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Abstract

Tumor DNA sequencing data can be interpreted by computational methods that analyse genomic 

heterogeneity to infer evolutionary dynamics. A growing number of studies have used these 

approaches to link cancer evolution with clinical progression and response to therapy. Although 

the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome 

analyses, standards for evaluating tumor phylogenies are lacking. To address this need, we 

systematically assess methods for reconstructing tumor sub-clonality. First, we elucidate the main 

algorithmic problems in subclonal reconstruction and develop quantitative metrics for evaluating 

them. Then we simulate realistic tumor genomes that harbor all known clonal and subclonal 

mutation types and processes. We benchmark 580 tumor reconstructions, varying tumor read-
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depth, tumour type, and somatic variant detection. Our analysis provides a baseline for the 

establishment of gold-standard methods to analyze tumor heterogeneity.

Introduction

Most tumors arise from a single ancestral cell, whose genome acquires one or more somatic 

driver mutations1,2, which give it a fitness advantage over its neighbours by manifesting 

hallmark characteristics of cancers3. This ancestral cell and its descendants proliferate, 

ultimately giving rise to all cancerous cells within the tumor. Over time, they accumulate 

mutations, some leading to further fitness advantages. Eventually local clonal expansions 

can create subpopulations of tumour cells sharing subsets of mutations, termed subclones. 

As the tumor extends spatially beyond its initial location, spatial variability can arise as 

different regions harbour independently-evolving tumour cells with distinctive genetic and 

non-genetic characteristics4–9.

DNA sequencing of tumors allows quantification of the frequency of specific mutations 

based on measurements of the fraction of mutant sequencing reads, the copy number state of 

the locus and the tumor purity10,11. By aggregating these noisy frequency measurements 

across mutations, a tumor sample’s subclonal architecture can be reconstructed from bulk 

sequencing data6,11. Subclonal reconstruction methods have proliferated rapidly in recent 

years12–15, and have revealed key characteristics of tumor evolution4,7,16–20, spread21–23 and 

response to therapy24,25. Nevertheless, there has been no rigorous benchmarking of the 

relative or absolute accuracy of approaches for subclonal reconstruction.

There are several reasons why such benchmarking has not yet been performed. First, it is 

difficult to identify a gold-standard truth for subclonal reconstruction. While single-cell 

sequencing could provide ground truth, it has pervasive errors26, and existing DNA-based 

datasets do not have sufficient depth and breadth to adequately assess subclonal 

reconstruction methods. Alternatively, gold-standard datasets may be generated using 

simulations, but existing tumor simulation methods like BAMSurgeon27 neither create 

representative subclonal populations nor phase simulated variants, which can be exploited in 

subclonal reconstruction6,10. Second, it is unclear how subclonal reconstruction methods 

should be scored, even in the presence of a suitable gold-standard. For example, one key 

goal of reconstruction is identification of the mutations present in each subclonal lineage. 

Metrics are needed that penalise errors both in the number of subclonal lineages and in the 

placement of mutations across them. Third, subclonal reconstruction methods have only 

been developed in recent years; few groups have equal expertise with multiple tools. 

Algorithm developers themselves are typically experts in parameterizing their own 

algorithms; an unbiased third-party is needed compare different methods, each run with 

expert parameterization.

To fill this gap, we developed a crowd-sourced benchmarking Challenge: The ICGC-TCGA 

DREAM Somatic Mutation Calling Tumor Heterogeneity Challenge (SMC-Het). Challenge 

organisers simulated realistic tumors, developed robust scoring metrics and created a 

computational framework to facilitate unbiased method evaluation. Challenge participants 

then created re-distributable software containers representing their methods. These 
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containers were run by the Challenge organizers in an automated pipeline on a series of test 

tumors never seen by the Challenge participants.

Here, we report the creation of quantitative metrics for scoring tumor subclonality 

reconstructions and describe tools for simulating tumors with realistic subclonal 

architecture. We apply these tools and metrics to characterise the sensitivity of subclonal 

reconstruction methodologies to somatic mutation detection algorithms and technical 

artefacts.

Results

How can subclonal reconstruction methods be evaluated?

Subclonal reconstruction is a complex procedure that involves estimating many attributes of 

the tumor including its purity, number of lineages, lineage genotypes and the phylogenetic 

relationships amongst lineages. We structured our evaluation of these attributes into three 

categories (Figure 1). Sub-challenge 1 (SC1) quantify the ability of an algorithm to 

reconstruct global characteristics of tumor composition. Specifically, it evaluates each 

algorithm’s predictions of the total fraction of cells that are cancerous (tumor purity; SC1A), 

the number of subclonal lineages (SC1B) and for each subclone the fraction of cells (cellular 

prevalence) and number of mutations associated with it (SC1C). Sub-challenge 2 (SC2) 

evaluates how accurately each algorithm assigns individual single nucleotide variants 

(SNVs) to each subclonal lineage. It evaluates both their single-best guess at a hard 

assignment of SNVs to lineages (SC2A) and soft assignments represented through co-

clustering probabilities (i.e. the probability that two SNVs are in the same lineage; SC2B). 

Finally, sub-challenge 3 (SC3) evaluates the ability of algorithms to recover the phylogenetic 

relationships between subclonal lineages, again both as a single hard assignment (SC3A) 

and as a soft assignment (SC3B). Taken together, these subchallenges define seven specific 

sub-challenges of SMC-Het, each corresponding to specific outputs upon which subclonal 

reconstruction methods can be benchmarked (Online methods).

To quantify the accuracy of these seven outputs, we considered several candidate scoring 

metrics, all bound between zero (very poor performance) and one (perfect performance). 

Appropriate metrics for SC1 were trivially identified (Online methods, Supplementary Note 

1), but SC2 and SC3 required us to modify existing metrics and develop new ones. 

Specifically, because SC2B and SC3B are based on pairwise probabilities of co-clustering, 

we were unable to use clustering quality metrics designed for hard clustering nor those that 

require explicit estimation of the number of clusters, such as normalised mutual information 

(also known as the V-measure28).

As SC2 and SC3 involve assigning mutations to subclonal lineages, we required candidate 

metrics to satisfy three conditions28:

1. The score decreases as the predicted number of subclonal lineages diverges from 

the true number of subclonal lineages.
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2. The score decreases as the proportion of mutations assigned to incorrect 

subclonal lineages (predicted subclonal lineages that do not correspond to the 

true subclonal lineage) increases.

3. The score decreases as the proportion of mutations assigned to noise subclonal 

lineages (predicted subclonal lineages that do not correspond to any true 

subclonal lineage) increases.

Moreover, metrics for evaluating cluster assignments have a number of desirable 

properties28. We identified a set of these applicable to each task (Supplementary Note 1), 

used a simulation framework to assess how well a candidate metric satisfies them. We 

identified four complementary metrics that satisfy all three properties: Matthew’s 

Correlation Coefficient (MCC), Pearson’s Correlation Coefficient (PCC), area under the 

precision recall curve (AUPR) and average Jensen-Shannon divergence (AJSD; 

Supplementary Figure 1).

To further refine this set, we tested their behaviour relative to subclonal reconstruction errors 

related to parent vs. child and parent vs. cousin relationships, and splitting or merging of 

individual nodes (Supplementary Note 1). Nine experts ranked the overall severity of up to 

eight error cases for each of 30 tree topologies, providing 2,088 total expert rankings. We 

then simulated each error case and scored it with all candidate metrics (Figure 2a-d). 

Importantly for SC3, we added one metric, the Clonal Fraction (CF), which scores the 

accuracy of the predicted fraction of mutations assigned to the clonal peak. Unlike SC2, 

which scores mutation assignment, i.e. genotyping of the (sub)clones, SC3 scores tree 

topology, which implies an ordering of events. The clonal fraction was designed to capture 

expert knowledge that emerged from the expert ranking: experts tended to favour the 

merging of two subclonal clusters over merging of the clonal cluster with a subclonal cluster, 

which was not captured by other metrics. The fraction of (sub)clonal mutations is indeed a 

biologically relevant measure that varies widely across cancer types29. Given that our metric 

rankings are based on subjective expert viewpoints, we have made our ranking system 

available online to allow others to create their own rankings and compare them to ours or use 

them to fine-tune scoring metrics for their own applications (https://mtarabichi.shinyapps.io/

SMCHET).

Between-expert agreement, measured as pairwise rank correlations (0.52 ± 0.22), were much 

higher than metrics-expert agreement (for SC2B, mean: 0.14 ± 0.12 S.E., n=270 ; for SC3B, 

mean: 0.12 ± 0.15 S.E., n=270; Figure 2e). Subsets of metrics were highly correlated (JS, 

Pearson and MCC; range: 0.97-0.99, n=464), whereas others were less correlated (AUPR, 

JS/Pearson/MCC and CF; range: 0.47-0.78, n=464). We reasoned that less correlated metrics 

might capture complementary aspects of the reconstructions and derived additional metrics 

combining the best of them, as well as an average of all (Figure 2e). For SC2, the average of 

two metrics (AUPR + JS
2 ) and AUPR was significantly better correlated to experts than any 

individual metric (ρSpearman = 0.21, n = 30; Figure 2c,e). For SC3, AUPR, MCC, Pearson 

and JS were comparable and significantly better than the other metrics 

ρSpearman ϵ 0.19, 0.23 , n = 30 . We chose Pearson for subsequent analysis as it allows for 
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assessment with a non-binary truth. The resulting expert rankings and quantitative 

comparisons provide a basis for future development of improved scoring metrics.

Simulating accurate subclonal tumor genomes

We elected to use simulated tumor data to run SMC-Het. The key reasons were the 

unavailability of deep single-cell DNA sequencing data as a gold-standard, the lack of 

single-cell sequencing data that match arbitrary tree structures and characteristics, the ability 

to simulate a large number of tumors at low-cost and the demonstrated ability of tumor 

simulations to recapitulate complex sequencing error profiles27. We elected to use the 

BAMSurgeon tool created for the earlier SMC-DNA Challenges27,30, which creates tumors 

with accurate SNVs, indels and small genomic rearrangements at varying allelic fractions. 

However, that version of BAMSurgeon lacked a number of key features for our purpose. We 

added five major features: (1) phasing of variants, (2) large-scale allele-specific copy 

number changes (including whole-genome duplications), (3) translocations, (4) trinucleotide 

SNV signatures and (5) replication-timing effects (Figures 3, 4). We describe each of these 

briefly.

Phasing of mutations—To correctly simulate a tumor, it is critical that genetic variants - 

both somatic and germline - are fully phased, as they are in real genomes. Without phasing, 

allele-specific copy number changes cannot be simulated correctly and will lead to incorrect 

B-allele frequencies and allele-specific copy number calls, amongst other errors. To achieve 

correct and complete phasing, we leveraged NGS data from a trio of individuals from the 

Genome-in-a-Bottle consortium (Supplementary Figure 2a-e) and created the PhaseTools 

package to accurately phase heterozygous variants identified in these data (Online methods, 

Supplementary Note 2). The final result of this process is two BAM files per chromosome, 

each representing a single parental copy.

Simulation of a tumor BAM with underlying tree topology (Figure 3a)—To 

simulate a tumor BAM starting from the fully phased genome, we assigned subsets of the 

reads to each tree node, generating down-sampled BAM files. To simulate whole 

chromosome copy number events, we adjusted the proportion of reads assigned to each node 

of the tree (Figure 3b; see below). Then, BAMSurgeon was used on each sub-BAM to 

simulate mutations, including SNVs, indels and SVs (Figure 3c). This strategy allowed us to 

efficiently and reliably simulate copy number changes of arbitrary size and add specific 

mutations on each allelic copy. Finally, these sub-BAMs were merged to produce the final 

BAM. By contrast, when we used the subclonally-naive BAMSurgeon, copy number 

inference was incorrect (Supplementary Figure 2f,g). After adding subclonal mutations only 

by specifying the VAF (i.e. without phasing or subsampling BAM files) SNVs that occurred 

after duplications or deletions often appeared at the wrong frequency (Supplementary Figure 

2h).

Whole arm and whole genome copy number changes—To allow changes in copy 

number of entire chromosomes and whole-genome ploidy changes (e.g. whole genome 

duplications, present in 30-50% of human cancers31–33), we developed a method to account 

for gains or losses of any chromosome, including sex chromosomes based on bookkeeping 
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of reads assigned to each node. Given a tumor design structure (Figure 3b), reads from the 

phased genomes were further split into individual subpopulations (sub-BAMs for leaf nodes) 

that make up the tumor in proportion to the copy number state of the region they aligned to 

and the cellular prevalence of their node. The extracted and modified reads were merged to 

generate a final BAM file (Figure 3c).

Translocations and large-scale SVs—As the prior BAMSurgeon functionality could 

not reliably simulate SVs larger than 30 kbp or any translocations due to its use of assembly, 

we extended it to simulate translocations, inversions, deletions and duplications of arbitrary 

size. This required a new approach of creating a simulated translocation that accurately 

reflects the expected pattern of discordant read pair mappings and split reads 

(Supplementary Note 2). This also allows us to simulate translocations, which were not 

included in the SMC-DNA simulated data challenges30. The ability to simulate 

translocations combined with adjustments to read coverage makes the simulation of 

arbitrarily large and complex SVs possible.

Trinucleotide mutation profile and replication timing—Single nucleotide mutations 

are not uniformly distributed throughout cancer genomes. They are biased both regionally 

and locally34. Mutations result from specific mutagenic stresses, which can induce biased 

rates of occurrence at specific trinucleotide contexts35. Replication-timing bias refers to the 

increase in the mutation rate of regions of the genome that replicate late in the cell cycle34. 

To resolve this issue, we created an extensible approach as part of BAMSurgeon. Each 

nucleotide in the genome is weighted according to its trinucleotide context, replication 

timing and the set of mutational signatures. Bases are then sampled from the genome until 

the expected trinucleotide spectrum is reached (Supplementary Note 2). BAMSurgeon can 

handle arbitrary mutational signatures, replication timing data at any resolution and any 

arbitrary type of locational bias in mutational profiles.

Selection—Our framework for picking selecting point mutations can easily be extended to 

incorporate other biases in mutation frequency or location such as selection. Although 

explicit tumor growth models remain an area of active development36–38 and discussion39,40 

we sought to illustrate this functionality using a recent model of 3D tumor growth that shows 

selection is reflected in VAF distributions across 3D tumor subvolumes37. We obtained 

VAFs from this simulator at five different levels of selection. For each level of selection, we 

simulated one 3D tumor and the resection of three tumor subregions. These were taken as 

basis for our simulator to generate 15 tumor BAM files in which the spiked-in SNVs and 

their VAF were directly derived from the tumor growth models. The VAFs of the genotyped 

SNVs allowed accurate inference of the selection input parameter (Supplementary Figure 2i, 

Supplementary Note 2), while also incorporating tri-nucleotide signatures and replication 

timing effects. By contrast, we were unable to recover the signature of selection with 

MuTect SNV calls, suggesting that more than three tumor regions might be needed to detect 

selection through this method when significant variant detection errors are present, 

emphasizing the utility of simulated tumor BAMs in algorithm and model assessment 

(Supplementary Note 2).
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Each of the simulated features was verified by comparing simulated to designed values: 

observed to expected measurements in the BAMs (Online methods, Supplementary Figure 

3). Starting from a tumor design (Figure 4a) we systematically and quantitatively compared 

observed and expected trinucleotide context (Figure 4b), cancer cell fraction (Figure 4c) and 

copy number segment logR ratios and B-allele frequencies (Figure 4d,e). These were 

reviewed across all simulations to verify simulated data. These results also confirmed that 

BAMSurgeon can now generate complex sub-chromosomal events, including large deletions 

or duplications (Figure 4f).

General features of subclonal reconstruction

We next sought to quantify how different factors impact subclonal reconstruction. We 

therefore simulated five tumors derived from different tissue types (prostate, lung, chronic 

lymphocytic leukaemia, breast and colon) from published subclonal structures 

(Supplementary Figure 3). We also analysed a real tumor (PD4120) sequenced at 188x 

coverage with a high-quality consensus subclonal reconstruction based on the full-depth 

tumor41 as the gold-standard.

For each of these six tumors, we then down-sampled each tumor sequence to create a 

titration series in raw read-depth of 8x, 16x, 32x, 64x and 128x coverage. For each of the 30 

resulting tumor-depth combinations, we identified subclonal copy number aberrations 

(CNAs) using Battenberg6, both with down-sampled tumors and with tumors at the highest 

possible depth to assess the influence of CNA detection accuracy, yielding 60 tumor-depth-

CNA combinations. For each of these combinations, we identified somatic SNVs using four 

algorithms (MuTect42, SomaticSniper43, Strelka44, and MutationSeq45), as well as the 

perfect somatic SNV calls for the simulated tumors, yielding 290 synthetic tumor-depth-

CNA-SNV combinations. We also applied these pipelines to the real PD4120 BAM (except 

those involving of perfect SNV calls) resulting in 40 additional depth-CNA-SNV 

combinations based on a real tumor, for a total of 290 combinations. The somatic SNV 

detection algorithms were selected to span a range of variant calling approaches: 

SomaticSniper uses a Bayesian approach, MuTect and Strelka model allele frequencies 

while MutationSeq predicts somatic SNVs with an ensemble of four classifiers trained on a 

gold-standard dataset. Finally, subclonal reconstruction was then carried out on each of these 

using two algorithms (PhyloWGS13 and DPClust6), to give a final set of 580 tumor-depth-

CNA-SNV-subclonal reconstruction algorithm combinations (see Supplementary Note 3 for 

algorithm descriptions). Each combination was evaluated using the scoring framework 

outlined above (Figure 5, Supplementary Figure 4, Supplementary Tables 1,2). In general, 

MuTect and SomaticSniper are more sensitive to low frequency variants and potentially 

preferable for subclonal reconstruction46,47. MuTect achieved the highest SNV-detection 

sensitivity in our synthetic tumors (mean sensitivity 0.65 ± 0.037 standard error, n=25), 

followed by Strelka (0.59 ± 0.032), SomaticSniper (0.50 ± 0.031, n=25) and finally 

MutationSeq (0.46 ± 0.045, n=25).

This large-scale benchmarking of 580 simulated tumors reveals general features of subclonal 

reconstruction accuracy. For example, consider SC1C: estimation of SNV cellular 

prevalence. All algorithms and SNV detection algorithms showed a consistent increase in 
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accuracy with increasing sequencing depth for SC1C (Figure 5a, b). No somatic SNV 

detection algorithm matched the performance of perfect SNV calls (β = 0.22, P = 0.0011, 

generalised linear model, n=500, df=29). By contrast, the use of high- vs. low-depth 

sequencing for subclonal detection of CNAs had no detectable influence on reconstruction 

accuracy in either real or simulated tumors (P>0.05, generalized linear model, n=500, df=29; 

Supplementary Table 2). Interestingly, in SC1C, neither the use of low- vs. high-depth 

tumors for CNA detection nor the specific subclonal reconstruction algorithm used had a 

significant influence on the accuracy of subclonal reconstruction. Similarly, both PhyloWGS 

and DPClust performed interchangeably on this question in the simulated tumors (P=0.14, 

t=-1.47, n=290 Supplementary Figure 5g-l, Supplementary Tables 2).

A different story emerged for SC2A - identifying the mutational profiles of individual 

subclones (Figure 5c,d). All algorithms performed relatively poorly, with major inter-tumor 

differences in performance. Tumor T2 was systematically the most challenging to 

reconstruct and T6 the easiest (Figure 5c, Supplementary Table 5). This in part reflects the 

higher purity of T6, and indeed we see a strong association between effective read-depth and 

reconstruction accuracy in both the simulated and real tumors, with each additional doubling 

in read-depth increasing reconstruction score by about 0.1 (Figure 5d). At effective read-

depths above 60x, the performance of all tumor-CNA-SNV-subclonal reconstruction 

combinations seemed to plateau, suggesting that a broad range of approaches can be 

effective for detection of subclonal mutational profiles at sufficient read-depth. Again, the 

use of high- vs. low-depth sequencing for subclonal CNA detection had no discernible 

influence (and this held true for all sub-challenges; Supplementary Table 2). By contrast, 

SC2A scores were strongly dependent on the SNV detection pipeline, with perfect calls out-

performing the best individual algorithm (MuTect) by ~0.05 at any given read-depth. 

Differences in SNV detection algorithm sensitivity largely accounted for performance 

differences among algorithms (βsensitivity = 0.30, P = 8.92 x 10-13, generalised linear models, 

n=500, df=30; Supplementary Table 3). MuTect, the most sensitive SNV detection 

algorithm, had the best performance and MutationSeq, the least sensitive, had the poorest. 

Broadly, SomaticSniper and Strelka showed similar performance, but interestingly showed 

significant tumor-by-algorithm interactions for several sub-challenges (Supplementary 

Figure 5a-f), which may reflect tumor-specific variability in their error profiles. Notably, 

MutationSeq performed much better on with the real tumor than with simulated tumors 

(Supplementary Figure 5a-f).

In general, DPClust and PhyloWGS showed very similar performance, but with exceptions 

that reflect their underlying algorithmic features. First, in SC1A DPClust, which uses purity 

measures derived from CNA reconstructions, showed a significant and systematic advantage 

over PhyloWGS (βPhyloWGS = -0.42, P = 1.5 x 10-7, generalised linear model, n=500, 

df=13), which uses purity measures partially dependent on SNV clustering. The latter are 

more sensitive to errors in VAF due to low sequencing depth and this is reflected in the 

pattern of SC1A scores. Second, in SC2B PhyloWGS, which uses a phylogenetically-aware 

clustering model, had significantly better performance than DPClust, which uses a flat 

clustering model (Supplementary Figure 5g, Supplementary Table 2). Thus, our metrics are 

sensitive to differences in modelling approaches, which manifest in variability in 

performance on different aspects of subclonal reconstruction. Validating these results, for the 
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real high-depth tumor, DPClust significantly outperformed PhyloWGS in SC1, while 

PhyloWGS was superior in SC2 (Supplementary Table 4).

Robustness of subclonal reconstruction

Surprised by the insensitivity of scores to the use of high- or low-depth sequencing data for 

subclonal CNA assessment, we sought to characterize the sensitivity of subclonal 

reconstruction to errors in CNA detection. We repeated the analyses described above using 

five types of CNA input: original (untouched), CNAs with doubled ploidy, CNA calls with a 

random portion of existing calls wrongly assigned (scramble) and CNAs with additional 

gains (scramble gains), or with additional losses (scramble loss). The latter three error types 

were titrated in intensity, scrambling 10%, 20%, 30%, 40% and 50% of all CNAs, gains and 

losses, respectively.

The resulting 4,250 tumor-depth-CNA-SNV-reconstruction combinations were each 

assessed using our scoring metrics (Supplementary Table 1). For SC1 and SC2, incorrect 

ploidy impaired reconstruction accuracy overall (Figure 6A). As expected, scores decreased 

as the proportion of incorrectly assigned CNAs increased (Supplementary Figure 6a,b). The 

effect of incorrect calls on SC2A accuracy was only apparent at >32x coverage and was 

strongest with perfect and MuTect SNVs (Figure 6B), suggesting the relative impact of CNA 

errors increases with reconstruction quality. Interestingly, PhyloWGS had significantly 

better performance for all subchallenges than DPClust when CNA errors were introduced 

(SC1C: βPhyloWGS = 0.042, P = 6.06 x 10-10; SC2A: βPhyloWGS = 0.066, P = 1.85 x 10-10 

generalised linear models, n=4250, df=21 & df=33; Supplementary Table 5). These results 

suggest that PhyloWGS’s strategy of incorporating CNAs in the allele count model may be 

more robust to errors in CNA detection than only using them to initially correct SNV VAFs 

(Supplementary Figure 5g, Supplementary Note 3). As CNA-handling in the presence of 

errors distinguishes algorithms with otherwise comparable performance, increasing 

robustness to errors in CNA calls may be a promising avenue for improvement of subclonal 

reconstruction algorithms.

Taken together, these results suggest that subclonal reconstruction accuracy is highly 

sensitive both to SNV and CNA detection, with interactions between specific pairs of variant 

detection and subclonal reconstruction algorithms (Online methods; Supplementary Figure 

6c,d). There is significant room for algorithmic improvements that capture inter-tumor 

differences and better model the error characteristics of feature-detection pipelines.

Discussion

As DNA sequencing costs diminish and evidence for clinical utility accumulates, 

increasingly large numbers of tumors are sequenced each year. Nevertheless, it remains 

common practice for only a single spatial region of a cancer to be sequenced. The reasons 

for this are myriad: costs of multi-region sequencing, needs to preserve tumor tissue for 

future clinical use and increasing analysis of scarce biopsy-derived specimens in diagnostic 

and metastatic settings. Whilst robust subclonal reconstruction from multi-region sequencing 

is well-known5–8, accurately reconstructing tumor evolutionary properties from single-
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region sequencing could open new avenues for linking these to clinical phenotypes and 

outcomes.

We describe a framework for evaluating single-sample subclonal reconstruction methods, 

comprising a novel way of scoring their accuracy, a technique for phasing short-read 

sequencing data, an enhanced read-level simulator of tumor genomes with realistic 

biological properties and a portable software framework for rapidly and consistently 

executing a library of subclonal reconstruction algorithms. These elements, each 

implemented as open-source software and independently reusable, form an integrated 

system for quantitation of key parameters of subclonal reconstruction. We generate a 580-

tumor titration-series for evaluating subclonal reconstruction sensitivity to both effective 

read depth and specific somatic SNV detection pipelines. These data give guidance for 

improving subclonal reconstruction: increasing effective read-depth above 60x, after 

controlling for tumor purity and ploidy. They also suggest reconstruction algorithm 

developers should consider accounting for the error properties of specific somatic variant 

detection approaches.

Lineage-tracing tools are emerging that will likely revolutionize our understanding of tissue 

growth and evolution, such as GESTALT48, ScarTrace49, and MEMOIR50. However, these 

are not applicable to the study of human cancer tissues in vivo. In many areas of biology, 

ground-truth is still either inaccessible or impractical to measure with precision. In cases like 

these, simulations are extremely valuable in providing a lower bound on error profiles and an 

upper bound on method accuracy. By incorporating all currently known features of a 

phenomenon, simulators codify our understanding. Divergence between simulated and real 

results quantitates the gaps in our knowledge. The creation of an open-source, freely 

available simulator capturing most known features of cancer genomes thus represents one 

avenue for exploring the boundaries of our knowledge.

Large-scale benchmarking of multiple subclonal reconstruction methods using this 

framework on larger numbers of tumors is needed to create a gold-standard. Such a 

benchmark would both inform algorithm users, who will benefit from an understanding of 

the specific error profiles of different methods, and algorithm developers who will be able to 

update and improve methods while ensuring software portability. Tumor simulation 

frameworks provide a valuable way for method benchmarking, and can complement other 

approaches like comparison of single-region to multi-region subclonal reconstruction, and 

the use of model organism and sample-mixing experiments.

Online methods

Sub-challenges description

To evaluate subclonal reconstruction algorithms, we posed seven sub-challenges and 

designed associated scoring metrics to evaluate performance in each sub-challenge. Sub-

challenges 1A through 1C, collectively called the subclonal architecture challenges, 

evaluated properties of the subclonal reconstruction without considering the assignment of 

individual single nucleotide variants (SNVs) to subclones. Sub-challenges 2A and 2B, the 

clustering challenges, evaluated the assignments of individual SNVs to subclones. Sub-
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challenges 3A and 3B, the ancestry challenges, evaluated the ancestral relationships of 

individual SNVs. Each of the sub-challenge required submission data in a specific format 

described below.

Sub-challenge 1: Subclonal architecture

Sub-challenge 1A: Cellularity—Predict the proportion of cells in the sample that are 

cancerous (i.e., the cellularity of the sample) or cellular prevalence (CP).

Output Data: c is a real number with 0 ≤ c ≤ 1 where c represents the predicted cellularity 

of the tumor sample.

Sub-challenge 1B: Lineage count—Predict the number of lineages (either subclonal or 

clonal) in the sample.

Output Data: κ is a positive integer and κ ≥ 1, where κ is the predicted number of lineages 

in the tumor sample. Note that we do not distinguish between clonal and subclonal lineages 

here, but it is assumed that each sample has at one (i.e. clonal) lineage.

Sub-challenge 1C: Subclonal architecture—Predict (i) the proportion of the cells in 

the tumor sample in each of the subclonal lineages (i.e., their cellular prevalences) and (ii) 

the proportion of SNVs associated with each lineage. Collectively, we call these two 

predictions the estimated subclonal architecture.

Output Data: φ is a vector containing κ real numbers, each of which, e.g., φk, represents the 

predicted cellular prevalence in the associated predicted lineage k. Clearly 0 ≤ φk ≤ 1 for all 

lineages k. Similarly, N is a vector containing κ positive integers, each of which, e.g., Nk, 

represents the predicted number of mutations in the associated lineage k. We insist that Nk ≥ 

1.

Sub-challenge 2: Clustering

Predict the lineage assignment of each SNV.

Sub-challenge 2A: Single best hard assignment—Predict the assignment of each 

mutation to each lineage.

Output Data: τ is a vector of n positive integers, where n is the number of SNVs, in which 

each element τi represents the index of the subclonal lineage to which mutation i is predicted 

to be assigned. Thus, 1 ≤ τi ≤ κ.

Sub-challenge 2B: Probabilistic co-clustering—Predict which pairs of mutations are 

in the same cluster. Note that this challenges differs from the previous one because the co-

clustering predictions can be probabilistic.

Output Data: The predicted co-clustering matrix, CCM, which is an n×n matrix of real 

numbers, where CCMij is the probability that mutation i is in the same subclone as mutation 

j, and 0 ≤ CCMij ≤ 1. Note that a single best assignment can be represented by setting CCMij 
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= 1 when mutation i and mutation j are assigned to the same lineage, and CCMij = 0 otherw. 

Every mutation is assigned to the same lineage as itself, so we require that all the values on 

the diagonal of the CCM matrix be 1.

Sub-challenge 3: Ancestry

Predict the ancestral relationships between the SNVs.

Sub-challenge 3A: Single best ancestry—Predict the ancestral relationships among 

the predicted lineages.

Output Data: p is a vector of κ positive integers, each one, e.g., pk, is the index of the 

predicted parental lineage for lineage k where pk = 0 indicates that lineage k has no parent, 

i.e., that it descends from the normal lineage. In other words, lineage k is a clonal lineage. 

Thus, 0 ≤ pk ≤ κ and pk ≠ k.

Sub-challenge 3B: Probabilistic ancestor-descendant matrix—Predict the 

ancestral relationships among pairs of SNVs. Note that this challenges differs from the 

previous one because these predictions can be probabilistic.

Output Data: The predicted co-clustering matrix, CCM, as defined in Sub-challenge 2B, 

and a predicted ancestor-descendant matrix, ADM, which is an n × n matrix where ADMij is 

the probability that mutation i is assigned to a subclonal lineage that is ancestral to the 

subclonal lineage the mutation j is assigned to, and 0 ≤ ADMij ≤ 1. As in Sub-challenge 2B, 

above, a single best ancestry can be represented by the ADM by setting ADMij if and only if 

mutation i is assigned to a lineage ancestral to that of mutation j. Elements on the diagonal 

of the ADM matrix required to all be 0.

Scoring metrics

Here we describe each scoring metric used to evaluate the subclonal reconstruction 

algorithms.

Sub-challenge 1A Metric—The SC1A score is

1 − ρ − c

where ρ is the true cellularity, c is the predicted cellularity and |x| is the absolute value of x. 

Note that we require that 0 ≤ ρ ≤ 1 and 0 ≤ c ≤ 1.

Sub-challenge 1B Metric—The SC1B score is:

L−d + 1 / L+1

where L ≥ 1 is the true number of subclonal lineages, d is the absolute difference between 

the predicted and actual number of lineages, d = min(|κ - L| , L+1). We do not allow d to be 

higher than L+1 so that the SC1B score is always ≥ 0.
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Sub-challenge 1C Metric—Scoring SC1C is challenging because the number of 

subclonal lineages can differ between the truth and the prediction, as can their size and 

cellular prevalence. As such, we adopted metric based on the earth-mover distance between 

the true and predicted architectures. First, we note that the subclonal architectures can be 

viewed as a clustering of data points in one dimension. In this view, each data point is a 

SNV, and they are clustered on the basis of their predicted cellular prevalence into clusters 

corresponding to each lineage.

If we were considering individual SNVs in this metric, we could compute a distance 

between the real and the predicted clustering of those data points by computing the average 

value of |φk - δl| where φk is the cellular prevalence of the lineage, k, that mutation i is 

assigned to in the predicted clustering and δl is the cellular prevalence of the lineage, l, that 

mutation i is assigned to in the true clustering. However, since we are not considering 

individual SNVs, we define the distance between two clusterings as the minimum possible 

value of this average, given the real and predicted subclonal architectures (i.e. the vectors of 

cellular prevalences and counts of number of SNVs assigned to each cluster). This value, 

EMD, is exactly the (normalized) earthmover distance between the real and predicted 

clusterings.

The procedure described below computes 1-EMD given the true and predicted subclonal 

architectures.

First, we sort both the predicted subclonal lineages from 1 to κ and the true subclonal 

lineages from 1 to L in ascending order according to their cellular prevalence (CP). Let αk 

be the proportion of mutations assigned to predicted subclonal lineage k, for k = 1…κ. 

Similarly, let βl be the proportion of mutations assigned to true subclonal lineage l, for l = 

1…L. Let φk be the predicted CP of predicted subclonal lineage k for k = 1…κ and let δl be 

the true CP of true subclonal lineage l for l = 1…L.

Let ωp be a vector of S predicted real numbers with:

ωp, i = ϕ1for i
S ≤ α1, or

ωp, i = ϕk for Σj ∈ 1…k − 1 αj < i
S ≤ Σj ∈ 1…k + 1 αjor

ωp, i = ϕκ for Σj ∈ 1…κ − 1 αj < i
S

And let ωt be a vector of S true real numbers with:

ωt,i = δ1for i
S ≤ β1, or

ωt, i = δk for Σj ∈ 1…k − 1 βj < i
S ≤ Σj ∈ 1…k + 1 βjor

ωt, i = δLfor Σj ∈ 1…L − 1 βj < i
S
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We set S to 1,000 and the SC1C scoring metric is then defined as:

1
S ∑

s = 1

S
ωt, s − ωp, s

We compute the SC1C scoring metric using two different sets of true subclonal lineages. 

One set contains only the mutations that were spiked into the simulation. The other set of 

lineages also contains false positive mutations that were not spiked-in, but were detected in 

somatic variant calling. In this set, the lineage containing the false positive mutations is 

assigned a CP of 0. Contestants receive the higher of the two scores.

Sub-challenge 2 Metric—Both SC2A and SC2B use the same scoring metric. This 

metric is the mean of two different correlation measures between the predicted co-clustering 

matrix (CCMPr) and the true co-clustering matrix (CCMTr); the Area Under the Precision-

Recall curve (AUPR) and the average Jensen-Shannon divergence of the co-assignment 

probabilities (AJSD). CCMTr is computed from the true SNV assignments to lineages using 

the procedure described in the previous section under the description of SC2B. CCMPr for 

SC2A is also computed using this procedure.

Each correlation measure, calculated by comparing CCMPr to CCMTr, and is normalized, by 

subtracting a constant value and linearly scaling, to be between 0 and 1. This normalisation 

is computed so that 1 corresponds to a ‘perfect score’ i.e. when CCMPr = CCMTr and 0 

corresponds to the smaller of the scores achieved by two ‘bad scenarios’: CCMPr = Inxn or 

CCMPr = 1nxn. If a method achieves a score < 0 after normalization, then the score is set to 

zero. The overall Sub-challenge 2 score is calculated as the mean of the two individual 

normalized correlation measures:

I. Area under the precision recall curve (AUPR). The area under the receiver operating 

characteristic (ROC) curve, also known as the Precision-Recall curve, which plots the false 

positive rate against the true positive rate across all possible thresholds for classifying matrix 

entries as true or false (for SC2 and SC3, all real values r ∈ [0,1]). To calculate the AUPR 

we create the Precision-Recall curve using the matrix values and then estimate the Area 

under this curve using point estimators.

II. Average Jensen-Shannon divergence of co-assignment (AJSD)

To define this correlation measure, we transform each CCM matrix so that each row could 

be interpreted as a discrete probability distribution. Then, for each row in the predicted 

CCM, we compute the Jensen-Shannon divergence between it and the corresponding row in 

the true CCM matrix. Our measure, the average Jensen-Shannon divergence (AJSD) is the 

average of these divergences.

Specifically, for the predicted CCM matrix, C, for the i-th row, we define a real valued 

vector, pi, for each mutation i, whose j-th element, pji =
Cij

∑k ≠ iCik
 for i ≠ j and pii = 0.

Because of how pi is defined, it can be interpreted as a discrete probability distribution over 
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all of the SNVs in the sample. Similarly, for the actual CCM matrix, K, for the i-th row, we 

define qi, by setting qji =
Kij

∑k ≠ iKik
 for i ≠ j, and qji = 0. otherwise. Then AJSD is the 

average across all rows i of Jensen-Shannon divergence (JSD) between pi and qi. To 

compute the JSD, to avoid taking the log of 0, we define pi* as

pji ∗ =
1 − α pji + α
1 − α + Nα

for a small value α = 0.01 and we define mji ∗  similarly and set mji ∗ =
pji ∗ + qji ∗

2 . And JSD 

is:

JSD pi, qi, α = KL pi ∗ ∥ mi ∗ /2 + KL qi ∗ ∥ mi ∗ /2

Sub-challenge 3 metric—To compute the SC3 scoring measure, we require the CCM 

and ADM matrices as defined above and we must compute the Cousin Matrix (CM). The 

CCM and ADM matrices are either provided by the user or constructed from the true 

ancestral relationships. To construct the cousin matrix, we note that each mutation pair (i,j) 
must have one of four relationships: i is clustered with j, i is the ancestor of j (or vice versa), 

or i and j are in branching lineages (in other words, they are cousins). As such, given ADM 

and CCM, we compute the CM by setting. CMij = 1 − CCMij − ADMij − ADMji.

Then, to compute the SC score, we horizontally append the CCM, the ADM, the transpose 

of the ADM, and the CM for the true and predicted versions of these matrices, making two 

matrices of size n by 4n. In other words, one of these matrices is constructed from all of the 

true matrices and the other from all of the predicted ones.

We then compute the Pearson correlation coefficient (PCC) between these two rectangular 

matrices:

The PCC between two matrices C and K is defined as:

PCC = Cov C, K
σCσK

where Cov(C,K) is the covariance of the vectorized versions of C and K, σC is the standard 

deviation of vectorized C, and σK is the standard deviation of vectorized K.

Data preparation

To create our phase-separated mapping set, we used public data from the Genome-in-a-

Bottle consortium obtained from sequencing the trio of individuals with Coriell ids: 

GM24385 (son), GM24149 (father), and GM24143 (mother). We used both the high-

coverage (300x) paired-end (PE) Illumina data and the low coverage (16x) 6kb mate-pair 

(MP) Illumina data.
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For the PE datasets, we downloaded the publicly available FASTQ files, and mapped them 

locally with bwa version 0.7.10 using the flag -M and otherwise default settings, against the 

hs37d5 human reference with decoys. We marked duplicates with Picard (v1.121). For the 

MP datasets, we downloaded and used the publicly available mappings.

To identify variants, we used only the PE data for each sample, and a standard variant-

calling pipeline with GATK (v2.4.9). The BAM files were realigned and calibrated using 

GATK’s RealignerTargetCreator command, followed by IndelRealigner. Bases were 

recalibrated using the BaseRecalibrator and PrintReads commands. Germline calling was 

performed using UnifiedGenotyper and variant calls without the ‘PASS’ field were filtered 

out. Short indels and single nucleotide variants that were present in both maternal and 

paternal BAMs were used for phasing.

Phasing

First, we constructed an unphased set of variants using GATK-based germline SNP 

prediction, identifying 2,559,193 diploid heterozygous short insertions, deletions, and single 

nucleotide variants in the child sample. Next, we created the PhaseTools package to 

accurately phase heterozygous variants identified in these data (Supplementary Figure 2, 

Supplementary Note 2). This phasing prioritized connections between alleles that were 

directly supported by NGS data. Due to the availability of both paired-end and 6 kbp mate-

pair Illumina sequencing data for this sample, we were able to construct initial per-

chromosome phase sets (i.e. sets of heterozygous variants phased together) at a rate of 1 

phase set per ~12 kbp. The phasing was then extended by connecting phase sets using 

parent-of-origin information, in cases where this information could be computed by 

inspecting parental genotypes or parental NGS phasing. This increased the extent of our 

phase sets, decreasing their rate to 1 per ~76 kbp. The phasing was extended once more by 

incorporating phasing information produced by Beagle, reaching an ultimate rate of 1 phase 

set per ~86 kbp. We note that this long-range phasing could be obtained even without 

leveraging any long-read data. Remaining phase sets were then randomly rotated and 

collapsed to obtain a final complete phasing of all heterozygous variants in the child. Given 

the complete phasing of the variants described above, we used the bam-phase-split program, 

also part of PhaseTools, to phase each fragment in an NGS dataset of the child sample. The 

program inspected the reads in each fragment, collecting information for which alleles that 

fragment supported at each heterozygous variant, and combined that information in order to 

phase the fragment. Fragments not spanning any heterozygous variants were phased 

randomly.

At the end of the process, while the median length of phased contigs from using only NGS 

data was ~15 kbp regions, it increased to ~85 kbp regions using the full PhaseTools pipeline.

Splitting BAM reads into subclones and spiking-in mutations

Read splitting at nodes occurs in a pseudo-random manner using a windowed approach. For 

each node, let w be every window of reads (set to 1000) and p be the proportions of reads to 

extract. BAM files are sorted by coordinate using SAMtools sort. For every w paired reads 

ordered by first read pair coordinate, exactly floor(w x p) paired reads are chosen at random 
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and retained. As compared to a global resampling to the target coverage per node (i.e. setting 

the window size to the total number of reads aligning to the chromosome), this local 

sampling accomplishes a less variable coverage across the final chromosome. All extracted 

reads are merged together using Picard tools, first by phase, then by chromosome, and 

finally into the tumor BAM. The merged BAM file is then sorted by coordinates, avoiding 

any possibility to identify from which sub-BAM reads originate.

To complete the final tumor BAM, we further normalize the phases of chromosomes relative 

to all the phases, based on their individual total fractional copies. For each phase of each 

chromosome, let pi be the cellular prevalence and ci the number of copies at the ith leaf node. 

Then Cchr,phase = sumi (pi x ci) represent the total fractional copies. Take M to be the 

maximum of all CNAs, including tandem duplications, across chromosomes and set this 

value as the 100% copy proportion. Leaf nodes are down-sampled by taking Cchr,phase / M of 

the read pool assigned to it. Read pools are adjusted using a bottom-up approach. At each 

internal node, the cellular copies of its children are summed and the read pool proportions 

are adjusted (Figure 3).

designatePortions {

          if leaf node:

                     return pi * ci / Cchr,phase

          else:

                     quantities = []

                     quantity_sum = 0

                     for each child:

                                quantity[child] = designatePortions{config->child}

                                quantity_sum += quantity[child]

                     for each child:

                                config->child->read_proportion = quantity[child] / quantity_sum

          }

If tandem duplications are present, reads that are not incorporated in a node (surplus reads) 

are down-sampled similarly to provide donor BAMs at the right depth. Surplus reads are 

down-sampled in proportion to their depth adjusted copy number for a given node, starting 

with the highest copy number duplications for each node to yield the maximum depth donor 

bam for each node. If lower copy number duplications exist, these donor BAMs are 

subsequently down-sampled again in proportion to copy number to yield the lower copy 

number donor BAMs.
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After calculating the per-phase-per-chromosome read pools, BAMSurgeon spikes in 

mutations given a set number of SNVs, Indels, and SVs into the appropriate read pool before 

merging them into the final BAM. In Supplementary Note 2 we describe how we spike in 

mutations compatible with replicating timing, pre-defined tri-nucleotide context spectra and 

selection.

Altogether, using this approach we achieved a median accuracy of 90.6%, with a median 

false positive rate of 4.5% and a median false negative rate of 5.92% for the five tumors 

reported after calling SNVs with MuTect prior to down-sampling.

Large scale SV simulations

We extended BAMSurgeon to simulate large SVs by simulating two SV breakpoints with 

local alignment and contig assembly. We employed a two-pronged approach to simulate 

copy number changes as the existing BAMSurgeon functionality could not reliably simulate 

SVs larger than 30 kbp (Supplementary Figure 2 f-h). To simulate smaller scale copy 

number changes (>10 kbp) we extended the BAMSurgeon SV framework to simulate 

translocations, inversions, deletions, and duplications of arbitrary size (Supplementary Note 

2). To simulate chromosome level CNAs, we locally downsampled reads.

Chromosome-level copy number simulations

A gain of Na chromosomes from a given node a is simulated by first splitting the reads in a 
evenly into Na + Nb (where Nb is the number of chromosomes in the parent of a) while 

down-sampling the reads in all other nodes by Na + Nb. Since each node is handled 

individually, a deletion of a copy is simulated by elimination of a node. Prior to any node 

split or phase gain, intermediate BAM files are sorted by read name using SAMtools sort -n. 

And prior to any spike-in mutations, intermediate BAM files are sorted by coordinate using 

SAMtools sort. After deriving the BAMs for each copy of that chromosome, BAMsurgeon is 

used to spike in all SNVs, Indels and SVs into both copies (simulating that these mutations 

precede the copy number event).

Subclonal copy number calling

We used Battenberg6 based on ASCAT equations51 to call subclonal copy number and 

validated the calls by comparing observed and expected logR and BAF of the identified 

segments as well as inferred vs. expected Cancer Cell Fraction of the mutations (Figure 4, 

Supplementary Figure 2).

Somatic mutation variant calling

To assess the SNVs spiked into the simulated tumor, we used four commonly used somatic 

SNV detection pipelines, as well as perfect calls. We first obtained perfect calls from 

BAMSurgeon as a gold-standard. We retained all SNVs with at least one alternate read, one 

reference read, and a minimum of three total reads covering the site to maximize sensitivity 

while excluding zero or near-zero depth SNVs. We then executed SomaticSniper (v1.0.5), 

Strelka (v1.0.17) with the default settings. We executed MutationSeq (v4.3.8) with a SNV 

threshold of 0.5, indel threshold of 0.1, and divided chromosomes into three intervals of at 

least 100 Mbp and otherwise used the entire chromosome. We retained MutationSeq SNVs 
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with PR > 0.8 which passed all filters. Lastly, we used MuTect to call variants using the 

protocol described above. Similarly, we verified structural variants were present using Manta 

(v0.29.5)

Subclonal reconstruction and scoring using PhyloWGS and DPClust

We used PhyloWGS (https://github.com/morrislab/phylowgs commit 3e21cec) with default 

settings (except for including all SNVs), and converted the output to an SMC-Het 

compatible format using a custom script (https://github.com/morrislab/smchet-challenge/

tree/master/create-smchet-report commit 06a1f1f). We used DPClust (https://github.com/

Wedge-Oxford/dpclust_smchet_docker commit a1ef254) with default settings, but added 

functions to parse SNVs from unsupported somatic SNV detection algorithms (https://

github.com/Wedge-Oxford/dpclust_smchet_docker/blob/design_paper/dpc.R commit: 

1d8c2e7). For all somatic SNV detection algorithms we set the allele with the highest read 

count in the normal as the reference. We removed the sex chromosomes from both SNV and 

CNA inputs prior to running PhyloWGS and DPClust.

We then scored results from both algorithms using the scoring framework described above 

(https://github.com/asalcedo31/SMC-Het_Scoring/smc_het_eval commit 8b072a2). As the 

scale of scores for sub-challenges 1C, 2A, 2B, 3A, and 3B depend on the mutation set used, 

solutions across depths and somatic SNV detection algorithms for a given tumor needed to 

be based on a common set of mutations to be comparable. We added all false and true SNVs 

called by all other somatic SNV detection algorithms for that tumor to each solution as a 

single zero cellularity cluster so that all solutions for that tumor contained the union of all 

SNVs. Additionally, to ensure scores among tumors were comparable, we scaled all scores 

to the highest scoring 128x perfect SNV call solution for that tumor and capped at 1. We 

then analysed the SC1A, SC1C, SC2A, and SC2B scores using β-regressions with the 

betareg R package52. As 1B scores represent true proportions, we analysed them using a 

generalized linear model with a binomial link function. All models used T2, 128x, perfect, 

DPC, full depth as a reference. Interaction terms were retained for a given model if they 

reduced its AIC and significantly increased log-likelihood of the model in a log-likelihood 

test comparing models with and without an interaction. See the attached Life Sciences 

Reporting summary for further information on the statistical analysis.

Effect of copy number calling accuracy on the reconstruction

We also assessed the effect of different copy number calling errors on the reconstruction 

scores (Figure 6). To this end, we randomly selected copy number segments from the 

profiles and changed the copy number states to reflect different types of errors (additional 

gains, losses and a mix of the two).

For gains, for each selected segment the number of copies of the major allele Nmaj was 

added {0,1,2,3,4,5} with probabilities {0.01, 0.15, 0.40, 0.25, 0.15, 0.04}, respectively. The 

minor allele was randomly assigned a state between 0 and Nmaj. For losses, for each selected 

segment Nmaj was subtracted {0,1,2} with probabilities {0.06, 0.63, 0.31}, respectively. 

Nmin was randomly selected between 0 and Nmaj then the ceiling was taken. For the mix 

scenario, for each selected segment, Nmaj is replaced by {0,1,2,3,4,5} with probabilities 
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{0.01, 0.15, 0.40, 0.25, 0.15, 0.04}, respectively. Nmin is randomly and uniformly selected 

between 0 and Nmaj.

In each scenario, we increased the proportion of selected segments from 10% to 50% of all 

segments by 10% increments. We then executed DPClust and PhyloWGS with these copy 

number call errors and correct copy number calls on the five synthetic tumors for the depth-

SNV somatic SNV detection algorithms combinations described above (4,250 combinations 

total). To reduce computation time, we down-sampled each input VCF to 5,000 SNVs. We 

then carried out scoring and analysis for each reconstruction as described above.

Data visualization

Figures were generated using R (v3.5.3), BPG (v5.9.8)53, lattice (v0.20-38), latticeExtra 

(v0.6-28), gridExtra (v2.3), gtable (0.2.0) and Inkscape (v0.91). Color palettes were 

generated using the RColorBrewer (v1.1-2) and BPG packages.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editors summary

Methods for reconstructing tumor evolution are benchmarked in the DREAM Somatic 

Mutation Calling Tumour Heterogeneity Challenge using novel tools.
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Figure 1. Features of tumor subclonal reconstruction
Overview of the key performance aspects of subclonal reconstruction algorithms, grouped 

into three broad areas covered by three key questions: (SC1) ‘What is the composition of the 

tumor?’ This involves quantifying its purity, the number of subclones, and their prevalence 

and mutation loads; (SC2) ‘What are the mutational characteristics of each subclone?’ This 

can be answered both with a point-estimate and a probability profile, i.e. a hard or 

probabilistic assignments of mutations to subclones, respectively; (SC3) ‘What is the 

evolutionary relationships amongst tumour subclones?’ This again can be answered with 

both a point-estimate and a probability profile. MRCA: most recent common ancestor.
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Figure 2. Quantifying performance of subclonal reconstruction algorithms
(a) Tree topologies and mistake scenarios. For each of 30 tree topologies with varying 

number of clusters and ancestral relationships, 7-8 mistake scenarios (MS) were derived and 

scored using the identified metrics for SC2 and SC3. For each tree topology a panel of 9 

experts independently ranked the mistake scenarios from best to worse. (b) Expert ranking. 

One tree topology is shown with 6 of the 7 mistake scenarios together with the ranks of four 

experts and two of the metrics. The trivial all-in-one case, i.e. identifying only one cluster is 

not shown and correctly ranked last by all metrics and experts. (c) Density distributions of 
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Spearman’s correlations between metrics and experts across tree topologies. For SC2 

and SC3, we show the Spearman’s correlations between JS+AUPR/2 and the experts, and 

AUPR and the experts, respectively. (d) All average correlations between experts and 
metrics for SC2 and SC3. Heatmaps of average Spearman’s correlations across tree 

topologies between experts and metrics for SC2 and SC3. Controls are randomised ranks.

Asterisks show equivalent metrics (non-significantly better or worse according to a 

Wilcoxon rank-sum test p>0.05 but better than the others p<0.01; n=270; range of median 

increase in correlation coefficients: SC2=[0.018-0.23]; SC3=[0.024-0.36]).
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Figure 3. Simulating subclonal CNAs in tumor BAM files and spiking somatic mutations
Example case of read number adjustment to simulate subclonal copy number aberrations 

(CNAs). (a) Desired structure of the tumour being simulated. (b) Read number 
adjustment calculations. The copy number total (CNT) for each chromosome is its copy 

number by adjusted by node cellular prevalence summed across all nodes. The maximum 

CNT across the genome is retained to normalise copy number for all chromosomes. The 

number of reads assigned to each chromosome at each node (the chromosome’s effective 

read number) is then computed as the product of the node’s cellular prevalence, the 

chromosome’s copy number, and the total tumour depth normalised by the maximum CNT. 

(c) Separation per chromosome phase and per node and new pipeline to simulate 
tumour BAM files with underlying intra tumour heterogeneity. The first tumour clone 

(70% CP) has a gain in one copy (referred to as copy A) of chromosome 1 and one of its 

descendant subclones (55% CP) bears a loss of the Y chromosome. After adjusting read 

number for CNAs in each BAM corresponding to a node, BAMSurgeon spikes in additional 

mutations including the new features (complex structural variants, SNVs with trinucleotide 
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contexts and replication timing effects, etc.), and then merges the extracted reads into a final 

tumor BAM file.
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Figure 4. Simulated realistic tumor genomes
(a) Tumor design. Simulation T2 with 55% purity (fraction of cancer cells) and two 

subclones. Whole-chromosome copy number events (e.g. clonal loss of chromosomes 8, 12 

and 17), number of SNVs and SVs are shown for each node. (b) Single nucleotide variant 
trinucleotide contexts. Observed vs. expected frequencies of trinucleotide contexts in the 

SNVs. (c) Population frequency (cancer cell fraction, CCF) of the variants for T2. 
Observed vs. expected CCF distributions; false positive SNVs due to mutation calling as 

well as copy-number errors lead to errors in the inferred CCFs. (d) Observed (green) vs. 
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expected (blue) logged coverage ratio (LogR) and B-allele frequencies (BAF) of copy 
number segments along the genome for T2 (e) Observed vs. expected BAF and logR 

across all segments and across all simulations. (f) Simulation of sub-chromosomal copy 
number events and rearrangements. LogR and BAF tracks showing how one large 

deletion and one large duplication simulated on chromosome 17 are correctly being called. 

Structural variants as called by Manta (Online methods) are shown as vertical lines, true 

positives are at the breakpoints defining the copy number events.
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Figure 5. Error profiles of subclonal reconstruction algorithms
To identify general features of subclonal reconstruction algorithms, we created a set of 

tumour-depth-CNA-SNV-subclonal reconstruction algorithm combinations by using the 

framework outlined in Figure 3 and 4 to simulate five tumours with known subclonal 

architecture, followed by evaluation of two CNA detection approaches, five SNV detection 

methods, five read-depths and two subclonal reconstruction methods. The resulting 

reconstructions were scored using the scoring harness described in Figure 2, creating a 

dataset to explore general features of subclonal reconstruction methods. All scores are 

normalised to the score of the best performing algorithm when using perfect calls at the full 

tumour depth. Scores exceeding this baseline likely represent noise or overfitting and were 

capped at 1. Only scores from reconstructions using down-sampled CNAs are shown (n=300 

tumour-SNV-depth-subclonal reconstruction algorithm combinations). (a) For SC1C 
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(identification of the number of subclones and their cellular prevalence), all combinations of 

methods perform well. (b) By contrast, for SC2a (detection of the mutational characteristics 

of individual subclones), there is large inter-tumour variability in performance. (c) Score for 

SC1c (same as a) as a function of effective read-depth (depth after adjusting for purity and 

ploidy) improves with increased read-depth, and also changes with the somatic SNV 

detection method, with MuTect performing best, but still lagging perfect SNV calls by a 

significant margin. (d) Scores in SC2A show significant changes in performance as a 

function of effective read-depth.
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Figure 6. Impact of CNA error profiles on subclonal reconstruction
(a) Effect of CNA errors on mean SC1c scores and SC2a (b) scores (with standard errors 

shown) at 100x across somatic SNV detection algorithms (n=850). (c) Effect of CNA errors 

on mean SC1c and SC2a (d) scores (with standard errors shown, n=2250) at various depths 

when scores for perfect calls are set to zero to yield depth-adjusted scores.
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