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Abstract: Many agonists for the estrogen receptor are known to disrupt endocrine functioning.
We have developed a computational model that predicts agonists for the estrogen receptor
ligand-binding domain in an assay system. Our model was entered into the Tox21 Data Challenge
2014, a computational toxicology competition organized by the National Center for Advancing
Translational Sciences. This competition aims to find high-performance predictive models for various
adverse-outcome pathways, including the estrogen receptor. Our predictive model, which is based
on the random forest method, delivered the best performance in its competition category. In the
current study, the predictive performance of the random forest models was improved by strictly
adjusting the hyperparameters to avoid overfitting. The random forest models were optimized from
4000 descriptors simultaneously applied to 10,000 activity assay results for the estrogen receptor
ligand-binding domain, which have been measured and compiled by Tox21. Owing to the correlation
between our model’s and the challenge’s results, we consider that our model currently possesses
the highest predictive power on agonist activity of the estrogen receptor ligand-binding domain.
Furthermore, analysis of the optimized model revealed some important features of the agonists,
such as the number of hydroxyl groups in the molecules.

Keywords: machine learning; random forest; estrogen receptor; Tox21 data challenge 2014; QSAR
prediction model

1. Introduction

Estrogen receptors (ER) belong to the steroid receptor superfamily of ligand-dependent
transcription factors [1]. Compounds related to ER activation, such as isoflavones and polycyclic
aromatic hydrocarbons, disrupt the endocrine processes in humans and other species, severely affecting
reproduction and growth [2,3]. Therefore, screening for ER agonists can counteract environmental
contaminants and improve public health. Although ultra-high-throughput screening systems have
been developed for several adverse-outcome pathways [4], experimental in vitro detection is limited
by the vast number of screening targets. Consequently, a comprehensive assay is precluded by both
economics and time. In contrast, predictive methods based on chemical structures can greatly accelerate
the estimation and are expected to replace wet experimental systems.

The National Institute of Health (NIH), Environmental Protection Agency, and Food and Drug
Administration have collaborated to launch the Tox21 challenge, a large project targeting a variety
of toxicity problems, including the environmental effects of ER agonists [5,6]. The Tox21 project has
assayed the activities of the compounds in the Tox21 10 K library [4], which contains 10,000 chemicals
for toxicity estimation. The adverse-outcome pathways selected for toxicity evaluations are the
androgen receptor (AR), aryl hydrocarbon receptor (AhR), estrogen receptor (ER), aromatase
and peroxisome proliferator-activated receptor (PPAR), nuclear factor (erythroid-derived-2)-like
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2/antioxidant responsive element (ARE), ATP-ase family AAA domain containing 5 (ATAD5), heat
shock factor response element (HSE), mitochondrial membrane potential (MMP), and p53 [7].

One aim of the Tox21 project is to construct a predictive system based on computational toxicology.
The Tox21 Data Challenge 2014 was organized by NIH’s National Center for Advancing Translational
Sciences as a “cloud-sourcing” search for high-performance predictive models of adverse-outcome
pathways. Using computational toxicology technologies, participants competed in accuracy of predictive
models with the biological toxic responses of compounds in the Tox21 10 K compound library, whose
activities were known, applying the abovementioned adverse-outcome pathways as the training set [8].
Dr. Yoshihiro Uesawa, a winner of the 2014 challenge and a coauthor of the present study, constructed
a predictive model for the ER-ligand binding domain (ER-LBD), which showed the best performance
among the models submitted by the registered teams [9]. On the contrary, there is a large-scale
modeling project, Collaborative Estrogen Receptor Activity Prediction Project (CERAPP), in which
many groups built and evaluated ER QSAR models [10]. Multiple models were developed through
collaboration between 17 international research groups with a common training set of 1677 chemicals,
resulting in 40 prediction models for binding, agonist, and antagonist ER activity. External validation
was performed with 7522 chemicals from the literature. This project demonstrated that using a
consensus of different models with large-scale data set allows for the improvement of prediction
abilities. In particular, the consensus model reached a balanced accuracy of >0.9 (using high-quality data).

According to the comprehensive review of Chou’s five-step rule [11], which has been implemented
in various publications [12–16], the following rules are useful for developing a statistical predictor for a
biological system: (i) construct/select a valid dataset for training and testing the predictor; (ii) translate
biological sequences into numerical descriptors that truly reflect the effectiveness of target classes;
(iii) select/develop an intelligent operational algorithm; (iv) correctly perform cross-validation tests
that objectively evaluate the expected outcomes of the predictor; and (v) construct a web predictor for
the model that is accessible to the public.

Uesawa’s ER model was based on a machine learning method called random forest (RF). RF is
an ensemble learning method that decides the best predictive result by majority rule of the various
predictive results gained from many decision trees [17–19]. Each tree is constructed from bootstrapped
data of the training set. This method achieves high predictive performance at low computational cost,
even when the dataset is large or prejudiced. It also assesses the importance of the variables used
in the construction. In the previous study, we confirmed that rigorous selection from many kinds of
RF models significantly improved the performance of RF. However, we also observed an overfitting
tendency [9]. In this study, we attempt to improve the predictive performance of the previous RF
construction by a novel RF optimization technique.

2. Methods

2.1. Conformations and Descriptors

Various descriptors were calculated by optimizing the three-dimensional structures of their
chemical constituents, as implemented in the Tox21 Data Challenge 2014 [9]. Briefly, the SD file of each
descriptor, which contains the chemical structure and ER-LBD assay results (active or inactive) of the
compound, was downloaded from a homepage dedicated to the competition [8]. The three-dimensional
conformations of the chemical structures in two configurations (a charged form at neutral pH and an
uncharged form) were calculated in the Molecular Operating Environment (MOE) 2013.08 (Chemical
Computing Group Inc., Montréal, QC, Canada) [20]. Finally, 4071 different molecular descriptors
were generated by MOE, MarvinView 6.0.0 (ChemAxon Kft., Budapest, Hungary) [21], and Dragon 6
(Talete srl., Milano, Italy).

2.2. Construction of Predictive Models

In the previous study [9], the original training set of 8733 chemicals and final evaluation set of
599 chemicals were downloaded from the homepage of the Tox21 Data Challenge website [8]. The same
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data were used in the present study. The original training set was randomly divided into a training set
(50%) for constructing the predictive model and a test set (50%) for model validation. The selection
processes in the predictive models were constructed from the training set (50%). In our basic method,
we applied the bootstrap-forest function in JMP Pro 12.0.1 (SAS Institute Inc., Cary, NC, USA) as the
RF algorithm [22]. Finally, the compounds in the final evaluation set were predicted by the model.
The evaluation indices were the predictive ability of each model in the evaluation step, and the area
under the receiver operating characteristic curve (ROC_AUC Evaluation) (see Figure 1).
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Figure 1. Scheme of the model construction.

Different methods in statistical prediction, such as the n-fold cross-validation test, sub-sampling
test, independent dataset test, and jackknife cross-validation test, have been adopted for evaluating
the performance of a prediction model [23–26]. As the jackknife test can lead to unique results [27,28],
it has been widely used in bioinformatics [25,29–34]. In this study, for saving computational time,
the independent data test was used to investigate the performance of the prediction model.

2.3. Effects of Descriptors

MOE computed 369 charged and 369 uncharged forms of each molecular descriptor (738 descriptors
in total). For each descriptor group (charged, uncharged, and total), we constructed 100 RF models and
compared their average ROC-AUC evaluation values. From the results, we estimated the contributions
of the charged and uncharged forms in the predictive performance (Figure 2).

Molecules 2017, 22, 75 3 of 10 

 

same data were used in the present study. The original training set was randomly divided into a 

training set (50%) for constructing the predictive model and a test set (50%) for model validation. The 

selection processes in the predictive models were constructed from the training set (50%). In our basic 

method, we applied the bootstrap-forest function in JMP Pro 12.0.1 (SAS Institute Inc., Cary, NC, 

USA) as the RF algorithm [22]. Finally, the compounds in the final evaluation set were predicted by 

the model. The evaluation indices were the predictive ability of each model in the evaluation step, 

and the area under the receiver operating characteristic curve (ROC_AUC Evaluation) (see Figure 1). 

 
Figure 1. Scheme of the model construction. 

Different methods in statistical prediction, such as the n-fold cross-validation test, sub-sampling 

test, independent dataset test, and jackknife cross-validation test, have been adopted for evaluating 

the performance of a prediction model [23–26]. As the jackknife test can lead to unique results [27,28], 

it has been widely used in bioinformatics [25,29–34]. In this study, for saving computational time, the 

independent data test was used to investigate the performance of the prediction model. 

2.3. Effects of Descriptors 

MOE computed 369 charged and 369 uncharged forms of each molecular descriptor (738 

descriptors in total). For each descriptor group (charged, uncharged, and total), we constructed 100 

RF models and compared their average ROC-AUC evaluation values. From the results, we estimated 

the contributions of the charged and uncharged forms in the predictive performance (Figure 2). 

 
Figure 2. Charged and uncharged forms 100 random forest (RF) models were constructed for the 

charged, uncharged, and both forms of each descriptor. All models were involved in predicting the 

activities of the estrogen receptor ligand-binding domain for the compounds in the final evaluation 

Figure 2. Charged and uncharged forms 100 random forest (RF) models were constructed for the
charged, uncharged, and both forms of each descriptor. All models were involved in predicting the
activities of the estrogen receptor ligand-binding domain for the compounds in the final evaluation
set. 100 ROC_AUC values were plotted for each group. Green lines denote the averages and their 95%
confidence intervals.
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Number of Descriptors

To ascertain whether the performance of our model would be improved by adding more descriptors,
we constructed 100 RF models of the 4071 descriptors calculated by MOE, MarvinView, and Dragon,
and compared their predictive abilities with those of RF models constructed from MOE descriptors
(738 kinds) alone (Figure 3).
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Figure 3. Number of descriptors 100 RF models were constructed for both numbers of descriptors.
All models were involved in predicting the activities of estrogen receptor ligand-binding domain for
compounds in the final evaluation set. 100 ROC_AUC values were plotted for each group. Green lines
denote the averages and their 95% confidence intervals.

2.4. Effects of Hyperparameters

To find the best combination of hyperparameters in the RF construction, we scanned
two hyperparameters under the following conditions (10 iterations per condition): Number of Terms
(the number of columns considered as splitting candidates at each split (range 1–1000)) and Maximum
Splits per Tree (the maximum number of splits for each tree (range 2–400)). For each Number of Terms
we constructed 190 models. The ROC_AUC values of all constructed models were then estimated on
the compounds in the test set (50%) and evaluation set (Figure 4).
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In Figure 4, a total of 950 RF models are shown. These models are part of the modeling results.
We generated 100 models more with a better combination of the hyperparameters, and a final model
was selected from all the models based on the ROC_AUC values. This strategy for RF model
construction was reported as “Rigorous Selection,” which indicated an excellent performance in
the Tox21 data challenge 2014 [9].

Furthermore, the 190 ROC_AUC Evaluation values obtained for each Number of Terms were
compared (Figure 5). Finally, for the models with Number of Terms = 1000, we generated scatter plots
between Maximum Splits per Tree and the ROC_AUCs in the training set (50%) and evaluation set
(Figure 6).
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Figure 5. Effects of the hyperparameter Number of Terms on the RF modeling 190 RF models were
constructed in each group, and all models were then involved in predicting the activities of the estrogen
receptor ligand-binding domain for compounds in the final evaluation set. Plotted are the ROC_AUC
values for the final evaluation set in each group. Green lines denote the averages and their 95%
confidence intervals.
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Figure 6. Effects of the hyperparameter Maximum Splits per Tree on the RF modeling ROC_AUC values
of the training set (50%) and final evaluation set are plotted in closed and open circles, respectively.
Large Maximum Splits per Tree introduced model overfitting. The predictive ability was optimized for
Maximum Splits per Tree = 6.
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2.5. Statistical Treatment

Significant differences in the means were tested by an unpaired Student’s t-test and one-way
ANOVA, followed by least-significant difference analysis. All analyses, including the ROC_AUC
calculations, were performed in JMP-Pro. The significance level was set to p < 0.05.

3. Results and Discussion

3.1. Effects of Descriptors

Integrated descriptors from both charged and uncharged forms improved the predictive ability of
the RF models, relative to descriptors from unilateral forms (Figure 2). Varying the charge conditions
increased the diversity of the information in the RF models. Increasing the number of descriptors
from 738 (calculated by MOE alone) to 4071 (calculated by three software programs, MOE, Dragon
and MarvinView) also improved the predictive ability of the RF models (Figure 3). On the other hand,
feature selections based on the known importance of each descriptor during the RF-modeling failed to
improve the model performance (data not shown). These observations suggest that a large number of
descriptors are advantageous for our models’ performance.

3.2. Effects of Hyperparameters

The AUC values in the test set (50%) and the final evaluation set were not simply correlated;
rather, there was an optimal point at which the AUC of the test set (50%) corresponded to the highest
AUC of the evaluation model (Figure 4). This point was emphasized in our previous paper [9]. In the
competition, model selection was optimized using the AUC values in the test set (50%) because the
AUCs between the test set (50%) and the training set (50%) showed good linear correlation [9]. Next,
we analyzed the true performance of our models on the final evaluation set [9] (see Figure 4).

All further investigations in the current study were performed on the final evaluation set. In a
scanning search for the Number of Terms hyperparameter, the best predictive model was obtained at
Number of Terms = 1000 (Figure 5). A scanning search for the predictive capabilities of Maximum
Splits per Tree under restricted conditions, with Number of Terms = 1000, was also performed
(Figure 6). Figure 4 shows the scatter plot of ROC_AUC values in models with different combinations
of hyperparameters such as Number of Terms and Maximum Splits per Tree. The best performance
was among models with Number of Term = 1000 (red points). However, the red points include different
values of Maximum Splits per Tree between 2 and 400. Therefore, the data of the red points were
selected and re-plotted in Figure 6 with Maximum Splits per Tree in horizontal axis to display the
relation between the prediction performance and the hyperparameter.

RF models with high Maximum Splits per Tree were found to overfit the training set. The optimal
predictive ability of the models was obtained for Maximum Splits per Tree = 6 (Figure 6). We inferred
that we could regulate the overfitting by lowering the optimal point of Maximum Splits per Tree;
that is, by restricting the tree growth.

3.3. Discrimination Potential of Improved Models

Figure 7 shows the ROC curves that evaluate the discrimination capacities of the new predictive
model and the best model in the Tox21 Data Challenge 2014. The ROC-AUC values for the compounds
with ER-LBD activities in the final evaluation test set were 86.6% and 82.7% in the present and previous
models, respectively. In addition, the ROC between sensitivity and 1-specificity was better balanced
in the present model than in the previous model. Overall, the predictive performance of the present
model surpasses that of the previous model.

Figure 7 ROC curves for predicting ER-LBD-activating compounds in the newly proposed model
(left) and the previous best model in the Tox21 Data Challenge 2014 ROC-AUCs and hyperparameter
values in the models are also described.
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Figure 7. ROC curves for predicting ER-LBD-activating compounds with the newly proposed model
(left) and the best model of the Tox21 Data Challenge 2014 ROC-AUCs and hyperparameter values in
the models are also described.

3.4. Most Important Descriptors

The importance of the descriptors used in constructing the present model was calculated from
their split rankings (count of each descriptor usage when partitioning the decision trees in the RF
modeling) and G2 values (chi-squared values of the likelihood-ratios) [35]. The descriptor rankings in
100 RF models under the optimized hyperparameter conditions are listed in Table 1. The top-ranking
ER-LBD activator was SpMin 1-Bh(m). The topological shape, nArOH and number of OH groups
bound to the aromatic rings might contribute to the activity of this compound in the ER-LBD assay [36].

Table 1. Most important descriptors Listed are the top 10 ranked descriptors in the RF modeling,
determined from the split and G2 rankings.

Descriptor Meaning Software State Sprit G2 Sprit
Ranking

G2
Ranking

SpMin1_Bh(m) smallest eigenvalue n. 1 of Burden matrix
weighted by mass Dragon Uncharged 28.1 38.5 1 1

SpMin1_Bh(m) smallest eigenvalue n. 1 of Burden matrix
weighted by mass Dragon Charged 17.2 21.1 2 2

SpMin1_Bh(s) smallest eigenvalue n. 1 of Burden matrix
weighted by I-state Dragon Uncharged 9.3 11.4 6 3

SpMin1_Bh(i) smallest eigenvalue n. 1 of Burden matrix
weighted by ionization potential Dragon Uncharged 5.0 5.7 13 9

nArOH number of aromatic hydroxyls Dragon Charged 17.0 10.5 3 4
nArOH number of aromatic hydroxyls Dragon Uncharged 13.3 7.7 4 6
O-057 phenol / enol / carboxyl OH Dragon Charged 13.1 7.8 5 5

Chi_Dt Randic-like index from detour matrix Dragon Charged 5.8 6.1 8 7
CATS2D_03_LL CATS2D Lipophilic-Lipophilic at lag 03 Dragon Charged 4.8 6.0 14 8
CATS2D_05_LL CATS2D Lipophilic-Lipophilic at lag 05 Dragon Charged 5.6 2.7 9 19
logd(pH = 5.5) Lipophilicity under pH = 5.5 condition Marvin - 5.5 5.7 10 10

vsurf_HB7 H-bond donor capacity 7 MOE Charged 6.5 3.2 7 17
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4. Conclusions

We constructed a new predictive model with higher discrimination ability for estrogenic compounds
than our previous best model, which was submitted to the Tox21 Data Challenge 2014. It means that
we had to succeed to deliver the excellent predictive power on estrogenic compounds. Correlating the
results of the ER-LBD sub-challenge in Tox21 data challenge 2014 with our results, we believe that the
current model, which uses a simple model based on ROC_AUC as an evaluation criterion, possesses
the best prediction ability for ER-LBD agonist activity. The best conditions for the RF modeling
regulated the overfitting of the test set (50%). This regulation was found to be important in the RF
model constructions. Furthermore, the model analyses revealed that in compounds such as SpMin
1-Bh(m), interactions with ER were facilitated by the structural and physicochemical properties of
the compounds and the number of phenolic OH groups. This modeling approach will be useful for
predicting the toxicity of compounds and producing new drugs and chemicals. As user-friendly and
publicly accessible web servers represent the future on developing practical and more useful models,
we shall work in the near future on providing a web server for the method presented in this paper.
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