted local bone density and predicted local elastic
tensor components agreed in general with those
reported in literature, suggesting that the causal theory
the model represented was at least compatible with the
range of available observations. Thus, this line of
research has also yielded only causal confirmation.

Fracture Healing
Multiscale models of osteogenesis in order to predict
fracture healing are another line of research where

predictive accuracy is yet to be demonstrated. The
multiscale model of Carlier et al.21 combined earlier
models of DII4/Notch signaling at the intracellular
scale22 and a bio-regulatory framework of angiogen-
esis.23 At the intracellular process time-scale, the
model predicts tip cell movement and sprout forma-
tion. At the tissue-level time scale, the integrated
effect of angiogenesis and associated transport of
molecules regulates differentiation and proliferation
of various cell types (e.g., mesenchymal stem cells,
chondrocytes, osteoblasts, and fibroblasts) toward
bone formation. The multiscale model is exercised
with input obtained from literature sources and its
predictions qualitatively match experimental observa-
tions of temporal evolution of bone, cartilage and
fibrous tissue types in a rodent model. This model
was enhanced with a more detailed oxygen budget
model,24 in order to improve the qualitative agree-
ment of the model predictions of cartilage tissue tem-
poral evolution for a large defect in a rodent model
with the available experimental observations. In Car-
lier et al.,25 the model predictions showed qualitative
agreement with regard to spatial distribution of tissue
types and steady-state union/nonunion outcomes.

Skeletal Muscle Remodeling
Similar to the mechanobiology approach to bone
remodeling, the remodeling and adaptation of skele-
tal muscle has received considerable attention (see
the recent review by Wisdom et al.26). Although the
microscale architecture of the muscle and the process
of force generation in the muscle (active/passive) are
reasonably well understood, the mechanosensitivity
of the muscular remodeling process is largely phe-
nomenologically defined.27,28 Zöllner et al.29

obtained causal confirmation for a multiscale model
that predicted the shortening of the gastrocnemius
muscle as a result of remodeling induced by high-
heeled footwear use. In their model, the apparent
scale muscle length was a function of cellular scale
sarcomere number. The evolution of sarcomere num-
ber with time was dependent on physical activity
level represented by a strain-threshold (cf. physical
activity level is represented by a strain energy density
threshold in bone remodeling).

Tendon Homeostasis
Biochemical and biomechanical factors that affect
Achilles tendon homeostasis were reviewed by Smith
et al.,30 who pointed out the significant gaps in
knowledge regarding tendon structure and function.
The paper proposes a conceptual framework that
encapsulates collagen fibril–fiber hierarchical organi-
zation; the relevance of crimps to tendon damage;
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and various regimes of tendon repair that included or
excluded inflammatory response. Maceri et al.31

implemented a multiscale model for the tendon to
predict: (1) its mechanical response; (2) its remodel-
ing in response to physical activity; and (3) strains
within a coupled muscle model in response to
coupled neuromuscular excitation. At the tendon-
scale, lumped-parameter models were used to
describe viscous response and strain-dependent elas-
tic response in the tendon. The parameters at the ten-
don scale were determined from homogenization of
properties at the tissue-scale (e.g., fiber aspect ratio,
fiber curvature, and fiber tangent modulus). Tissue-
scale properties were derived from persistence length,
contour length, kink dimension, and end-to-end ref-
erence length at the molecular scale. The study
explores causal confirmation for the proposed multi-
scale model by comparing predictions with range of
values reported in literature.

Mineralized Tendon Mechanics
Avian tendon tissue is known to mineralize under
physiological conditions. Yet, as a partially minera-
lized soft tissue mineralized turkey leg tendon
(MTLT) serves as a model to understand pathologi-
cal mineralization of human tendon tissue. Spiesz
et al.32 modeled the indentation modulus of a micro-
porous collagen fibril array at the tissue-scale by
employing a Mori–Tanaka homogenization of the
nanoscale variables fibril volume fraction, the min-
eral distribution between fibrils and extra-fibrillar
matrix and the degree of mineralization. Fibril vol-
ume fraction and mineral volume fraction were meas-
ured in the same study from two distinct tissue zones

(circumferential and interstitial) each from a tendon
sample. The parameter controlling mineral distribu-
tion between fibrils was varied within the range of
values in literature. Other model parameter values
were taken from literature. Distinct mineral distribu-
tion parameter values for circumferential and intersti-
tial tissue regions were found to fit satisfactorily the
measured indentation moduli. In a later study,33 the
same group found that using a single average value
of the mineral distribution parameter resulted in the
variation of microindentation moduli explained by
the tissue-scale model to be higher in the circumfer-
ential zone of the tendon (R2 = 0.231) than in the
interstitial zone (R2 = 0.003). An independent meas-
urement of the mineral distribution parameter is
needed to better validate the model.

Tiburtius et al.34 identified separate circumfer-
ential and interstitial tissue zones (Figure 2) and
employed homogenization methods (to bridge across
length-scales) and hierarchical organization along the
lines proposed by Spiesz and coworkers.32,33 Tibur-
tius et al.34 experimentally determined microporosity,
degree of mineralization, and acoustic impedance for
a number of tendon samples. Model parameter
values not directly measured were varied in the range
reported in literature to determine their influence on
the sensitivity of the tissue-scale stiffness tensor for
each sample. The stiffness tensor was used to derive
an effective acoustic impedance. The study found
that the multiscale model captured the separation of
acoustic impedances between circumferential and
interstitial tissue zones over the range of measured
mineral volume fraction in fibril bundles. Further-
more, the variation of computed acoustic impedance

Mineralized collagen

fibril (MCF)
Mineralized collagen
fibril bundle (MCFB)

Extrafibrillar space

(ES)

Basic constituents: Intermediate composites:

ES

MCF

MCFB

Mineral (Hydroxyapatite)

Pores (water, pmma)

Collagen

Cirumferential (CIR) and
interstitial (INT) tissue

FIGURE 2 | Model hierarchy of MTLT (CIR and INT) tissues. (Reprinted with permission from Ref 34. Copyright 2014 Springer-Verlag)
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matched the variation of measured acoustic
impedance—in both order of magnitude and trend—
over the range of measured mineral volume fraction
in fibril bundles, thus confirming the causal basis in
their model.

Open Problems Motivated by Predictive
Accuracy
For each multiscale model in musculoskeletal (MSK)
biomechanics that is motivated by causal confirma-
tion there exists an open problem that is motivated
by predictive accuracy (PA), which has a stricter
demand in terms of model validation. We offer one
open problem each for the six applications discussed
in this section:

MSK_PA1. Bone mechanics: A multiscale model to
predict the elastic anisotropy as measured in a
given bone tissue specimen, using structural and
composition information taken at lower scales
from the same specimen

MSK_PA2. Bone remodeling: A multiscale model to
predict the evolution of bone mineral content as
measured in a given bone volume, using bone
remodeling activity parameters measured on the
same specimen

MSK_PA3. Fracture healing: A multiscale model to
predict tip cell movement and sprout formation as
measured within a bone fracture site volume,
using intracellular and tissue scale parameters
measured on the same specimen

MSK_PA4. Skeletal muscle remodeling: A multiscale
model to predict the shortening of the gastrocne-
mius muscle as measured on a subject, using sar-
comere scale parameters measured on the same
subject

MSK_PA5. Tendon homeostasis: A multiscale model
to predict whole tendon remodeling as measured
on a subject, using tissue and molecular scale
measured on the same subject

MSK_PA6. Mineralized tendon mechanics:
A multiscale model to predict the tissue stiffness
tensor measured on a tendon specimen, using
structural and composition information obtained
on the same specimen

Predictive Accuracy

Bone Mechanics
Predictive accuracy of multiscale modeling of bone
mechanics was demonstrated in the work of

Hellmich and coworkers35, where the bone material
is considered a hierarchically organized composite of
hydroxyapatite (HA) crystals, collagen and water
(Figure 3). The elastic properties of the basic consti-
tuents were shown to be ‘universal’ and were deter-
mined from separate experiments. Hellmich et al.35

showed that this multiscale model can predict bone
stiffness given only the information on volume frac-
tion of each constituent. The study assessed the pre-
dictive accuracy of the multiscale model by
comparing individually the experimentally measured
stiffness for multiple cortical and trabecular bone
specimens with the stiffness predicted using their
multiscale model.

Fritsch et al.36 showed that the multiscale
model could use the identical specimen-specific infor-
mation of volume fraction of the constituents and
accurately predict mass density of bone regions smal-
ler than the tissue scale, for example, extracellular
and extravascular bone regions. At the same time,
considering the inclusions in the bone composite to
possess a given distribution of orientations, Fritsch
et al. successfully assessed the predictive accuracy of
the model with respect to tissue scale elastic anisot-
ropy, thus directly answering the problem MSK_PA1
posed earlier. The same group, in a follow-up
paper37 added to the above multiscale model a
description of postelastic response at the micrometer
scale: brittle rupture of collagen cross-links and an
ideal plastic yielding of the mineral crystals. Satisfac-
tory predictive accuracy of tissue-scale strength was
reported considering cortical bone regions from
human and bovine long bones. Eberhardsteiner
et al.38 included in the above model nanoscale sliding
of mineral crystals over water layers in order to
explain observed viscoelasticity of wet and dry bone
tissue specimens and assessed the model accuracy
against specimen-specific experimental observations.

Skeletal Muscle Electromechanics
Models of the electromechanical behavior of skeletal
muscle can be used to assess the risk of muscular
degeneration,39 or to better design functional electri-
cal stimulation interventions used in treatment and
rehabilitation.40 El Makssoud et al.41 introduced a
multiscale model of the electromechanical behavior
of skeletal muscle under isometric conditions (i.e., in
the absence of limb movement) (Figure 4). The multi-
scale model comprises the whole muscle, the muscle
fiber, and the sarcomere length scales. Motor units
(MUs) attached to muscle fibers are either contract-
ing, relaxing, or in a completely relaxed state. The
relative fraction of MUs in each state is determined
by a recruitment model that accounts for the applied
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electrical stimulation. The relative contraction of
given muscle fiber is assumed to result in an identical
relative contraction in each component sarcomere.

The sarcomere model42 determines the stiffness
and force generated by a sarcomere as a consequence
of the applied electrical stimulation and relative

contraction. The model homogenizes across the
whole-muscle/muscle-fiber length scales by assuming
identical mechanics for all muscle fibers in a given
state (contracting, relaxing, or completely relaxed).
The predictive accuracy of the recruitment
model was tested against published experimental
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measurements.43 It was also possible to find a single
set of parameters for the multiscale model that could
predict the whole muscle scale force in a rabbit knee
experiment under two different electrical stimulation
conditions. Finally, a different set of model para-
meters could also be found corresponding to the pre-
diction of whole muscle scale forces in patients with
spinal-cord injury.44

Tendon Tissue Mechanics
As a resolution to the problem MSK_PA6 posed ear-
lier, Szczesny and Elliot, in two consecutive
papers,45,46 reported predictive accuracy for their
multiscale model of a tendon fascicle comprising dis-
continuous, staggered, crimped fibrils. A probability
distribution informed the number of fibrils that were
fully un-crimped at a given level of stretch in the ten-
don; the load supported by each fibril was taken to
be nonzero only in the un-crimped state; the fibril
load was transferred to an interfibrillar interface pos-
sessing a perfectly plastic response initiated at incipi-
ent sliding. The model was analyzed using
microstructural parameter values (radius, length and
volume fraction of fibrils) from the literature and
micromaterial parameters (interfibrillar interface
plastic stress, fibril modulus and fibril stretch distri-
bution) from experiments conducted by Szczesny
et al.46 The model predicted accurately the ratio of
strains in the fibril and the tendon over a range of
tendon-strains in rat-tail tendon fascicles.46 Over this
range of tendon strain, the tendon undergoes plastic
unloading and the plastic response was satisfactorily
captured due to the fibril-scale plasticity included the
multiscale model. The results suggested that it was
the plasticity of the interfibrillar interface rather than
that of the fibril itself, which resulted in the accurate
prediction.45 The study considered an elastic regime
of the interfibrillar interface up to a finite sliding dis-
tance, but showed that the resulting elastoplastic

micromechanics improved the prediction only up to
relatively small tendon strain values.45

Open Problems Motivated by
Determination of Effect
As before, we pose open problems in multiscale mod-
eling in musculoskeletal biomechanics motivated by
determination of effect (DE).

MSK_DE1. Bone mechanics: A multiscale model that
predicts better than a single-scale model the bone
tissue elastic anisotropy

MSK_DE2. Skeletal muscle electromechanics: A mul-
tiscale model that predicts better than a single-
scale model the force–length relationship in a
muscle

MSK_DE3. Tendon tissue mechanics: A multiscale
model that predicts better than a single-scale
model the stiffness tensor of a tendon tissue

Summary
The discussion in this section showed that most of
the work in multiscale modeling of musculoskeletal
biomechanics has been motivated by causal confir-
mation. Of the three categories defined in this article,
causal confirmation imposes the least demand on
model validation. Thus, by simply raising the bar on
validation to the next level, we posed six open pro-
blems motivated by predictive accuracy. Two of the
six problems were found to have been answered.
Table 1 summarizes the multiscale musculoskeletal
biomechanics models, that were motivated by predic-
tive accuracy. Reflecting on the four problems that
remain open (MSK_PA 2–5), it is evident that multi-
scale modeling of musculoskeletal biomechanics pro-
blems involving cellular remodeling/adaptation
processes remains a challenge. Finally, we offered
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FIGURE 4 | Complete model of the muscle exhibits three blocks. (Reprinted with permission from Ref 41. Copyright 2011 Springer-Verlag)
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three additional open problems motivated by deter-
mination of effect.

MULTISCALE MODELS OF THE
CARDIOVASCULAR SYSTEM

In this section, we consider research on the cardio-
vascular system, for example, studies on heart rate
and blood flow. Yet, as the vascular system pene-
trates other organs and organ systems (e.g., brain
and lungs), we also include in the discussion studies
that seek to model the interaction between vascula-
ture and other organs or organ systems. An excep-
tion to this rule is the interaction between
vasculature and the musculoskeletal system, which
has already been discussed in the foregoing section.

Causal Confirmation

Blood Flow Interaction with Blood Vessel Walls
The understanding of the interaction between blood
flow and the blood vessel walls is essential for several
medical problems such as aneurysms and atheroscle-
rosis.47 Although the dysregulation of blood flow or
arterial endothelial function is typically restricted to
a local region, it influences and is influenced by the
flow in regions far away from the site of the pathol-
ogy. Twenty years ago, Dubini et al.48 proposed a
geometrically multiscale approach to model the mul-
tiphysics problem of fluid structure interaction, to
which others have added to subsequently.49–51 In this
approach, the local site of interest is modeled in three
dimensions using patient-specific geometry—an area
where much progress has been made in the past dec-
ade.52 For the flow–structure interaction in the three-
dimensional (3D) model both monolithic50 and segre-
gated53 coupling algorithms have been developed.
The 3D model is coupled to a 0D (electrical circuit
analogy) or a 1D (network of segments) model of the
circulation system, supplemented by proper condi-
tions specified at the interface of the different
models.54–56 The ongoing research focus in this area
is on method development motivated by achieving
causal confirmation, and much work remains with
regard to model validation.47,52

Blood Flow Interaction with Blood
Coagulation
Blood coagulates in response to a rupture of a blood
vessel that can potentially lead to loss of blood.
Coagulation is effected by platelets, which adhere to
the site of breakage, by sensing biochemical signals
released by the endothelial cells lining the blood

vessel. As such, coagulation is a classic bio-chemo-
mechanical interaction process. It is also a multiscale
problem, with individual platelets on the order of
microns, while a wound region is upward of the
order of millimeters. Recent reviews57,58 on the state-
of-the-art of multiscale modeling highlight the chal-
lenges in the different approaches taken until now.
Specifically, Diamond et al.57 note that top–down
approaches such as neural network models miss
patient-specific features while bottom–up approaches
such as systems of ordinary differential equations suf-
fer from incomplete knowledge. Sophisticated multi-
scale models have been developed that integrate
submodels for blood flow through the blood vessel
and the growing clot, platelet interactions with blood
flow and the vessel wall, and for the coagulation
pathway.59–64 Until now, only causal confirmation
has been achieved by these models.

Cellular Mechanics in Blood Flow
Erythrocytes, or red blood cells (RBCs), transport
oxygen and other essential nutrients to the various
tissues that the vasculature penetrates through in the
human body.65 This transport functionality depends
on the ability of an RBC to undergo large deforma-
tions as it passes through the human circulatory sys-
tem, an ability that is compromised in diseases such
as sickle-cell anemia or malaria.65 Hence there has
been a steadily growing interest in the modeling of
RBC mechanics in response to surface tractions
applied on their boundary. The state-of-the-art of
computational approaches on this topic was recently
reviewed by Li et al.66

An extreme case of blood flow through a very
small opening occurs in the venous sinuses of the
spleen. Salehyar et al.67 employed the above multi-
scale model to investigate RBC dynamics and inter-
nal stresses in the cell during this passage. They
postulated that the high deformation mechanics
required to pass through the slit-like sinus can be
accurately captured by including the molecule-scale
unfolding dynamics of the spectrin network which
were therein modeled as worm-like chains and ensur-
ing the intactness of intraprotein, interprotein, and
protein-to-lipid linkages within the RBC. The model
captured ‘infolding’ of the RBC membrane in
dependence of the initial relative orientation of the
RBC and the slit. Comparison with experimental evi-
dence of RBC shape dynamics was not performed in
the study.

Vasculogenesis and Angiogenesis
The transport of biochemical agents through vascula-
ture controls the growth and maintenance of tissue
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within which the vasculature penetrates. Examples of
multiscale studies modeling such control within the
musculoskeletal system, for example, osteogenesis
and fracture healing and tendon tissue homeostasis
and repair, were visited in the previous section.
Along similar lines, multiscale models for vasculogen-
esis and angiogenesis have also been developed.
Using a cellular Potts modeling framework, Scianna
et al. investigated angiogenesis68 by detailing the
interactions between cellular and molecular scale
models, and investigated vasculogenesis69 by detail-
ing the interactions between subcellular, cellular and
extracellular scale models. The multiscale models
parameters in each study were determined from
experimental evidence in literature, and model pre-
diction qualitatively agreed with observed
characteristics.

Scianna et al.68 incorporated the influence of
vascular endothelial growth factor (VEGF) on cellu-
lar signaling by defining a model of VEGF diffusion
at the extracellular scale and models simulating
subcellular processes in dependence of VEGF con-
centration. Stefanini et al.70,71 focussed on the dis-
tribution of VEGF receptors, and distinguished
specifically the distribution of two VEGF isoforms
and their receptors in their multiscale model. Their
multiscale models included compartment models for
blood and tissue (normal, tumor) and intercompart-
mental interactions. Stefanini et al.70 showed that
under pathological conditions the distinction
between VEGF isoforms and between the local dis-
tributions of their receptors influences the eventual
signaling cascade. Stefanini et al.71 obtained qualita-
tive causal confirmation for their model by predict-
ing the clinically observed increase in plasma VEGF
following the administration of a VEGF antibody.
Bonilla et al.72 and Terragni et al.73 implemented
deterministic and stochastic models of tumor-
induced angiogenesis.

Cerebral Autoregulation in Cardiopulmonary
Bypass
The cardiopulmonary bypass (CPB) pump or the
‘heart–lung machine’ is a device routinely used in
surgery to take over the function of the heart and the
lungs. Neurological malfunction leading to stroke is
a common complication of the CPB technique and its
prediction has long attracted research interest.74

Kaufmann et al.75 highlighted that the brain’s ability
to adapt to changing flow conditions during CPB are
influenced by the state of its autoregulation mechan-
ism. They also incorporated a phenomenological
model for autoregulation within a 3D computational
fluid dynamics model for CPB and validated

experimentally the cerebral blood flow predictions.
Neidlin et al.76 improved this framework by repla-
cing the phenomenological model with a 0D model
of the baroreflex mechanism (Figure 5). The barore-
flex model predicted subject-specific static and
dynamic cerebral autoregulation behavior.76 This
0D–3D coupling model76 was further enriched by
Neidlin et al.77 who included the elasticity of vessel
walls in the 3D CPB model this allowing flow–

structure interaction. Model predictions of central
aortic pressure and blood flow velocity through the
descending aorta were compared with experimental
observations reported in literature. Causal confirma-
tion for the model was established by the good corre-
spondence of time-dependent haemodynamic features
over one cardiac cycle.

Cardiomyocyte Mechanics
Weinberg et al.78 obtained causal confirmation for a
model that predicted the influence of high-frequency
stimulation in cardiac myocytes on ionic current
amplitude and gating dynamics. Adeniran et al.79

predicted the difference in the influence of pCa
(−log10 of the calcium concentration) on force
between normal and heart failure with preserved
ejection fraction cases as observed by Borbély et al.80

Gaur et al.81 provided causal confirmation for a
model that predicted stochastic Ca release processes
locally in cardiac ventricular myocytes. Hand and
coworkers implemented a multiscale model to study
the effects of gap-junctional and ephaptic coupling
on conduction,82,83 with a microscale description
near action potential wave fronts, and a macroscale
description in regions far away from them.

Heart Valve Mechanics
Research interest in the biomechanical function of
valves in the different chambers of the heart is
motivated by the prediction of diseases such as ste-
nosis and regurgitation and by the need to replace
dysfunctional valves.84 The mechanics of the heart
valves are determined at several scales.85 The
response of valvular interstitial cells to blood-flow
induced shear stresses can lead to calcification of
the tissue and thereby disrupt valve mechanics.
Tissue-scale organization across fibrosa and ventri-
cularis layers determines the load-bearing response
of the valves at the macroscale. Weinberg et al.85

reviewed the state-of-the-art experimental and com-
putational investigations into heart valve mechanics
at different scales which have led to validated mod-
els at each scale. Weinberg et al.86 introduced a
multiscale model where macroscale strains were
obtained from flow-structure interaction of the
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heart valve. These macroscale strains were applied
to a tissue model that was used to determine local
tissue-scale strains in the different layers, and which
were used to stimulate a cell-scale model. Compar-
ing against experimental results reported in litera-
ture, causal confirmation was achieved for
multiscale predictions of cellular aspect ratio in nor-
mal86 as well as bicuspid heart valves87 and of cal-
cification of the aortic valve during aging.88

Open Problems Motivated by Predictive
Accuracy
In a similar manner as before, we pose open pro-
blems in multiscale modeling in cardiovascular
(CV) biomechanics motivated by predictive accuracy.

CV_PA1. Blood flow interaction with blood vessel
walls: A multiscale model to predict the measured
blood flow and blood vessel wall dynamics within
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3-D CFD

5 l/min

1
L p U2ΔP =

2

n

1
L p U2ΔP =

2

FIGURE 5 | Multiscale model of cardiopulmonary bypass. (Reprinted with permission from Ref 76. Copyright 2014 Elsevier)

Advanced Review wires.wiley.com/sysbio

12 of 25 © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. Volume 9, May/June 2017



a local region (e.g., surrounding an aneurysm) of
the systemic circulation, using parameters meas-
ured on the same circulation system, vascular tis-
sue and geometry, and blood fluid

CV_PA2. Blood flow interaction with blood coagu-
lation: A multiscale model to predict the measured
development of a blood clot, using the bio-chemo-
mechanical parameters measured on the same
platelet–blood–vessel wall system

CV_PA3. Cellular mechanics in blood flow:
A multiscale model to predict the dynamics of an
RBC as measured in blood flow, using the micro-
mechanical parameters measured on the
same RBC

CV_PA4. Vasculogenesis and angiogenesis:
A multiscale model to predict measured angiogen-
esis and vasculogenesis based on measured subcel-
lular, cellular and molecular scale parameters

CV_PA5. Cerebral autoregulation in CPB: A multi-
scale model to predict the measured cerebral auto-
regulation, using the measured elasticity of vessel
walls on the same cardiac system

CV_PA6. Cardiomyocyte mechanics: A multiscale
model to predict the measured electrical activity in
a cardiac myocyte under high-frequency stimula-
tion, using cell membrane electro-mechanical
property parameters measured in the same
myocyte

CV_PA7. Heart valve mechanics: A multiscale model
to predict the change in cell aspect ratio during a

cardiac cycle and increase in valvular tissue calcifi-
cation due to aging, using cellular and tissue-scale
parameters measured in the same human heart
valve

Predictive Accuracy

Cellular Mechanics in Blood Flow
One approach to the multiscale modeling of RBC
mechanics in blood flow, due to Peng et al.,89

defines three length scales (Figure 6): (1) whole cell
scale; (2) junctional-complex (JC) scale; and (3) spec-
trin (Sp) protein scale. The protein-scale submodel90

used a worm-like chain description that was para-
meterized using measured properties of intraprotein
linkages and causally confirmed experimentally
observed folding/unfolding dynamics. The JC scale
submodel91 describes the actin proto-filament
attachments to the RBC lipid bilayer and the Sp
network. Finally, in the whole cell scale model89

the RBC is defined as a closed shell constituting the
protein-network/lipid bilayer membrane as above
and constrained by area and enclosed volume con-
servation rules. The whole cell model established
causal confirmation of the dependence of RBC rest-
ing shapes and its microscale properties. Addition-
ally, addressing the problem CV_PA3, this model
demonstrated predictive accuracy through compari-
son with micropipette aspiration and cell stretching
experiments.89

Outer layer
(Lipid bilayer)

(a)

(c)

(b)

Inner layer
(Protein skeleton)

Folded domains

Domain unfolding

Actin
protofilament

Sp

SC

Lipid
bilayer

FIGURE 6 | Multiscale model of a red blood cell: (a) complete cell model; (b) molecular-detailed junctional complex model; and (c) spectrin
(Sp) model. (Reprinted with permission from Ref 89. Copyright 2010 American Physical Society)

WIREs System Biology and Medicine Multiscale modeling in biomechanics

Volume 9, May/June 2017 © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. 13 of 25



Autonomic Heart Rate Regulation
In 1991, the American College of Chest Physicians/
Society of Critical Care observed that inflammation
response syndrome, or sepsis, was increasingly
becoming a ‘cause of morbidity and mortality, par-
ticularly in elderly, immunocompromised, and criti-
cally ill patients.’92 Understanding of the
pathogenesis of sepsis has since increased and
insights gained about its molecular basis was out-
lined in a 2005 review by Tetta et al.93 Foteinou
et al.94 implemented a multiscale model to probe the
relationship between systemic inflammation and
autonomic heart rate regulation. Their multiscale
model comprised three submodels: (1) a cell-scale
model of leukocytes under endotoxin challenge;
(2) an organ-scale model for the heart to determine

changes to heart rate variability in response to sys-
temic inflammation; and (3) an organism-scale
neuro-endocrine system model (Figure 7). Their cell-
scale model is based on a previous description95 of
endotoxin signaling and associated transcriptional
dynamics along with a pharmacokinetics/pharmaco-
dynamics model for exogenous immune-suppressive
agents. At the organ scale, the rate of change of heart
rate variability is considered to be a switch-like func-
tion of the cellular pro-inflammatory response. At
the scale of the neuroendocrine system, the model
activates the influence of pro-inflammatory response
on cytosol levels at the cell-scale and defines the
influence of the level of epinephrine hormone
(secreted by the sympathetic nervous system) on cell-
scale anti-inflammatory response.

FIGURE 7 | Basic topological interactions composing the multilevel model of endotoxin induced human inflammation. (Reprinted with
permission from Ref 95. Copyright 2009 Wolters Kluwer Health, Inc.)
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Model parameters associated with the influence
of systemic inflammation signaling on cell-scale tran-
scriptional response are determined from
experiments,94,95 while parameters associated with
the neuro-endocrine immune system are estimated.
The multiscale model predicts accurately the tempo-
ral evolution of cortisol concentrations and steroid
active signal and the significant differences between
conditions of presence and absence of immunomodu-
latory drug infusion prior to endotoxemia. The
model also predicts accurately heart rate variability
over time and its relatively low sensitivity to immu-
nomodulatory drug infusion.

Foteinou et al.96 enriched the above multiscale
model by adding the influence of sympathetic and
parasympathetic nerve activities on heart rate varia-
bility based on a previous model by Warner
et al.97 The additional model parameters are
obtained from experiments on human subjects.96

This extended model is found to accurately predict
experimentally observed temporal changes in para-
sympathetic activity and heart rate. Furthermore,
the model accurately predicts the significant differ-
ences in both parasympathetic activity and heart
rate between presence and absence of exogenous
epinephrine drug infusion prior to the endotoxemic
challenge.

Circulation System
The influence of the venous system on heart
dynamics and circulation has attracted the interest
of researchers since the late 1960s.98 Müller
et al.99 implemented a multiscale model for the cir-
culation system that comprises: (1) a network of
major arteries; (2) a network of major veins; (3) -
lumped-parameter models for the heart and pulmo-
nary circulation; and (4) lumped parameter models
for the arterioles, capillaries, and venules. For the
venous submodel, model input parameters are
obtained in a subject-specific manner from experi-
ments. Other submodel predictions are tested
against results reported in the literature. Using their
multiscale model, Müller et al.99 demonstrate
causal confirmation for predictions of blood flow
in the aorta, blood flow in the major leg arteries,
blood flow in arteries located in the neck and the
head, and blood flow in systemic veins located out-
side the neck and the head. Furthermore, Müller
et al.99 obtain significant predictive accuracy for
subject-specific blood flow in the veins in the head
and in the neck when compared against phase-
contrast MRI data.

Open Problems Motivated
by Determination of Effect
In a similar manner as before, we pose open pro-
blems in multiscale modeling in cardiovascular
(CV) biomechanics motivated by determination of
effect (DE).

CV_DE1. Cellular mechanics in blood flow: A multi-
scale model that predicts the dynamics of an RBC
in blood flow better than a single-scale model

CV_DE2. Autonomic heart rate regulation: A multi-
scale model that predicts autonomic heart rate reg-
ulation under endotoxemic challenge better than a
single-scale model

CV_DE3. Circulation system: A multiscale model
that predicts the venous system in the head and in
the neck better than a single-scale model

Determination of Effect

Cellular Mechanics in Blood Flow
In a direct response to the CV_DE1 problem, Peng
et al.100 simulated the aggregated flow of RBCs in
surrounding blood plasma using a coupled flow–

structure interaction model. They compared their
multiscale model predictions against those from a
single scale model (possessing a continuum descrip-
tion for the RBC membrane and excluding the
detailed bilayer–skeleton architecture). This allowed

45
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31 cP (Fischer et al. 1978)
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FIGURE 8 | Establishing ‘determination of effect’ of RBC
membrane microstructural details on tank-treading dynamics of RBC in
shear flow. ‘Simulation’ refers to the multiscale model89–91,100 and
‘single-layer model’ refers to a single-scale model. The multiscale
model simulation with zero membrane viscosity (vb = vs = 0) retrieves
the single-scale model result. With a nonzero membrane viscosity, the
multiscale model compares better with the experimental results.
(Reprinted with permission from Ref 100. Copyright 2011 Cambridge
University Press)
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TABLE 2 | Summary of Multiscale Modeling Approaches in Cardiovascular Biomechanics

Application

Scale S1 Scale S2
Other Interacting

Scales
Component
Hypomodels

Relation
HypomodelsI

I
IO

Heart rate
regulation

Cell (leukocyte) Organ (heart) System (neuro-
endocrine)

Cellular
transcription
dynamics model,
models for heart
rate control, and
for HPA and SNS
activity

Model for pro-
inflammatory
signal from cell
to HPA and
SNA, for anti-
inflammatory
influence of
HPA and SNS
on cellular
processes, and
for biochemical
input from SNS
to the heart

Endotoxemic signal,
parameters
controlling pro-
inflammatory
pathways and
transcriptional
response

Biochemical input
from sympathetic
nervous system
(SNS), parameters
regulating heart
function

Pro-inflammatory
signals,
parameters
controlling
hypothalamic–
pituitary–
adrenal (HPA)
axis and SNS
activity

Autonomic
outflow and
heart rate

Red blood cell
mechanics

Protein molecule
(Spectrin)

Cell (erythrocyte) Junctional complex
(JC)

Worm-like chain
model for Sp
mechanics,
spoked hexagon
unit cell model
for the JC, area
and enclosed
volume
conservation laws
for whole cell

Models for
mechanical
interactions
between Sp
and JC, for
homogenization
of JC mechanics
to obtain
cellular
cytoskeleton–
bilayer system
mechanics

Stretch, contour
length,
persistence
length of Spectrin
(Sp) molecule

Viscoelasticity of
the cytoskeleton–
bilayer system,
enclosed volume
and surface area,
mechanical
interactions with
surrounding
plasma fluid

Geometry
parameters,
mechanical
properties of
the lipid bilayer
and the actin
proto-filament

Cell resting
shapes,
response to
micropipette
aspiration,
stretching,
tumbling and
tank-treading
behavior in
shear flow

Cranial venous
circulation

Organ (heart and
pulmonary
circulation)

System (arterial and
venous)

Microcirculation
(arterioles,
venules and
capillaries)

1-D circulation
model,
windkessel model
for
microcirculation

Boundary
conditions for
flow and
pressure at
junctionsLumped model

parameters, flow
and pressure
boundary
conditions,
source of
circulation forcing
in the heart

Network graph,
segmental
geometry and
elasticity,
intersegmental
boundary
conditions on
pressure and flow

Lumped model
parameters,
inlet and outlet
flow and
pressure
conditions

Blood flow in
head and neck
veins

For each application (first column), the following scales are detailed in columns 2–4: the smallest scale S1, the scale S2 at which model prediction is desired, all
other scales. For each scale, the inputs (I) used in the multiscale model are listed. For scale S2, the set of variables to be predicted (O) are also listed. For each
multiscale modeling application, the component models at each scale, and relation models between the scales, are indicated in the last two columns.
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a ‘determination of effect’ of microstructural proper-
ties on RBC mechanics in shear flow, particularly
during tumbling and tank-treading behavior
(Figure 8). The tumbling rate of the multiscale
model100 was slightly higher than that of the single
scale model, the shear ratios and protein density
ratios were locally different along the membrane sur-
face. Tank-treading frequencies were better predicted
by the multiscale model compared to the single-scale
model as the former allowed for nonzero membrane
viscosity.

Summary
The discussion in this section showed that most of
the work in multiscale modeling of cardiovascular
biomechanics has been motivated by causal confir-
mation. Based on the reviewed literature, seven open
problems motivated by predictive accuracy were
posed. One of these (CV_PA3) was already found
answered in the application area of RBC dynamics in
blood flow. This application area was found to have
successfully modeled a related problem (CV_DE1)
motivated by determination of effect. This leaves
open two multiscale modeling problems motivated
by determination of effect, related to autonomic
heart rate regulation and venous circulation in the

head and the neck. Table 2 summarizes the multi-
scale modeling approaches in cardiovascular biome-
chanics that successfully solved problems motivated
by predictive accuracy and determination of effect.

MULTISCALE MODELS OF OTHER
BIOMECHANICS PROBLEMS

While a lot of multiscale modeling research targets
cardiovascular or musculoskeletal biomechanics,
there are some other interesting biomechanics appli-
cations that are worth mentioning, without any pre-
tence of being exhaustive.

In respiratory biomechanics, multiscale models
are being used to provide ‘… with accurate spatial
relationships between airway, vessel and the tissue to
which they are tethered,’ necessary for the computa-
tional analysis of ‘airway–vessel–tissue interactions
such as coupling of ventilation distribution in
‘embedded’ airway models to the large deformation
of the lung tissue.’101 These models are also used to
look at the transport mechanisms,102 or to investi-
gate bronchoconstriction.103

The gastro-intestinal system is comprised of
organs (stomach, small intestine, and large intestine)
that differ significantly in function, organ-scale

FIGURE 9 | Different spatial scales identified in the modeling of the gastrointestinal system. (Reprinted with permission from Ref 104.
Copyright 2010 Wiley)
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morphology and organization at the tissue and cellu-
lar scales. In order to achieve proper motility of
ingested material through this complex system, mus-
cular activity must be under strong spatiotemporal
regulation. This regulation is achieved by gastro-
intestinal electrophysiology.104 Du et al. provides an
extensive review of the multiscale modeling of the
gastro-intestinal tract up to 2010.105 The same
authors proposed an electromechanical model for the
interpretation of electrogastrograms;106 more
recently, a multiscale model was used to investigate
reflux in adenocarcinoma.107 In current multiscale
models (Figure 9), muscle cell electro-physiology is
modeled either by the phenomenological Aliev et al.’s

model,108 or more recently, the biophysically based
model of Corrias et al.109 These models describe
wave equations in transmembrane potential and slow
current variables for various ion gating mechanisms
occurring in the cells. Individual cell models plug into
the tissue scale models providing the ionic activity
induced electrical current. Tissue-scale organization
is modeled depending on the organ, for example,
stomach models possess three layers of smooth mus-
cles (one longitudinal and two circular) separated by
two ICC layers;110 whereas a small-intestine model
possesses only one smooth muscle cell layer and one
ICC layer.111 Tissue-scale electrophysiology model-
ing is based on a bi-domain framework, which has

FIGURE 10 | Multiscale modeling of lymphatic drainage. (Reprinted with permission from Ref 120. Copyright 2012 Elsevier)

TABLE 3 | Summary of the Reviewed Literature

Application Area Causal Confirmation Predictive Accuracy Determination of Effect All Categories

Musculoskeletal 20 8 0 28

Cardiovascular 30 4 1 35

Other 22 0 0 22

All areas 72 12 1 85
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previously been applied to cardiac electrophysiol-
ogy112 and specifies the relationships between the
potential difference across the cell membrane and the
electric potential in the extra-cellular space.

Thomas and coworkers proposed a whole mod-
eling environment (SAPHIR) to model blood pressure
regulation and fluid homeostasis.113 Chen et al. used
a multiscale model to investigate the relationship
between systolic blood pressure and the pathogenesis
and progression of renal diseases.114

Computational oncology is another area where
multiscale modeling is being used extensively. For a
general review on the topic, see Deisboeck et al.115 May
et al.116 coupled the biomechanics of tumor–host tissues
interaction with a cellular model of cancer growth, an
important determinant especially in tumors growing in
regions confined by bone tissue, such as in the case of
brain tumors; multiscale models are also used to investi-
gate the role of angiogenesis in tumor growth,72 or to
better understand the effect of radiotherapy.117

Rim et al. used a three-scale model to investi-
gate the transdermal diffusion of drugs.118 Adra
et al. developed an agent-based model of keratinocyte
colony formation in 2D culture.119 Roose and Swartz
developed an extensive multiscale model of the fluid
drainage from tissues through the lymphatic system
(Figure 10).120 Biswas et al. developed a multiscale
model of a skin mechanoreceptor, the Pacinian cor-
puscle.121 Valero et al. modeled the angiogenesis
process during wound contraction.122

Another important application area is the mod-
eling of organogenesis and growth processes. New-
man et al. modeled the limb development process in
vertebrates;123 Cox used a multiscale model to
explore the mechanoregulation during dentition;124

Göktepe et al. proposed a multiscale model of the
cardiac sarcomerogenesis. 125

CONCLUSION

Of all possible angles we could use to structure this
review, we chose that of the modeling intent, orga-
nizing all reviewed papers around three distinct
operational motivations: ‘Causal confirmation,’ ‘Pre-
dictive accuracy,’ and ‘Determination of effect.’ The
first represents the most ‘humble’ intent, among the
three. In these papers multiscale modeling is used to
merely show that a complex set of observations is
‘compatible’ with a mechanistic theory embodied by
the multiscale model; of course ‘compatible’ does not
mean ‘true,’ and even less ‘accurate.’ The papers that
fall in the predictive accuracy category are driven by
the necessity to improve predictive accuracy over sys-
tems where the assumption of scale separation

applies poorly. Last, the models motivated by the
need to determine the effect of processes at radically
different scale are the probably the most challenging,
and intellectually interesting, as they look directly at
the complexity of multiscale systems.

In the survey conducted here on the literature
on multiscale modeling in biomechanics, we reviewed
72 studies motivated by causal confirmation, 12 stud-
ies aiming at predictive accuracy, and only one
demonstrating determination of effect across scales
(Table 3). Although the present review is not exhaus-
tive, this relative multiplicity is representative of the
body of research in the subdomain of multiscale
modeling in biomechanics.

By focusing on the progress made beyond causal
confirmation, we showed how in some research pro-
blems, a particular scale separation schema has gained
wider acceptance through validation. For those topics
where a valid scale separation picture is yet to emerge,
this was found to be the case typically because model
input variables/parameters at the different scales could
not be determined in a specimen-specific manner. This
highlights focus areas for future experimental research.
To clarify the road ahead, a total of 15 open problems
(see Boxes 1 and 2) were posed in relation to musculo-
skeletal or cardiovascular applications which, if solved,
would advance the state-of-the-art of multiscale model-
ing in biomechanics. Finally, this review of current
research reveals that, from basic biology to medicine,
multiscale modeling in biomechanics is relevant to a
variety of other research areas, and is expected to
become more so in the future.

BOX 1

OPEN PROBLEMS MOTIVATED BY
PREDICTIVE ACCURACY

PA1. Bone remodeling: A multiscale model to
predict the evolution of bone mineral con-
tent as measured in a given bone volume,
using bone remodeling activity parameters
measured on the same specimen

PA2. Fracture healing: A multiscale model to
predict tip cell movement and sprout forma-
tion as measured within a bone fracture site
volume, using intracellular and tissue scale
parameters measured on the same specimen

PA3. Skeletal muscle remodeling: A multiscale
model to predict the shortening of the gas-
trocnemius muscle as measured on a subject,
using sarcomere scale parameters measured
on the same subject
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