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Abstract: As basalt fiber has better mechanical properties and stability than glass fiber, cross arms
made of continuous basalt-fiber-reinforced epoxy matrix composites are capable of meeting the me-
chanical requirements in the event of typhoons and broken lines in coastal areas, mountainous areas
and other special areas. In this paper, continuous basalt-fiber-reinforced epoxy matrix composites
were used to fabricate the core rods and composite cross arms. The results verified that basalt fiber
composite cross arms can meet the strict requirements of transmission lines in terms of quality and
reliability. In addition to high electrical insulation performance, the flexural modulus and the flexural
strength of basalt fiber core rods are 1.8 and 1.06 times those of glass fiber core rods, respectively.
Basalt fiber core rods were found to be much better load-bearing components compared to glass
fiber core rods. However, the leakage current and the result of scanning electron microscopy (SEM)
analysis reveal that the interface bonding strength between basalt fibers and the matrix resin is
weak. A 3D reconstruction of micro-CT indicates that the volume of pores inside basalt fiber core
rods accounts for 0.0048% of the total volume, which is greater than the 0.0042% of glass fiber rods.
Therefore, improving the interface bond between basalt fibers and the resin can further improve the
properties of basalt fiber core rods.

Keywords: basalt fiber; composite materials; insulating materials; core rods

1. Introduction

Composite cross arms are widely used in coastal and mountainous areas due to
their light weight, high strength, ease of installation and replacement and significant
improvement of the lightning protection performance of the lines [1,2]. Composite cross
arms are composed of a silicone rubber shed, composite core rod and an end metal
attachment. At present, continuous glass-fiber-reinforced epoxy resin matrix composites
(GFRPs) are the main materials used in the manufacture of composite cross-arm core rods.
However, some studies have pointed out that the mechanical strength loss of glass fiber is
relatively large in saline-alkali environments [3]. GFRPs have high creep resistance under
constant load [4,5]. The above problems make it impossible for composite cross arms
to meet the requirements for application in coastal areas, mountainous areas and other
complex environments.

In most studies, resin modification is used to improve the mechanical properties and
stability of core rod materials [6]. However, it is also feasible to start with the improvement
of fiber materials. Basalt fiber is made of natural ore after melting and spinning at a high
temperature. As basalt fiber is environmentally friendly and stable, it has gradually become
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an important fiber material in industrial production [7–9]. Many studies have confirmed
that basalt fiber and its composites have better mechanical properties and stability than
glass fiber and its composites. The exudation of basalt fiber elements was found to be able
to repair the cracks caused by medium corrosion through acid and alkali corrosion tests [10].
The properties of glass fiber and basalt fiber under high temperature and chemical corrosion
were compared elsewhere [11], and the results indicated that basalt fiber has higher strength
and more stable properties than glass fiber. The teams of Lopresto V and Dorigato found
that basalt fiber laminates are significantly superior to glass fiber laminates in terms of
compression, bending, impact resistance and cyclic fatigue resistance by comparing the
properties of the two types of fiber laminates [12,13]. Moreover, basalt fiber composites
have a damage evolution mechanism different from that of their glass fiber counterparts,
with far better bearing capacity and longer service life than the latter [14]. Tests involving
immersion in seawater and the brine freeze–thaw cycles of glass fiber composites and
basalt fiber composites in the same environment have proven that basalt fiber composites
have a higher tolerance to a saline–alkali environment [15,16]. These studies show that it is
feasible to use basalt fiber instead of glass fiber to manufacture core rods to improve the
mechanical properties and the stability of composite cross arms.

In the present work, the monofilament strength and the interface bonding strength of
continuous basalt fiber and continuous glass fiber are compared, and composite cross arms
are prepared with the two types of fibers. Dye penetrant tests, core rod hydrothermal tests,
core rod-fitting tensile tests, core rod-bending failure tests and internal and external insula-
tion performance tests of composite cross arms are conducted to characterize the internal
pores and fiber surface micromorphology of the two types of core rods. The present work
is aimed at providing an experimental basis for the application and future improvement of
basalt fiber composite cross arms.

2. Materials and Methods
2.1. Materials

The selected continuous basalt fiber yarn (Sichuan Qianyi, Huaying, China) is 9600 tex,
and the continuous glass fiber (Zhejiang Jushi, Jiaxing, China) is 9600 tex. The matrix resin
used in the pultrusion process is composed of epoxy resin, curing agent, accelerator and
internal release agent in a ratio of 100:75:0.3:10, of which the epoxy resin component (indus-
trial pure, Zhejiang Polimu, Quzhou, China) is diglycidyl ether of bisphenol-A (DGEBA),
the curing agent (industrial pure, Zhejiang Polimu, Quzhou, China) is methylhexahydroph-
thalic anhydride (MHHPA), the accelerator (purity: 95%, Shanghai Macklin, Shanghai,
China) is 2,4,6-tris (dimethyl aminomethyl) phenol (DMP-30), and the main component
of the internal release agent (commercially pure, Shanghai Macklin, Shanghai, China) is
simethicone. The raw material for the sheds is vulcanized silicone rubber (Zhejiang Huabao,
Quzhou, China).

2.2. Fabrication of Core Rods and Composite Cross Arms

The process of core rod fabrication is shown in Figure 1. The continuous fiber
yarn on the creel was guided and fed into the resin tank to be impregnated with ma-
trix resin. Then, the impregnated yarn was sent to a mold with cross-sectional dimensions
of 34 mm × 54 mm for curing. During the whole pultrusion process, the relative humidity
of the resin tank should be lower than 40%, the temperature was maintained at 25 ◦C, the
pultrusion rate was 1 m/h and the temperatures of the mold at the three stages were about
120 ◦C, 150 ◦C and 150 ◦C, respectively. The pultruded continuous fiber composite was
then cut into lengths of 1100 mm each.
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Figure 1. Core rods preparation process.

The process of obtaining the glass fiber core rods and the basalt fiber core rods by
fitting crimping and shed casting is illustrated in Figure 2. The core rods required for
the tests were fabricated by crimping the ends of the cut continuous fiber composite with
fittings. The coupling agent, ethanol solution, was evenly applied to the surface of the core
rods, which were then placed in an oven at 80 ◦C until the surface became dry. Then, the
core rods were placed in the shed injection machine. After the mold was closed, the molten
silicone rubber was injected into the mold, and the temperature was increased to 180 ◦C
and held for 120 min to achieve vulcanization of the silicone rubber. After the mold was
taken out, the edge of the mold seam and the coated part of the fitting were trimmed and
fixed to make the composite cross arms required for the tests.
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2.3. Characterization
2.3.1. Fiber Properties

The tensile strengths of the two types of fibers were measured in accordance with
American Society for Testing Materials (ASTM) C1557-03 standard using a fiber strength
testing machine (YG001A, Jigao Instrument, Wenzhou, China) with an initial length of
20 mm and an elongation rate of 5 mm/min. The breaking load of a single fiber and
the fiber diameter were recorded to calculate the strength of a single fiber. The Weibull
distribution model was used for the statistics of at least 15 sets of significant data.

As shown in Figure 3, the debonding method of single-fiber microspheres was used
to characterize the difference in the binding ability between the two types of fibers and
the resin [17]. The resin was stuck to the fibers and was heated to form cured resin
microspheres. The test was carried out with a microsphere debonding testing machine
(YG-163, Jigao Instrument, Wenzhou, China). The fibers were passed through the scraper
at a speed of 5 mm/min, and the resin microspheres were scraped off by the scraper.
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By recording the embedding depth of the resin microspheres and the load values when
the resin microspheres come off from the fiber, the interface bonding strength between the
two types of fibers and the resin can be calculated. The Weibull distribution model was
used for the statistics of at least 15 sets of significant data.
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2.3.2. Interface Characteristics

To verify the proper bonding of the sheath–mandrel interface and the fiber–resin inter-
face in the core rods, the dye penetrant method was used to test the full-section composite
cross-arm samples. The composite cross arm was cut along the direction perpendicular
to the fibers to prepare samples with a thickness of 10 mm using grinding wheel cutting.
The test process is described as follows: the container was covered with steel balls (each
with a diameter of 1 mm). After the sample was placed on the glass balls, an appropriate
amount of 1% (by weight) magenta-ethanol solution was poured into the container, with
the liquid level 1 mm above the top of the balls. The specimen was allowed to remain
still for 15 min to observe whether solvent exudation occurred on the upper surface of
the sample.

The hydrothermal test was conducted on the core rod material to compare the interface
bonding between the fiber and the resin in the basalt fiber core and the glass fiber core
by the magnitudes of the leakage current before and after hydrothermal action. The core
rod was cut along the direction perpendicular to the fibers to fabricate samples with a
thickness of 30 mm using grinding wheel cutting. The test procedure was carried out as
follows: a core rod sample was put into a 0.1% (by weight) sodium chloride solution and
boiled for 100 h. Then, the sample was taken out, the surface was wiped, a rated voltage of
12 kV was applied and the leakage current (r.m.s) was recorded using a digital multimeter
(RIGIO DM3068).

2.3.3. Mechanical Properties

Considering that the wrapping of the sheath layer could cause measurement error
in subsequent mechanical testing, core rods without the sheath were used for mechan-
ical property testing of the composite cross arms. The core rod was 1100 mm long, the
dimensions of the cross-section were 34 mm × 54 mm (height × width).

The bonding between the core rod and the end metal attachment affects the capacity
of the composite cross arms to bear mechanical loads. A tensile load test was used to verify
whether changing the core rod material would affect the matching of the core rod and the
end metal attachment and whether it can meet the requirements for practical applications.
The test equipment was a horizontal tensile testing machine (provided by State Grid Hebei
Electric Power Research Institute). The test process is illustrated in Figure 4a. After the test
started, a load of 10 kN was quickly and evenly applied and maintained for 90 s, and we
observed whether the core rod was pulled out from the end attachment.
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To ascertain the difference between basalt fiber core rods and glass fiber core rods in
terms of resisting the bending load, bending failure tests were conducted for the two types
of core rods. The test equipment is a bending testing machine (provided by State Grid
Hebei Electric Power Research Institute). The test process is shown in Figure 4b. The core
rod sample was installed on the bending testing machine, and the direction of application
of the bending load was perpendicular to the axis direction of the core rod. Then, the load
was applied evenly until the core rod failed, and the values of the end displacement and
applied load were recorded.

2.3.4. Insulation Properties

The internal insulation strength of composite cross-arm core rods was characterized
by the breakdown field strength of the core rods, and the values were measured using a test
circuit according to the International Electrotechnical Commission (IEC) 60 243-1 standard.
The samples were 1 ± 0.1 mm thick and made by cutting the core rod perpendicular to the
fiber direction. The Weibull distribution model was used for the statistics of at least 15 sets
of significant data.

Because the external insulation strength mainly depends on the quality of the sheds,
the surface flashover test of positive and negative lightning strikes was conducted only on
the prepared basalt fiber composite cross arms to obtain their external insulation properties.
The sample was 1100 mm long, with a dry arcing distance of 650 mm. The altitude of the
test site was 20 m, and the applied lightning impulse voltage waveform was a double-
exponential wave of ±1.2/50 µs. The lightning strike surface flashover test was carried out
using the Bruceton method to determine the U50% of the basalt fiber composite cross arms
based on the mean statistics. Taking the measured U50% voltage as a reference, the test
voltage was increased seven times in increments of 10%, the waveform of each flashover
was recorded and the positive and negative polarity volt-second characteristic curves of
basalt fiber composite cross arms were statistically obtained. During the test, the flashover
voltage and meteorological conditions were recorded to correct the test data.

2.3.5. Microtopographic Characterization

The cross section of the core rod was observed after bending failure under high
vacuum conditions at an activation voltage of 10 kV with a Nova Nano-450 scanning
electron microscope (SEM). The sample was cut from the cracked part of the core rod after
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the bending test. Considering the high insulation performance of the sample, it was placed
on an aluminum holder for sputter coating before observation.

As shown in Figure 5, a sample measuring 0.4 mm × 0.4 mm × 0.8 mm was drilled on
the center of the core rod for observations, and the two types of materials were scanned with
a nanoVoxel-3000 high-resolution computed tomography system (CT, Sanying Precision In-
struments Co., Ltd., Tianjin, China) with a voxel size of 0.0475 µm. Then, three-dimensional
(3D) structural modeling was performed for the scanning results to determine the difference
in pore size and pore distribution between the two types of materials [18].
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3. Results and Discussion
3.1. Fiber Properties

The fiber strength and the bonding strength of basalt fiber and glass fiber used to
prepare the core rods were measured, and the results are shown in Figure 6. The strength at
the probability of 63.2% was taken as the failure strength of the fiber and the fiber interface.
The monofilament strength of basalt fiber reaches 3186 MPa, which is about 1.45 times that
of glass fiber monofilament (the monofilament strength of glass fiber is 2197 MPa). However,
the bonding strength between the basalt fiber and the matrix resin is only 20.7 MPa, which
is much lower than the 32.6 MPa of glass fiber. These test results show that basalt fiber has
better mechanical properties than glass fiber, but the macroscopic properties of the core rods
prepared from it may be affected by the weak interface bonding force. The reason for the
weak interface bonding is that the basalt fiber has different surface properties. At present,
most basalt fiber impregnating compounds use glass fiber impregnating compounds,
which cannot improve the properties of such basalt fibers [19]. Therefore, the formulation
of impregnating compounds for basalt fiber needs to be improved. In the present work, the
core rods were prepared based on the current state of the art of basalt fiber to compare and
identify the differences between basalt fiber core rods and glass fiber core rods.

3.2. Interface Properties

The dye penetrant method relies on the capillary action of the test solution to determine
whether the sheath of the core rod and the fiber resin inside the core rods have defects
throughout the upper and lower parts of the interface [20]. The prepared samples of basalt
fiber composite cross arms and glass fiber composite cross arms were tested, and the results
are shown in Figure 7.

No dyeing solution was drawn onto the surface by capillary action in any part of the
sample. In the glass fiber core rods and the basalt fiber core rods, there were no defects
throughout the upper and lower parts of the interface, and the silicone rubber shed was
well-bonded with the two types of core rods, without pore defects through the upper and
lower parts of the interface.
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A hydrothermal action test was used to verify the reliability of the fiber–resin interface
in the core rods [21]. If there are pore defects or areas with poor interface bonding inside the
sample, the leakage current of the sample will change in amplitude under the hydrothermal
action, and breakdown will occur in the channel throughout the sample in severe cases.
The leakage current amplitudes of the basalt fiber core rods and the glass fiber core rods
before and after hydrothermal action are illustrated in Figure 8 (GF-C represents the glass
fiber core rods, and BF-C denotes the basalt fiber core rods).
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Before the hydrothermal action, the leakage currents of the glass fiber core rod and
the basalt fiber core rod were similar. The mean leakage current amplitudes are 40.88 µA
and 41.45 µA, respectively, and the amplitude remains stable with the increase in the
pressurization time. During the hydrothermal test, the NaCl solution penetrated the
internal defects of the core rod, which eventually led to an increase in the leakage current
amplitudes of the two types of core rods. The amplitude of the glass fiber core rods
increased by 1.49 µA, whereas that of the basalt fiber core rods increased by 6.83 µA.
The reason for such a difference is that the interface bonding of basalt fiber is relatively
weak. Although the leakage current in the hydrothermal test was weaker than that of the
glass fiber core rods, the basalt fiber core rods still meet the standard requirements, which
demand that the leakage current of the core rod sample after the hydrothermal action does
not exceed 50 µA.

3.3. Mechanical Properties

The composite cross-arm core rod and the end metal attachment are the key compo-
nents for load bearing, so the bonding between them is very important. In the crimping
process, the metal fittings are slightly deformed by an external force, and the core rod
is only slightly elastically deformed. Tensile testing proves whether the prepared core
rod-fitting bond meets the operating requirements. Figure 9 shows photos of the fittings
after the tensile load was applied to the two types of core rods. The two types of composite
cross arms suffered no failure or falling off of the fittings and were well bonded thereto.

The composite cross arms were fixed laterally on the towers when they were mounted
to support the transmission lines. In addition to bearing the dead load and the wind load of
the lines and other accessories, they also need to resist the tension from the direction of the
wires. Therefore, the ability to resist bending failure is very important for the safe and stable
operation of composite cross arms. Meanwhile, the bending strength and modulus are also
key parameters for the design of the cross-section size of composite cross arms. Table 1
shows that due to the high mechanical properties of basalt fiber, the flexural resistance of
basalt fiber core rods is much greater than that of glass fiber core rods. The flexural modulus
and the flexural strength of basalt fiber core rods are 1.8 and 1.6 times those of glass fiber
core rods, respectively. The improvement in flexural resistance implies that the creep of
basalt fiber composite cross arms under operating conditions is reduced, and a higher
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flexural modulus enables a smaller cross section to be used to meet the requirements for
the deflection of composite cross arms [22]. Figure 10 indicates that there are fluctuations
in the failure process of the basalt fiber core rods, whereas the glass fiber core rods cannot
bear any load failure. The reason for the above phenomenon is that the glass fiber core rods
can better distribute the stress to the fibers during the load bearing process, which will
eventually cause the fibers to fail instantaneously when they reach their ultimate bearing
capacity. While the basalt fiber core rods are under load, cohesive failure occurs at the resin
of the interface layer first, so failure is accompanied by fiber pull-out and other results [23].
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Table 1. Comparison of bending parameters between glass fiber core rods and basalt fiber core rods.

Glass Fiber Core Rod Basalt Fiber Core Rod

Bending modulus (GPa) 63.29 114.07
Bending strength (MPa) 682.67 727.97

Displacement (mm) 70.96 37.68

3.4. Insulation Properties

In the present work, the Weibull distribution was used to determine the breakdown
field strength of glass fiber core rod materials and basalt fiber core rod materials, and a
breakdown probability of 63.2% was employed to represent the breakdown field strength of
the medium. The test results are shown in Figure 11. There is only a slight difference in the
breakdown strength of basalt fiber core rods and glass fiber core rods. When the breakdown
field strength exceeds 22 kV/mm, both can provide sufficient insulation strength for
composite cross arms.
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A lightning-strike surface flashover test was conducted for basalt fiber composite
cross arms to verify their lightning protection performance. To eliminate the influences of
temperature and humidity on the discharge, the g-parameter method was used to correct
the temperature to the standard temperature of 20 ◦C and the humidity to the absolute
humidity of 11 g/m3. The positive- and negative-polarity U50% values of basalt fiber com-
posite cross arms are shown in Table 2. When the altitude is 0 m, the positive-polarity U50%
of composite cross arms with an effective insulation distance of 0.65 m reaches 399.40 kV,
and the negative-polarity U50% is 564.22 kV, both meeting the lightning protection re-
quirements for more than 350 kV. Figure 12 shows the positive- and negative-polarity
volt-second characteristic curves of basalt fiber composite cross arms; the expression of
the positive-polarity volt-second characteristic curve is as shown in Equation (1), and
the expression of the negative-polarity volt-second characteristic curve is indicated in
Equation (2). The positive and negative volt-second characteristic curves were obtained to
facilitate lightning protection analysis when basalt fiber composite cross arms are used.
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Vs-t = 209.1 d +
1031.5 d

t0.350 (1)

Vs-t = −541.5 d − 777.2 d
t0.447 (2)

Table 2. Positive- and negative-polarity U50% of Basalt fiber composite cross arms.

Polarity Dry Arc Distance (m) U50% test (kV) U50% (kV)

+ 0.65 380.11 399.40
− 0.65 569.98 564.22
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3.5. Microtopography

To further explore the interface difference between the two types of core rods, the
fracture sections of the two types of core rods were observed. Figure 13a shows the SEM for
the cross section of the glass fiber core rod, and Figure 13b illustrates the SEM for the cross
section of the basalt fiber core rod. There is little residual resin at the cross section of the
basalt fiber core rod, whereas there is a considerable amount of residual resin at the cross
section of the glass fiber core rod. There are also jagged resin fragments and broken fibers
on the surface of the glass fiber, whereas there is no resin residue or a relatively smooth
resin section on the surface of the basalt fiber. The reason for the above phenomenon
is that the good interface bonding of the glass fiber core rod absorbs a large amount of
fracture energy, resulting in resin wrinkles and jagged fragments, giving full play to the
fiber strength to cause the fiber to break when bearing any load. However, the interface
bonding of basalt fiber is too weak to give full play to the fiber strength, and cohesive
failure occurs at the resin of the interface layer when subject to external force, thus forming
a smooth resin cross section [24,25].

In order to further determine the interface bonding effect of the two types of core rods,
a sample measuring 0.4 mm × 0.4 mm × 0.8 mm was taken from the center of the core rod
for microcomputed tomography, and the CT image was visualized in 3D with Avizio® to
generate an internal pore image of the sample. The resulting pore image information was
processed by the Pore Network Model module to obtain the throat information of the pores
inside the sample.
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Figure 13. Glass fiber core rod section (a) and basalt fiber core rod section (b).

Figure 14 shows the internal pores of the glass fiber and the basalt fiber core rod sam-
ples. There is a significant difference in pore volume between the two. The internal pore
volume of the glass fiber core rod sample accounts for 0.0042% of the total volume, whereas
that of the basalt fiber core rod sample accounts for 0.048%. Figure 15 displays the propor-
tion of pores in different volumes inside the two types of samples. Although both have
a similar pore volume distribution, with the highest proportion of pores below 100 µm3,
the glass fiber core rod has far fewer pores than the basalt fiber core rod. The model also
shows connected pore throats, with the throat features listed in Table 3. The number of pore
throats in basalt fiber is greater than that in glass fiber, and the pore throats of basalt fiber
are narrow and long channels, whereas those of glass fiber are shorter and closer to the
pore structure. The reason for the above phenomenon is that the impregnation effect of the
matrix resin on the basalt fiber is not as good as that on the basalt fiber. Therefore, during
the pultrusion process, most of the pore defects of the basalt fiber are caused by the failure
of the resin to spread timeously, and most of the pore defects of the glass fiber are caused
by the failure to discharge the air bubbles in time, which are compressed to the center.
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Table 3. Pore throat characteristics of basalt fiber core rods and glass fiber core rods.

Basalt Fiber Core Rod Glass Fiber Core Rod

Total number of throats 9 6
Average throat area (µm2) 23.46 46.27

Average throat radius (µm) 2.57 3.76
Average throat length (µm) 40.51 28.94

4. Conclusions

Basalt fiber core rods were prepared for composite cross arms, and a penetrant test,
hydrothermal test, core rod-fitting tensile test, bending failure test, core rod breakdown field
strength test and lightning strike surface flashover test were conducted on the prepared
basalt fiber composite cross arms. The differences in leakage current, bending failure
performance and breakdown field strength of basalt fiber core rods and traditional glass
fiber core rods before and after the hydrothermal action were compared. The reasons
for the performance differences were studied by SEM and microcomputed tomography.
The following conclusions can be drawn:

1. Due to the good mechanical properties of basalt fiber, basalt fiber core rods are superior
to glass fiber core rods in terms of flexural modulus and failure deflection. Basalt fiber
core rods are better load-bearing members than glass fiber rods.

2. The breakdown field strength of basalt fiber core rods is only slightly different from
that of commonly used glass fiber core rods, so they can be used as a reliable insulating
medium for composite cross arms. In addition, the positive- and negative-polarity
U50% values of composite cross arms made of basalt fiber core rods are much higher
than 350 kV.

3. The prepared basalt fiber composite cross arms can pass the dye penetrant test,
hydrothermal test, core rod-fitting tensile test and lightning strike surface flashover
test, meeting the strict requirements of transmission lines in terms of quality and
reliability of composite cross arms.

4. SEM and the microcomputed tomography show that there are differences in the
interface bonding of basalt fiber core rods and glass fiber core rods, with the former
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being slightly weaker than the latter. Through 3D reconstruction, the number and size
of internal pores of the basalt fiber core sample were found to far exceed those of the
glass fiber core rod sample.

5. At present, the conventional impregnating compounds for glass fiber are mostly used
for basalt fiber processing, which cannot generate satisfactory treatment effects on
basalt fiber due to the difference in surface properties. The development of basalt
fiber impregnating compounds suitable for the power generation sector can further
improve the excellent properties of basalt fiber.
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