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Feed is one of the most important external signals in fish that stimulates its feeding
behavior and growth. The intake of feed is the main factor determining efficiency and cost,
maximizing production efficiency in a fish farming firm. The physiological mechanism
regulating food intake lies between an intricate connection linking central and peripheral
signals that are unified in the hypothalamus consequently responding to the release of
appetite-regulating genes that eventually induce or hinder appetite, such as apelin; a
recently discovered peptide produced by several tissues with diverse physiological
actions mediated by its receptor, such as feed regulation. Extrinsic factors have a great
influence on food intake and feeding behavior in fish. Under these factors, feeding in fish is
decontrolled and the appetite indicators in the brain do not function appropriately thus, in
controlling conditions which result in the fluctuations in the expression of these appetite-
relating genes, which in turn decrease food consumption. Here, we examine the research
advancements in fish feeding behavior regarding dietary selection and preference and
identify some key external influences on feed intake and feeding behavior. Also, we
present summaries of the results of research findings on apelin as an appetite-regulating
hormone in fish. We also identified gaps in knowledge and directions for future research to
fully ascertain the functional importance of apelin in fish.

Keywords: apelin, feeding behavior, feed intake, fish, orexigenic
1 INTRODUCTION

Food is one of the foremost expenses of intensive fish farming, which fish farmers need to pay much
attention to. Its availability in quantity and quality is significant for the appropriate growth and
reproduction of fish (1). Feeding as determined by Metcalfe and colleagues (2) plays a vital role in
animal life-sustaining activities. Evidence has it that, the regulation of feed intake, as in mammals, is
well conserved in vertebrates, including some fish species (3, 4). The optimization of food intake can
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lead to enhanced growth and body composition, with increased
food conversion efficiency and reduced nutrient losses, which are
major objectives in intensive fish farming (1).

The intake of feed is known to be regulated by complex
interactions between the brain and peripheral appetite-regulating
hormonal factors, including apelin (5). As indicated by Volkoff
and colleagues (1), when the endocrine mechanisms controlling
food intake in fish is understood, it will not only lead to the
explicit modifications in fish-holding situations and feeding
approaches such as temperature and time of feeding
respectively but rather, it will also help to develop new
procedures to improve food conversion efficiency as well as
aquaculture growth.

In the past years, less attention has been given to apelin in the
regulation of feed intake in vertebrates. With its uncertain role in
mammals as a feed intake regulator, apelin has been identified to
play an orexigenic role in vertebrates such as fish. It aids in
several regulation of biological activities in fish, which most
importantly includes the regulation of food consumption. The
goal of this review is twofold; firstly, to examine the recent
advances in our understanding of the feeding behavior, focusing
more on dietary selection and preference of fish as well as
analyzing the influence that some external factors have on feed
intake and behavior. Secondly, we gather information from
previous research studies on apelin, categorizing its specific
role in fish as an appetite-regulating hormone and identifying
gaps in knowledge and directions for future research regarding
this important topic.
2 FEED INTAKE AND FEEDING BEHAVIOR
IN FISH

The result of food intake is the alteration that lies between
starvation, craving, and satiation. Starvation is the
physiological necessity for food, including a strong incitement
to feeding behavior; looking for food and consuming it. Satiation
is the physiological and rational sense of “fullness” that happens
after food intake whiles appetite or craving, on the other hand, is
the desire to eat, which is commonly related to the material (find,
fragrance, taste) perceptiveness of the food to be consumed (6).

Feed is among the most authoritative signals outside the fish’s
body that can arouse feeding behavior and growth (7–9). Its
readiness and composition exert a key control of these processes,
by acting principally on the hormones responsible for their
endocrine control (9). Some central and peripheral appetite
regulators in fishes are affected by a single meal, showing per-
prandial fluctuations in their expression and/or secretion levels.
Such changes in fishes have been identified in the brain hormone
(10–13). The search for food and its intake in fish is girded by a
series of behavioral acts matched through a supportive work
between the nervous and endocrine systems (14). The control
of feed ingestion behavior is a remarkable multifaceted
development that comprises particularized interactions
between the brain and marginal indications (15). The
metabolic sensors located in the central nervous system of
Frontiers in Endocrinology | www.frontiersin.org 2
fishes provide room for the hypothalamic systems to receive
nutritional information, allowing a qualitative control of food
ingestion (16). The neural effectors of the hypothalamic origin
facilitate the control of food consumed by the fish, thus, by
integrating between hunger and satiety signals (17) which
include apelin and neuropeptide Y for hunger hints (18, 19),
and amylin and cocaine-and amphetamine-regulated transcript
for satiety hints (20, 21). As important as it is, it interests more
fisheries and aquaculture firms in curbing fish growth and
reproduction by changing food and/or endocrine settings.

Fish feeding behavior is miscellaneous and has been broadly
examined in both wild and farmed fish from their ecological
perspectives (22, 23) whiles behavioral responses of fish to
feeding have been associated with feeding approaches, feeding
habits, feeding regularity, feed detection mechanisms and feed
preferences (24). Feeding behavior and its regulation in fish
comprises of external and internal environment information
being analyzed by signaling molecules and receptors in the
fish. Thus, the hypothalamus, assisted by other brain sections
in the fish, integrates inbound indications (3, 14). As ascertained
by Volkoff and colleagues, changes in dietary behavior and
cravings are frequently related to changes in gene expression
and/or protein content of the appetite regulators or their
receptors. That is to say, changes in the mRNA/protein levels
of a given hormone due to starvation or feeding have the
probability of reflecting its physiological role in regulating feed
ingestion. Nevertheless, it should be noted that, in the view of the
multifactorial character of food regulation, there is a probability
for compensative mechanisms in the manner or conduct of
feeding to take place whiles fluctuations in available hormones
might not essentially suggest variations in feed intake (1).

2.1 Dietary Selection and Preference
in Fish
Fish do not consume all the food items they come across. Dietary
selection has been broadly explored in mammals, which lessen
their consumption of an imbalanced diet to avoid negative
dietary impacts (25). Nourishment choice is based on the
preface that animals, such as fish, have “quality dietary insight”
and hence, select a diet that optimally restores a metabolic
imbalance as a result of a nutritional challenge (26). Fishes are
selective in the choice of food that contains the necessary
nutrients for their survival, growth, and reproduction. This
insinuates that fishes as in other animals have evolved from
extraordinary diversity of means and challenges, being able to
sense nutrients and the existence of precise hungriness to
regulate the intake of specific nutrients (27). The source of
nutrients can be recognized by gastrointestinal receptors
during food digestion, as they are released interiorly in the
stomach and pass into the digestive tract. Those receptors
would trigger neural action and hormonal signals that would
direct brain centers about the dietary properties of food and
subsequently alter feeding behavior (28, 29).

Nutrition is a very significant inward factor in fish, as the
foremost determination of fish feeding is to satisfy the protein
and energy requirements of the fish, relating to feeding behavior
December 2021 | Volume 12 | Article 798903
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and feed consumption, and have the probability to unswervingly
influence or impact the appetite of the fish, reflecting in its
growth (30). Nutrients are biological composites involved in
biochemical reactions that produce energy and are ingredients of
cellular biomass (31). These nutrients have been categorized into
two groups; macronutrients and micronutrients. Macronutrients
are those that are required in comparatively large quantities since
they are the key source to generate the energy required by
organisms to live, grow, and reproduce (32). Micronutrients on
the other hand are those needed in smaller quantities, even
though they have several significant roles in cellular processes
(33, 34). The figure below gives examples of key macronutrients
and micronutrients and their importance in feed (Figure 1).
Detailed information on feed and nutrient requirements for fish
can be found in a book from the National Research Council
(NRC) (34).

The quality of feed suggests the nutritional efficacy and the
objective components of a feed making it pertinent to eat and
digestible for the fish (42). Fish growth, good health, and
maintenance are achieved only when the precise quantity of
energy and vital nutrients are available in their adequate
proportions in the feed, aiding in proficient feed intake (43,
44). Response to feed intake, its tastiness, and digestibility differ
as a result of the difference in fish feed components (41).
Signifying that, fish farmers should access the quality of feed
they provide for their fish since it plays a key role in it being
accepted by the fish, how appetizing it is, and its digestibility.
Similarly, the composition of a diet is an additional nutritional
aspect of a feed that needs quality attention since it influences
appetite-regulating hormones. While the literature available on
this is insufficient as stated by Bertucci and colleagues, several
research studies have it that, when macronutrients are changed
in the diet composition of the fish, it has a significant impact on
either the secretion and/or the expression of appetite-regulating
hormones. Thus, it’s of great importance in fisheries and
aquaculture since fluctuating diet and/or hormone milieu
influence fish growth and reproduction (9).

Aside from the use of the ‘feed intake’ method which has
extensively been used in animal nutrition, the use of ‘self-feeders’
in diet selection could be used as a great means to improve the
understanding of the physiological approaches towards feeding
Frontiers in Endocrinology | www.frontiersin.org 3
behavior in fish. For example, studies on rainbow trout
(Oncorhynchus mykiss) revealed that it could differentiate
between diets varying in the vital amino acid content. It also
showed that the fish had a precise preference for the whole diet
over the balanced amino acids (45). Also, research conducted on
self-selection of diets in sharp snout seabream (Diplodus
puntazzo) and the Senegalese sole (Solea senegalensis) revealed
that these species select macronutrients according to their dietary
needs (29, 46).

According to da Silva and colleagues (27), there are numerous
benefits to offering animals a free choice of nourishment, which
is considered the most biological and moderate way of providing
feed for fish. With time, fish can learn to select specific feeds
following their nourishing requirements, as well as self-feed (46,
47). Equally, when the fish meets its goal of each specific nutrient
consumption, it will provide its body with the optimal
concentrations of nutrients required for proper growth and
reproduction (26, 48).

2.2 Extrinsic Factors Influencing Feeding
and Feeding Behavior in Fish
Generally, hunger stimulates the behavioral response of feeding
fish. When feed is available, fish may initially feed at a faster rate
and slowly decrease or stop with a gradual decline of appetite.
Feeding behavior despite being influenced by intrinsic factors is
extremely influenced by ecological or extrinsic factors (1, 49, 50).
Below, we highlight some of these environmental factors that
influence food ingestion and feeding behaviors in fish.

2.2.1 Stress
Stress has been defined as the disturbance of physiological or
biological mechanisms due to internal and external factors,
which are generally designated as stressors (51). These provoke
a cataract of consistent behavioral and biological rejoinders in
which a living organism makes efforts to reestablish homeostasis,
consequently incapacitating the threat. In an aquaculture firm,
cultured fish are restricted, captured, crowded, sedated, held, and
transported during repetitive husbandry (51). In consequence, all
these taken into consideration are ordinary events in fish farming
and they are possible stressors that interrupt the behavioral and
biological mechanisms of the organism. Thus, causing a
A B

FIGURE 1 | The role and importance of key macronutrients (A) and micronutrients (B) in fish food. Proteins; (9, 32, 35), lipids; (9, 36–38), carbohydrates; (8, 39, 40),
minerals; (9, 41) and vitamins; (41).
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functional response crucial to recover the dynamic consistency
(52). Reduction in feed ingestion has been described to be
distinctive behavioral feedback to stress in fish (53, 54).
Undeniably, stress can also disrupt several feeding conducts in
fish, including the food search, finding, or capturing prey (16, 55,
56), leading to a decline in growth in several fish species (54).
Fish under stressful conditions as compared to unstressed fish eat
less and have slow growth. Even when food intake levels are
maintained in fish, these conditions are known to persuade a
decline in the conversion efficiency of feed consumed, leading to
the decreased growth rate (57, 58). For example; a research by
Lee and colleagues revealed that acute physical stress caused by
cleaning once or thrice a week reduced the daily and cumulative
feeding levels and feed conversion efficiency significantly in the
sea bass (Dicentrarchus labrax) (59). Furthermore, these
stressors have been known to adjust the control of endocrinal
growth alliance in fish such as the secretion of pituitary growth
hormone, among others (60–62). In the two subsections below,
we discussed two key stressors that influence the well-being of
fish, which needs keen attention.

2.2.1.1 Temperature
There have been several demonstrations of the relationship that
exists between temperature and feeding in several fish species.
Temperature is one of the most dominant factors influencing
some key biological functions in fish, including feed ingestion
and feeding behavior (63, 64). Relatively, despite the complex
and species-specific effects of temperature in fish, the relation
between feeding/feeding behavior and temperature is like a bell-
shaped structure (65); at normal temperature conditions, the
voluntariness of food intake also increases (65) and/or is
maintained during the acclimatization period of temperature
which is specific to a particular species. On the other hand, when
there’s a slight decrease in temperature, the fish adapts to the
temperature and maintains its feeding rate for a short period. It
has also been ascertained that before the ultimate maximal/
Frontiers in Endocrinology | www.frontiersin.org 4
minimal critical temperature for a species reaches, it will lose
appetite, cease, and lastly stop feeding (66); see Figure 2.
Examples given here revealed that, a research conducted on
Atlantic cod (Gadus morhua) revealed that, when kept in a water
temperature of 2°C for four weeks, there was a decrease in feed
consumption compared to those kept in 11°C and 15°C water
temperature (67). Also, research conducted on the red-spotted
grouper (Epinephelus akaara) revealed that when the water
temperature is around 25°C, there’s an increase in its feeding
and digestion level (68). However, it should be taken into
consideration that when the optimal temperature of a
particular fish species reaches and/or exceeds, it results in a
gradual decline in feeding behavior (69, 70).

2.2.1.2 Hypoxia
Dissolved oxygen (DO) is among the most significant extrinsic
factors in fish farming (71). It is known to be a key restrictive
factor in aquaculture with the particular reason for the
circumstance being that, fish have aerophilic absorption which
requires DO at efficient levels (72). The depletion of DO
concentration (hypoxia) in water bodies has been identified to
be a stern extrinsic stress, which commonly occurs in high-
density aquaculture (73). Reports have indicated that growth,
survival, behavior as well as other physiological activities of some
fish species are highly influenced by different degrees of hypoxia
(72, 74) and is also known to be an endocrine disruptor (75).

Fish under severe hypoxia conditions experience reduced
movement or feed intake to conserve energy (72). In research
conducted on the Atlantic salmon (Salmo salar) with regards to
the hypoxic period and its physiological activities, results
revealed that there were behavioral changes associated with
oxygen shortage and physiological stress in some groups. Also,
the severity of hypoxia reduced the intake of feed in the fish (76).
In a research study on tilapia (Oreochromis niloticus) it was
discovered that fish kept in hypoxic conditions had significantly
reduced feed intake, survival rate, and weight gain (71).
FIGURE 2 | A general relative relation between feeding rate and temperature of fish species. The feeding rate decrease and subsequently stops at higher or lower
temperatures (extreme temperatures).
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Additionally, a research study on rainbow trout (Oncorhynchus
mykiss) demonstrated that hypoxia reduces feed consumption,
growth rate, oxygen consumption, energy, and lipid contents
(77). On the other hand, research conducted on tilapia
(Oreochromis niloticus) comparing three DO (normal, low and
medium) levels showed that, the final fish weight of those in the
normal DO levels group were significantly higher as compared to
those in the low and medium DO levels groups. Additionally, fish
under the low DO level group demonstrated a lower feed intake
rate. The low DO level group also revealed that fish in this group
had a lower growth and feed utilization rate (78). This
significantly demonstrates that when fed under enough DO
levels, fish show good efficiency of their feed intake (79), which
will most importanlt aid in good feed conversion ratio, fish
growth and reproduction in the absence of any other stress.
Hypoxia has been discovered to persuade primary, secondary,
and tertiary stress responses in fish (80, 81). However, most
fishes can adapt to the variations in DO levels but if severe
hypoxia remains, fish will sooner or later die (82).

Cultured fish always face repetitive and chronic hypoxia stress
especially from overcrowding which they can barely escape due
to their confined environment. Therefore, it is suggested that DO
levels should be checked and highly maintained near the
saturation level. In doing so, it enhances feed intake, feeding
behavior, fish growth as well as improves the overall wellbeing
and performance of the fish, as the result of hypoxia on the
biological or metabolic actions of farmed fish would be negatively
affected. A deep look into an article by Abdel-Tawwab and
colleagues (72) gives more insight into the effects of hypoxia
on fish growth and physiological activities.

2.2.2 Photoperiod and Light Regime
Photoperiod has been known to influence and manipulate some
biological functioning in fish (83). Research conducted on several
fish species have revealed that photoperiod and the light regime
influence their feeding activities. Photoperiod plays a significant
part in the growth and survival of fish, thus influencing its feed
intake and feeding behavior (84). It is known to have the ability
to affect the general wellbeing and routine of fish (85).

The requirements of photoperiod and light concentration in
fish are species-specific and differ for the several developing
phases (84). Consequently, whiles this could be related to fish
species specificity, when photoperiod is appropriately applied, it
may aid in an advanced performance of the fish, thereby
improving the productivity and sustainability of aquacultural
practices. For example, a research study conducted on catfish
(Clarias gariepinus) fingerlings cultured under three different
photoperiod conditions; 24 hours (hrs) darkness, 24hrs light and
12/12hrs darkness and light revealed that those cultured under
24 hrs of darkness had significantly highest feed intake, best feed
conversion ratio and lowest quantity of uneaten feed as
compared to those cultured under 24hrs light and 12/12 hrs of
darkness and light (85). Also, in a research study on the pacamã
catfish (Lophiosilurus alexandri), it was revealed that 24hrs
continuous light led to the highest feed intake (86). Going
more further, in research conducted on the sharp-snout
seabream (Diplodus puntazzo) it was concluded that although
Frontiers in Endocrinology | www.frontiersin.org 5
feeding behavior was strictly diurnal, 97% of feed demands were
made during the light periods (87). A detailed look into how
photoperiod affects fish species feed intake and feeding behavior
will be of much importance.

2.2.3 Circannual and Circadian Rhythms
All these external factors that impact the feeding behavior in fish
have periodic or recurring styles. Thus, they affect food intake
unswervingly via cyclical and or 24-hourly rhythms (88) or
ramblingly through rhythms in endocrine systems (89, 90). All
animals, even fish, showcase natural behavioral rhythms,
including the two principal feed intake rhythms in fish; the
daily (circadian) and seasonal (circannual) rhythms (23, 91, 92).

Several organisms including fish, exhibit annual rhythms
in physiological and behavioral factors, such as feeding,
reproduction, body weight, hibernation, and movement. These
factors are controlled by oscillations in the secretion of
hormones. The timing of these annual rhythms is delimited by
changes in day length, photoperiod, or temperature, which
makes available a reliable and predictive indicator of seasonal
changes in environmental conditions (93). The circannual
(seasonal) rhythms in vertebrates (fish) associate meticulously
with ambient environmental factors, thus environmental (water)
temperature and the length of the day. During the spring and
summer seasons, when the days are longer and the temperature
of water bodies is higher, several fish species increase their feed
intake as well as their feeding behavior (23). There is limited
information on how these seasonal or circannual rhythms
influence feed ingestion and feeding behavior in fish, making it
complex to give a straightforward conclusion about feeding
activities and associated seasonal changes. As it stands now, we
recommend that more research be conducted on fish feeding and
feeding behavior regarding the impact of the circannual rhythms.

The circadian rhythm is a natural rhythm that is regulated
by a biological daily clock that proceeds in a steady setting. This
biological clock is a 24-hour cycle in the biochemical,
physiological, or behavioral processes of a live organism
geared for maximizing cellular activities and recognizing solar
day-related environmental obstacles (94). The 24-hourly
rotations of behavior and physiology (example; feeding
activity) have been established in all classes of craniates,
including some fish species (95, 96). Several inward or
endogenic clocks prompt these circadian cycles. They consist
of an independent transcriptional-translational response
grummet that encompasses the recurring circadian-regulative
genes expression (97) and perseveres under continuous
extrinsic circumstances, such as photoperiod (98).

As in many animals, fish species consume meals at specific
times during the day or night. That is to say that in fish circadian
rhythms, the natural daily food ingestion times differ among
species (90). Some classify specifically as daytime feeders such as
Atlantic salmon, Salmo salar (99), redbelly tilapia (Tilapia zillii)
(100) rohu (Labeo rohita), and common carp (Cyprinus carpio)
(101) whiles others are described as night time feeders, example;
European catfish (Silurus glanis) (102) and Zebrafish (Danio
rerio) (103). Additionally, several fish species have showcased
ideal times of eating daily (day or night). For example, research
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studies conducted on goldfish (Carassius auratus) and rainbow
trout (Oncorhynchus mykiss) respectively revealed that the intake
of food and the composition of the body is influenced by the time
a single daily meal is delivered (104) whiles rainbow trout
(Oncorhynchus mykiss) fed during their habitual or natural
eating times have higher feed efficiency (105).

There are approximately a handful of known genes or
hormones which regulate feed intake in fish species, including
neuropeptide Y, peptide YY, ghrelin, galanin, apelin, among
others. These appetite-regulating genes influence the intake of
feed in two ways; feed intake inducer or inhibitor. The appetite-
inducing hormones persuade or signal hunger in fish, thus
causing them to search for food to eat (orexigenic factor). On
the other hand, appetite-inhibiting hormones are the hormones
in fish that signal their satisfaction (anorexigenic factor). Several
external and internal factors affect the display of this
physiological role in feed intake regulation in fish with regards
to their specificity (106). As such, these factors regulate the roles
of the gene either by playing opposite roles or not affect the fish at
appropriate times (50). Below, we elaborate more and present
summaries of the results of research findings on apelin as an
appetite-regulating hormone in fish.
3 APELIN AND ITS PHYSIOLOGICAL ROLE
IN REGULATING FEED INTAKE IN FISH

3.1 Isolation and Characteristics of Apelin
Apelin is a 36-amino acid (AA) peptide that was initially isolated
from bovine stomach extracts (107). It is a recently discovered
peptide known as a ligand for the APJ receptor, a putative receptor
protein related to the type-1 angiotensin receptor, and a member of
the family of seven transmembrane domains G-protein-coupled
receptors (GPCRs) (108, 109). From the findings of researches
conducted by the research teams of Langelaan and Malyszko, it
revealed in mammals that, a 77 AA precursor, prepro-apelin, gives
rise to numerous forms of apelin, which can be composed of 13–36
AA residues (110, 111), thus 36, apelin-17, and apelin-13 (112).

The apelin receptor, also called APJ or angiotensin receptor-like-
1 which is currently known as the common receptor for apelin was
primarily cloned in 1993 due to its robust sequence homology with
the angiotensin II receptor (AT1) (54% in transmembrane spheres
and 31% for the complete sequence) but APJ does not bind
angiotensin II (113). It is known to be an orphan G-protein-
coupled receptor that was originally secluded from a human
genomic collection using the polymerase chain reaction (PCR)
(113). Apelin which was originally described as an endogenous
ligand for APJ as stated by (107) secreted as a 77 amino acid
forerunner, prepro-apelin, which is differentially processed
producing numerous smaller peptide fragments, which comprises
apelin-12, apelin-13, apelin-17, and apelin-36 (107, 114, 115).

3.2 mRNA Expression of Apelin in
Fish Tissues
Several research studies have revealed the presence of the apelin
gene (apelin) in several tissues of some fish species such as the
Frontiers in Endocrinology | www.frontiersin.org 6
goldfish (Carassius auratus) red-bellied piranha (Pygocentrus
nattereri) and cunner (Tautogolabrus adspersus) these include
different brain regions such as the ladder, optic tectum/thalamus,
olfactory bulbs, and the hypothalamus. It can also be found in the
pituitary, as well as the peripheral tissues in the fish; spleen,
kidney, liver; muscle, brain, gut, gonad, gill, and heart, with
seemingly higher expression levels in spleen, kidney, brain,
gonad, gill, and heart (19, 116, 117). Although weakly
expressed, apelin was also identified in the hepatopancreas,
eye, intestine, and skin of the Ya-fish (Schizothorax prenanti)
(118). Also, in Schizothorax davidi, apelin mRNA was expressed
in the spleen and heart, considerable levels in the brain
(myelencephalon and telencephalon), liver, and trunk kidney
(119), and pirapitinga, Piaractus brachypomus, apelin mRNA
expression was revealed in the liver, stomach, pyloric caeca,
foregut, hindgut, kidney, gill, skin, and muscle as well as in the
brain and pituitary (117).

3.3 Non-Appetite Regulatory Role
of Apelin
Apelin is known to control cardiovascular functions in
mammals, including blood pressure and blood flow (109). The
apelin/apj system plays important and several roles in
the physiology and pathophysiology of many organs, including
the regulation of blood pressure (120), cardiac contractility (121,
122), among others. It is known to be one of the most effective
stimulators of cardiac contractility yet discovered and plays a role
in cardiac tissue renovation in vertebrates (123–125).

3.4 Apelin as an Appetite-Regulating
Hormone in Fish
Apelin, which has an uncertain role in the regulation of feeding
in mammals is known to act as an orexigenic factor and might
have several biological regulating roles in fish (19, 119, 126).
Either its peripheral and/or central injections increased food
intake in fish species that have been studied. For example;
research conducted on the blind cavefish, Astyanax fasciatus
mexicanus revealed that peripheral injection of apelin
significantly increased food intake of the fish as compared to
saline injections (127). In goldfish (Carassius auratus) both
intraperitoneal (i.p.) and intracerebroventricular (i.c.v.)
injection of apelin-13 revealed an augmentation of its food
intake (19). Also, in the Siberian sturgeon (Acipenser baerii)
continuous i.p. injection of apelin demonstrated an increase in
feed ingestion (126). Additionally, apelin i.p. injection in Ya-fish
(Schizothorax prenanti) also stimulated the intake of feed (118).

3.5 The Response of Apelin to Fasting and
Refeeding in Fish
Several hormones in fish as in other vertebrates control the
intake of food. These hormones, known as appetite-regulating
hormones are produced from the brain and or other marginal
tissues in the body of the fish (50). These appetite-regulating
hormones play roles either as a food inducer or inhibitor.
Apelin’s role on food intake in vertebrates like teleost is poorly
understood (118). Nonetheless, researches have been conducted
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to find out the role that apelin plays in some fish species’ food
intake, either as an orexigenic or an anorexigenic indicator. Here,
we elaborate more on its response to feeding and fasting,
indicating which role it fits well into.

Research conducted on common carp (Cyprinus carpio)
discovered that starvation resulted in a significant upsurge in
hypothalamus apelin and expression of APJa mRNA. It then
returned to normal levels after the fish were refed. Also, the
expression of APJb mRNA augmented after temporary
starvation, thus within 2 and 4 days; nevertheless, there was no
significant difference between fed fish and refed fish even after
the starvation was prolonged. From this same research, there was
a significant increase in apelin, APJa, and APJb mRNA
expression levels in the foregut of the common carp, which
then returned to normal levels after refeeding, either after a
short-term or long-term fast (128). It was discovered from a
research study that the abundance levels of apelin mRNA were
greater in starved goldfish than in fed goldfish (Carassius
auratus) in both hypothalamus and telencephalon (19).
Another research study also revealed that apelin mRNA levels
in the whole brain were higher at 1 hr after feeding than that of
unfed Siberian sturgeon (Acipenser baerii). However, its
expression returned to normal levels at 3 hrs after feeding
(126). In this same research study, it was revealed that apelin
has bidirectional effects on feeding regulation in the Siberian
sturgeon (Acipenser baerii) thus, apelin acts as a satiety factor in
the short-term feeding regulation and a hunger factor in long-
term feeding regulation (126). Moreover, in research conducted
on Schizothorax davidi, it was concluded that apelin expression
of fed fish at + 1 hr and + 3 hrs after feeding was lower than that
of unfed fish, and apelin expression in the hypothalamus of unfed
fish augmented on the 5th and 7th days and when fasting fish
were re-fed, apelin mRNA expressions disclosed a notable
decrease from the 9th to the 14th day concerning the fed
group (119). Furthermore, in the red-bellied piranha
(Pygocentrus nattereri) fasting induced a significant increase in
the mRNA expression of apelin in the brain (129).

Research conducted on Ya-fish (Schizothorax prenanti)
revealed that there was about 2.5 and a 2-fold decrease in
apelin mRNA expression in the hypothalamus of fed fish at 1
hr and 3 hrs post-feeding compared to unfed controls,
respectively (118). Both the levels of apelin and APJ mRNA
expressions had a decreasing trend hours before feeding. In this
same research, concerning food deprivation, food-destitute Ya-
fish (Schizothorax prenanti) had a noteworthy change of about
1.8-fold higher mRNA expression levels of apelin than 3, 5 and 7
days habitually fed controls. The mRNA expression of apelin was
significantly decreased when 7-day fasted Ya-fish (Schizothorax
prenanti) were re-fed, and the levels of the 7-day fed control
group and fasted group of Ya-fish (Schizothorax prenanti) had
an about 1.5- and 2.5-fold higher than the 7-day refed
fish, respectively.

To sum up, the role of apelin is highly attributable to appetite
regulation in fish. That is to say, the apelin hormone in starved or
unfed fish induces hunger (up-regulated) and thus, persuades the
fish to go after or search for its meal and there’s a gradual or
Frontiers in Endocrinology | www.frontiersin.org 7
complete decrease in the expression of apelin as the fish eats or
post-eating. A referral to Figure 1 in an article publish by Assan
and colleagues (50) gives a clear clue on the existing relationship
between appetite-inducing genes and appetite-inhibiting genes.

Table 1 summarizes fish that have been used as models for
apelin research studies as appetite-regulating factors.

3.6 The Interactions of Apelin With Other
Appetite-Inducing Hormones in Fish
Recent researches have demonstrated that individual orexigenic
molecules or hormones interact with each other. For example, in
cavefish, Astyanax fasciatus mexicanus, apelin i.p. injections
increased orexin brain expression but did not affect either
cholecystokinin or cocaine- and amphetamine-regulated
transcript expression, suggesting that apelin might increase
food intake through the stimulation of the orexin system in
cavefish (127). Additionally, it was demonstrated by in vitro and
in vivo experiments that apelin could persuade important mRNA
expression levels of appetite-related and growth-related genes,
including neuropeptide Y, agouti-related peptide, and orexin. This
suggests that apelin has the potential to control the food intake
and development of common carp by regulating the expression
of these vital genes (130).

3.7 Characteristic Similarities Within
Appetite-Regulating Hormones
Besides the fish-species-specificity and other intrinsic and
extrinsic factors antagonizing appetite-regulating hormones
from exerting their full function on regulating feeding in
TABLE 1 | Summary of fish used as models to identify apelin as an appetite-
regulating hormone.

Fish models Treatment Duration
of treat-
ment

Gene reg-
ulation

Tissues with
the highest

mRNA
expression

Reference

Ya-fish
(Schizothorax
prenanti)

Starvation 7 days Up-
regulation

Heart, spleen,
hypothalamus
and kidney

(118)

Common
carp
(Cyprinus
carpio)

8 days Brain,
pituitary
gland, spleen,
and kidney

(128)

Goldfish
(Carassius
auratus)

7 days Spleen,
kidney, brain,
gonad, gill,
and heart

(19)

Siberian
sturgeon
(Acipenser
baerii)

15 days Brain, spleen,
stomach, and
kidney

(126)

Red-bellied
piranha
(Pygocentrus
nattereri)

7 days Spleen,
kidney, heart,
and brain

(129)

Schizothorax
davidi

14 days Brain, heart,
spleen, liver,
and trunk
kidney

(119)
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teleost and other fish species, other genes play the same specific
role in feed regulation in fish as apelin does. See Table 2 for a list
of other appetite-inducing hormones in fish.

Generally, appetite-inducing hormones (hunger or orexigenic
hormones) serve as hunger signals, causing an increase in feed
ingestion. That is to say, fasting or starvation causes an up-
regulation of these appetite-inducing hormones in fish, for
example; ghrelin (131, 132), neuropeptide Y and orexin (12, 18).
On the other hand, appetite-inhibiting hormones (satiety or
anorexigenic hormones) cause a reduction in food intake, thus
fasting or starvation does not affect their expression but rather feed
intake causes an up-regulation of these appetite-inducing
hormones. Thus, appetite-inhibiting hormones in fish
demonstrate pre-prandial decreases and postprandial increases
in their concentrations. Example; peptide YY (50), cholecystokinin
(138), and cocaine- and amphetamine-regulated transcript (20).

It has been demonstrated that the peripheral or central
orexigenic hormone injections in fish persuade a significantly
increase in food consumption rate as indicated in some research
studies (15, 118, 126, 127, 139). Also, experiments demonstrating
the acute and or chronic effect of anorexigenic hormone
injections on either peripheral tissues or the brain of some fish
species revealed that there were significant reductions in food
ingestion for a short period in the acute and a long period all
through the whole experiment for the chronic injection.
Examples of such experiments include those conducted by
(127, 140).
4 CONCLUSION

Data available on fish feeding regulations indicate that the
fundamental mechanisms in regulating feeding behavior are
conserved. Our knowledge about how extrinsic factors
influence feed ingestion and feeding behavior has been
simplified. However, it appears that the general scheme of
feeding regulation in fishes is similar to that of other
vertebrates in the sense that hunger and feeding are controlled
by central feeding centers that are influenced by endocrine
Frontiers in Endocrinology | www.frontiersin.org 8
factors rising from both the brain or from marginal tissues. As
a whole, we believe there is still limited information available in
fish compared with other organisms regarding how these
extrinsic factors influence fish feeding and feeding response.

The role of apelin is highly attributable to appetite regulation
in fish species that have been studied. To date, most researches
conducted on appetite‐regulating hormones in fish species have
been relatively short‐term studies, thus, making it difficult to
establish a relation between short‐term and long‐term appetite‐
related factors. Fish have been known to exhibit a wider range of
feeding behaviors, feeding habits, and feeding adaptations,
including fasting or starvation periods. Here we suggest
research to be advanced on the mechanisms regulating feeding
and appetite-regulating hormones and genes in fish. Also,
research on the response of apelin to feeding, fasting, and re-
feeding should be conducted based on the influence of these
extrinsic factors, adding up to the existing studies.
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