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Abstract
U-Net is a widely adopted neural network in the domain of medical image segmentation. Despite its quick embracement by

the medical imaging community, its performance suffers on complicated datasets. The problem can be ascribed to its

simple feature extracting blocks: encoder/decoder, and the semantic gap between encoder and decoder. Variants of U-Net

(such as R2U-Net) have been proposed to address the problem of simple feature extracting blocks by making the network

deeper, but it does not deal with the semantic gap problem. On the other hand, another variant UNET?? deals with the

semantic gap problem by introducing dense skip connections but has simple feature extraction blocks. To overcome these

issues, we propose a new U-Net based medical image segmentation architecture R2U??. In the proposed architecture, the

adapted changes from vanilla U-Net are: (1) the plain convolutional backbone is replaced by a deeper recurrent residual

convolution block. The increased field of view with these blocks aids in extracting crucial features for segmentation which

is proven by improvement in the overall performance of the network. (2) The semantic gap between encoder and decoder is

reduced by dense skip pathways. These pathways accumulate features coming from multiple scales and apply concate-

nation accordingly. The modified architecture has embedded multi-depth models, and an ensemble of outputs taken from

varying depths improves the performance on foreground objects appearing at various scales in the images. The perfor-

mance of R2U?? is evaluated on four distinct medical imaging modalities: electron microscopy, X-rays, fundus, and

computed tomography. The average gain achieved in IoU score is 1.5 ± 0.37% and in dice score is 0.9 ± 0.33% over

UNET??, whereas, 4.21 ± 2.72 in IoU and 3.47 ± 1.89 in dice score over R2U-Net across different medical imaging

segmentation datasets.

Keywords Medical imaging � Semantic segmentation � Convolutional neural networks � U-Net � U-Net?? �
R2U-Net

1 Introduction

Image processing techniques have been applied to examine

biomedical images for decades, and even to this day,

designing computer-aided diagnostic systems (CAD) is one

of the hot research areas [1]. The purpose of CADs is to

design systems that can perform an accurate diagnosis of

the underlying disease quickly, which can eventually aid in

the treatment of a large number of patients. Quick diag-

nosis of diseases has shown a considerable decline in death

rate, for example, in certain kinds of cancer tumors like

brain tumors, kidney stones, stomach cancer, lung cancer,

and breast cancer [2]. In this regard, a substantial amount

of research effort has been put in this area with the target to
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improve and aid the processes of disease diagnosis from

medical imagery.

The laborious nature of manual segmentation has

increased the demand for automatic segmentation. Exam-

ple images with segmentation masks are shown in Fig. 1.

The traditional methods for CAD mostly based on hand-

crafted features [3, 4] are now being replaced by variants of

convolutional neural networks (CNN) models, such as

AlexNet [5], VGGNet [6], and GoogleNet [7]. The proven

success of CNNs over traditional methods has led to new

variants of these techniques such as encoder-decoder

architectures and deep generative models for different

medical imaging applications [8, 9].

From the architectural standpoint, the models used for

classification have a slightly different architecture than the

ones used for segmentation. The classification models use

an encoder and generate class probabilities as an output.

On the contrary, as the segmentation demands capturing

the context of an image alongside its location, it is crucial

to have both encoding and decoding units in a network.

The segmentation tasks in medical imaging, in general, are

more sensitive and require extra refinement compared to

natural images due to the associated healthcare decision-

making. For example, the slight speculation around a lung

nodule in a CT image is an indication of it being malignant;

and its elimination from generated segmentation label

would result in wrong clinical diagnosis. Therefore, there is

always a need for improvement in segmentation models, so

that they can correctly segment all the fine details of the

object of interest.

The most adopted encoder-decoder structures in this

regard are fully convolutional networks (FCN) [10] and the

U-Net [11]. These two commonly used architectures differ

in the way the skip connections help to retrieve the lost fine

details. In FCN, the skip connections are used to sum up

features of encoders with up-sampled decoder feature

maps, while U-Net applies concatenation operation on

these features. U-Net was the first medical imaging seg-

mentation model shown in Fig. 2a that outperformed all the

models on small size medical imaging datasets. Due to

U-Net simple architecture with plain convolutions in

encoder/decoder, it becomes less efficient for some com-

plicated medical imaging tasks [12–15].

In U-Net, the skip connections used between encoder

and decoder require the concatenation to be at the same

level. However, this concatenation, despite being at the

same level, is not semantically similar [13, 15]. Therefore,

several variants of U-Net have been proposed, with some

attempting to change the backbone [16, 17] while others

tweaking the skip connections between encoder and

decoder [13, 15, 18]. The success of these variants to

correctly classify the target objects in complex datasets can

be attributed to two things: encoder/decoder blocks and

skip connections [11, 13, 15]. The efficiency of the blocks

being used as encoder/decoder enables the network to

extract the features crucial for segmentation tasks. On the

other hand, the skip/shortcut connections residing in

between encoder and decoder help to recover the lost fine

details of foreground objects. Considering the importance

of these two factors, we have proposed an architecture that

can enjoy the best of both worlds, i.e., an efficient back-

bone and improved skip pathways. First, to focus on better

feature accumulation, we have replaced plain convolution

blocks of U-Net with recurrent residual convolution units

Fig. 1 Images from the datasets used for the evaluation of R2U??.

(Left to right) Electron microscopy image of skin patch, CT image of

COVID-19 affected lungs, retinal vessels image from DRIVE dataset,

chest X-ray image from JSRT dataset. Top row: original images.

Bottom row: Segmented images
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adopted from [16] shown in Fig. 2b. These recurrent units

unfold to a predefined time step t making the network

deeper at each layer. This increases the field of view in the

lower layers of the neural network enabling them to extract

precise low-level features. As the low-level features: the

boundary of certain tumors, lungs, size of infection, are of

utmost importance for the prognosis of the underlying

disease; hence an accurate extraction helps to boost the

network’s performance. Second, the skip connections of

vanilla U-Net have been replaced by dense skip connec-

tions adopted from U-Net?? [13, 15] shown in Fig. 2c. In

vanilla U-Net feature maps coming from the encoder are at

a lower level than the feature maps of the decoder, this

semantic difference is called semantic gap. These dense

skip connections reduce the semantic gap between encoder

and decoder features before concatenation. Besides, these

dense connections are forwarding the different scale

information to the decoder. The decoder can then perform

the aggregation on various scale features to enhance the

segmentation accuracy. These architectural modifications

have introduced multi-depth embedded models partially

sharing a common encoder. In addition, training the net-

work under deep supervision performs shared learning on

all the embedded depths which is highly beneficial for

segmenting multiscale foreground objects. Our main con-

tributions are:

1. We introduce a new deeper segmentation model

namely R2U?? for medical image segmentation.

The model uses recurrent residual blocks over vanilla

convolutional blocks which provide a large field of

view even in the lower layers to extract features

enriched with lower-level information. As we replace

the plain convolution blocks of U-Net with recurrent

residual convolution units, these recurrent units unfold

to a predefined time step t making the network deeper

at each layer.

2. We use dense skip pathways. The dense skip pathways

reduce the semantic gap of the concatenating encoder

and decoder and propagate different scale information

to the decoder. The dense skip connections also

improve the gradient flow.

3. The concept of dense skip pathways also enables us to

define an architecture where multiple architectures of

different depths are merged into a single architec-

ture. The ensemble of multi-depth can capture the

information of varying size objects.

4. Equipped with the above characteristics, our resultant

residual recurrent architecture with dense skip connec-

tions has consistently outperformed the existing mod-

els on medical images of different modalities including

electron microscopy (EM) images of skin lesions,

computed tomography (CT) images of COVID-19

affected lungs, Chest X-Ray images, and retinal

fundoscopic images of retinal vessels.

The remainder of this paper is organized as follows. In

Sect. 2, we discuss the related work. The proposed archi-

tecture is explained in Sect. 3. The datasets used in the

study and the experimental details are presented in Sect. 4.

Results are presented in Sect. 5. The paper is concluded in

Sect. 6.

2 Related work

Semantic segmentation refers to the kind of labeling where

we have to assign a label to each pixel of an image. In the

domain of segmentation, the work on fully convolutional

neural networks (FCN) introduced the concept of com-

bining what and where information to properly label the

pixels of an image [10]. It was achieved by adding a link

between the coarse and the fine layers. In [19], Chen et al.,

proposed deeplab for semantic image segmentation using

atrous convolution, which not only increased the field of

view but atrous spatial pyramid pooling (ASPP) enabled

them to segment objects at multiple scales. SegNet [20] is a

corresponding encoder-decoder segmentation network, in

which the encoder is similar to the VGG network [6] with

no fully connected layers at the end. However, its major

(a) U-Net (b) R2U-Net (c) U-Net++

Fig. 2 Overview of the architectures a U-Net architecture with encoder and decoder blocks with simple skip connections, b R2U-Net with

recurrent residual convolution block and simple skip connections, c U-Net?? with simple convolution blocks and dense skip connections
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contribution was the use of max pooling indices in decoder

layers from its corresponding encoder part. Most of these

architectures use large data and are designed specifically

for computer vision applications. The major problem that

initially hampered the success of convolutional neural

networks in the domain of medical image segmentation

was the unavailability of sufficient medical images for

training deep models. However, this problem was first of

all tackled by the segmentation network U-Net [11],

specifically designed for medical image segmentation tasks

and worked relatively well even for smaller datasets. Since

then, U-Net has become a popular choice for medical

image segmentation tasks.

The U-Net is built upon FCN [10], which comprises two

paths: the contracting path and the expanding path. The

contracting path has a traditional convolutional encoding

unit that performs convolution operations followed by

rectified linear units (ReLU) activation. It is then down-

sampled via 2 9 2 max pooling. The main modification of

this architecture was to have a symmetric expanding path

with a large number of feature channels obtained through

up-convolution. In the expanding path, up-sampling is

followed by up-convolution, which reduces the number of

feature maps to half. These features are then concatenated

with the feature maps from the corresponding encoding

unit. The architecture was adopted quickly due to its sev-

eral advantages. Firstly, it captures context and location

information simultaneously. Secondly, it meets the demand

for a network that can provide better results on small

medical imaging datasets. Finally, it is trained in an end-to-

end fashion and provides a segmentation mask in the for-

ward pass. Nonetheless, U-Net is not restricted to medical

imaging only but has also proven its efficiency in many

computer vision applications [21]. Several variants of

U-Net have been proposed to adopt the simple U-Net

architecture to complex datasets. These alterations can be

broadly classified into two categories: changing the back-

bone and reforming the skip connections—as discussed

below.

2.1 Modified backbone

The U-Net model uses two convolution layers in each

encoder-decoder block which makes it very simple for

complex datasets. One of the ways adopted by researchers

to deal with the problem is to increase the depth of the

network. However, increasing the depth is not as easy as

stacking layers. The networks with a depth of tens of layers

initially faced the issue of vanishing gradients [22]. The

issue has been addressed by using different activation

functions like ReLU, Exponential Linear Units (ELU)

[6, 7], and by applying normalization in between the layers

[23]. He et al. [24] pointed out the degradation problem:

increasing the network’s depth saturates the performance

and then promptly drops it. To overcome this problem, they

proposed the solution of using identity mapping or skip

connections in their proposed Residual Network (ResNet).

The ResNet learns via residual function and makes the

optimization task easier. This approach helped with over-

coming the degradation problem and improved the net-

work’s performance. Ever since, deep models and skip

connections go hand in hand. These residual connections

are quite popular in deep U-Net variants; like in [16], the

authors have devised Recurrent Residual U-Net (R2U-

Net). The model is a modification of U-Net [11] with

replacing simple convolutional units with Recurrent

Residual Convolutional Layers (RRCL) [24, 25]. Each

encoder-decoder unit has two sub RRCNN blocks where

each unfolds to a time step t. The final output is an ele-

ment-wise summation of output from the second recurrent

convolution block and the original input. The increased

field of view even in the lower layers and the efficiency of

feature summation aids in extracting very low-level fea-

tures, which are crucial for medical image segmentation.

This architecture with fewer parameters outperformed the

ones with a large number of parameters. In [26], however,

this element-wise feature summation did not benefit in

improving the testing performance due to the summation

being performed outside the network. Similarly, in M-UNet

[27], the authors have made the network sufficiently deep

by embedding DenseNet [28] in the architecture. The

convolution blocks of the encoder are replaced by Dense-

Net, while the plain convolutions are kept in the decoder

block. The arrangement has made the network deeper that

improved performance while keeping a reasonable number

of network parameters. DIU-Net [29] is an attempt to make

the U-Net model wider and deeper by fusing Inception-Res

and dense inception block. Unlike traditional Inception-Res

block, each convolution layer is followed by a batch nor-

malization layer to avoid vanishing gradient. The dense

inception block comprises densely connected inception

blocks. The network uses 3 dense inception blocks, with

one in the encoder, one in the decoder, and one in the

middle. The dense inception block of synthesis and anal-

ysis path has 12 inception blocks, whereas the middle one

uses 24 blocks. Experimentation results showed improve-

ment over state-of-the-art models. However, the downside

of the network is that increasing the growth rate will lead to

too many network parameters, which makes the training

process slower and difficult. Likewise, in MultiResUNet

[12], the encoder-decoder blocks are replaced by a Multi-

Res block which makes use of residual connections. The

motivation behind MultiRes blocks is to make the network

capable of segmenting the foreground objects appearing at

various scales in medical images. These blocks implement

Inception-like blocks [7] of 3 9 3, 5 9 5, and 7 9 7 with
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successive 3 9 3 filters and a 1 9 1 convolution added

with residual connection to preserve the dimensionality of

the image. The architecture has shown significant

improvement in performance over U-Net across five

medical image modalities. With the focus on extracting

advanced segmentation features, probabilistic program-

ming is used in [30] with U-Net to enhance performance on

ultrasound nerve segmentation. Similarly, in the residual

attention U-Net model [31], the authors have used aggre-

gated residual transformation and soft attention in the

decoder. The aggregated residual block made the network

efficiently deep, which was highly crucial for extracting

efficient features for a complex multi-class problem. The

network outperformed the U-Net on segmentation of the

COVID-19 dataset. Another encoder-decoder network

presented in [32] proposes the residual block and feature

variation (FV) unit. These two blocks are used in the first

three layers of the encoder. In the fourth layer, progressive

atrous spatial pyramid pooling is added to increase the

receptive field. However, the decoder of the network

comprises simple deconvolution blocks. The architecture

demonstrates the importance of the increased receptive

field in the performance of a model.

2.2 Modified skip connections

Most of the variants of U-Net, including those designed for

targeting 3D medical images [34, 35], have been using the

plain skip connection. The effectiveness of skip connec-

tions in recovering the lost fine-grained details has also

been demonstrated in many other segmentation architec-

tures like [38–41] and has been proven by Drozdzal et al.

[42].

Zhou et al. [13, 15] brought attention toward redesigning

the skip connection between the encoder and the decoder

networks. In U-Net [11], the features from the encoder are

directly concatenated with the decoder which requires that

they are at the same scale. However, the authors in [13, 15]

argued that even though these feature maps are at the same

scale, but not semantically similar and there is no theory to

back that this fusion is the best possible strategy. There-

fore, they replaced these simple connections with dense

convolutional blocks to enrich encoder features with

semantic information and bring their semantic level closer

to the awaiting decoder before merging. In this way, the

optimization task becomes easier. Another contribution

was to introduce an ensemble of U-Nets with different

depths making the model capable of segmenting objects of

varying sizes with high accuracy. These dense skip con-

nections are quickly adopted by researchers in models for

various applications such as gallstone segmentation [36],

pelvic organ segmentation [37], and brain tumor segmen-

tation [14, 43]. The use of these dense skip connections in

[15] has proven efficacy in Mask-RCNN segmentation as

well. Likewise, the Dense U-Net?? [14] uses Half Dense

U-Net [33] with the dense skip connections along with the

skip pathways. The dense block at each layer uses the

aggregated features from all the previous layers. It high-

lights the benefit of combining the dense skip pathways

with aggregated features from Half Dense U-Net. MDU-

Net [18] redesigned the skip connections to connect each

decoder with three encoders depending on their position. In

addition to this, the network uses skip connections along

each encoder-decoder block to connect it with all the

previous blocks. These connections enable them to use

features from different scales. The architecture demon-

strates the importance of using the features from various

scales with feature concatenation from a different encoder

for gland segmentation. Different medical imagining seg-

mentation models and variants of U-Net are summarized in

Table 1.

3 Proposed network architecture: R2U11

To overcome the challenges of U-Net [11] and its variants

as mentioned in Section II, we propose a model R2U??.

The three main components for the proposed network,

namely the skip pathways, the backbone, and the deep

supervision, are described below.

3.1 Skip pathways

Re-designed skip pathways modify the connection between

encoder and decoder. Inspired from U-NET?? [13, 15],

the feature map coming from the encoder will go through

dense skip pathways before entering into the decoder

block. The dense skip pathways refer to the dense skip

connections to the convolution blocks along the skip

pathway. The number of convolution layers along the skip

pathways is determined according to its pyramid level. As

shown in Fig. 3d, for example, if encoder and decoder are

at level 4, encoder block is Xð0;0Þ and decoder block is

Xð0;4Þ, there will be three convolution

blocks:Xð0;1Þ;Xð0;2ÞandXð0;3Þ in the dense skip pathway.

Each convolution layer along the skip pathway applies

convolution on the concatenated feature maps coming from

all the previous blocks at the same level and the corre-

sponding up-sampled feature map from the lower block.

For example, Xð0;2Þ applies convolution on the concate-

nated feature maps coming from the same level blocks:

X 0;0ð Þ, Xð0;1Þ and up-sampled feature map from lower block

Xð1;1Þ. In this way, the multiscale features with the same

resolution are combined horizontally, whereas different

resolution multiscale features are combined vertically. It

Neural Computing and Applications (2022) 34:17723–17739 17727
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will not only reduce the feature gap between encoder and

decoder but will also capture the multiscale context.

Mathematically, skip pathways can be formulated by

Eq. (1). Let us assume m to be the index of the down-

sampling layer in the case of encoder, and n to be the index

of convolution layer residing in the skip pathways. The

concatenated input to the convolutional layer Xðm;nÞ can be

expressed as:

xm;ni ¼ xm�1;n; n ¼ 0

½½xm;k�n�1
k¼0; uðxmþ1;n�1Þ�; n[ 0

�
ð1Þ

The feature map for the Xðm;nÞ convolutional layer then
becomes:

xm;no ¼ H xm;nið Þ ð2Þ

where H(.) is the representation of recurrent residual con-

volution explained in III.B. The up-sampling from the

lower level is denoted by u(.). The concatenation operation

is represented by large square brackets. It is noticed from

Fig. 3 that the outermost encoder with n = 0, is fed with

only one input from its upper encoder block. However, the

encoders with n = 1 receive two inputs; one from the same

encoder level and one up-sampled input from the lower

level of the encoder. Due to the dense skip connections, for

the nodes with a value of n[ 1, n inputs are received from

the same encoder level, and one input is up-sampled from

the lower corresponding encoder level.

3.2 Backbone

The U-Net model and its variants have been reporting

leading results on several medical image segmentation

datasets. Inspired by one of the variants, the Recurrent

Residual U-Net [16], we have used recurrent residual

convolutions layers (RRCL) over the simple convolutional

layers of U-Net. The recurrent convolution layer (RCL)

grows in accordance with time steps [25]. Let us define

discrete time step as t. To represent the RRCL, we define

the H(.) operation at time step t as RRCL. The feature map

according to [16] can be represented as:

ðOm;nÞt ¼ ðwm;nÞft � ðx
m;n

i Þft þ ðwm;nÞrt�1 � ðx
m;n
i Þrt�1 ð3Þ

Here, the concatenated inputs for the RCL are expressed

as ðxm;ni Þft and ðxm;ni Þrt�1, respectively. The term ðwm;nÞft
represents the weights in a standard convolution operation,

whereas ðwm;nÞrt�1 represents weights in a recurrent

Table 1 Development of medical imagining segmentation models over the years

References Model type Model name Key feature

[10] Baseline encoder–decoder

Models of computer vision

Fully convolutional

neural networks (FCN)

Encoder decoder introduction

[19] Deeplab Atrous convolution

[20] SegNet VGG like encoder

[11] Medical imaging segmentation

model

U-Net Designed specifically for medical images with U like encoder-

decoder structure

[16] U-Net backbone modification R2U-Net Recurrent residual convolutional layers in U-Net

[27] M-UNet Embedding dense layers in U-Net

[29] DIU-Net Fusing Inception-Res and dense inception block in U-Net

[12] MultiResUNet Introduction of inception like blocks in U-Net

[31] Residual attention U-Net Aggregated residual transformation and soft attention in the

decoder of U-Net

[33] Half Dense U-Net Hybrid dense convolution block with different filters

[34] 3D U-Net 3D Convolutional Layers in U-Net

[35] V-Net U-Net modification for volumetric medical Images

[13] U-Net skip connections

modification

U-Net?? Dense skip connections between encoder and decoder

[15] U-Net?? Dense skip connections with modified backbones of existing

architectures

[36] U-Next Attention along decoder, spatial pyramid pooling of skip

connection and dense connection along skip pathways

[37] Dilated Convolution

U-NET??

Dilated convolutions in backbone and along skip pathways

[14] DU?? Backbone of Half Dense U-Net and dense skip pathways

[18] MDU-Net Multiscale dense skip connections between encoder and decoder
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convolution operation. The output ðOm;nÞt generated from

recurrent convolution block fed to the activation function

ReLU which is represented as:

ðOm;nÞt ¼ f ðOm;nÞt
� �

¼ max 0; ðOm;nÞt
� �

ð4Þ

This output of the RCL unit at time step t is then passed

to the succeeding RCL unit of RRCL. If ðFm;nÞt is the

output from the second RCL unit of RRCL then the final

output from RRCL is computed as:

ðxm;no Þt ¼ ðxm;ni Þt þ ðFm;nÞt ð5Þ

Here, ðxm;no Þt shows the output of the RRCL unit at time

step t. This output is then fed to the down-sampling layer in

the case of the encoder, to the up-sampling layer in the case

of the decoder, and to the next recurrent residual convo-

lution layer (RRCL) in case of skip pathways.

The visual representation of unfolding of RCL for t = 2

is shown in Fig. 4. For the convolution operation at t = 2,

the current input at t = 2 and the output from previous time

step t = 1 both are applied with convolutional operation

according to Eqs. 3 and 4. Each recurrent residual block as

Fig. 3 R2U?? with evolving depths from a to d. Ensemble of these

depths is shown in (e). Each convolutional block performs recurrent

convolution depending on the time step t, as shown for t = 2 in Fig. 4.

Residual connections are added between recurrent convolutions to

avoid degradation problems (as shown in Fig. 4 later). a–d R2U??

with L1�4 depths; every decoder in all the depths receives similar

resolution multiscale features horizontally from its corresponding

dense skip pathways, whereas varying resolution multiscale features

are aggregated vertically across the network. e Average ensemble. In

average ensemble network, all of these networks have their own

decoder but partially share the same encoder which introduces shared

learning in the network. R2U?? can explicitly benefit from deep

supervision as depths like L2;L3 and L4 are embedded with their

corresponding lower-level networks
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shown in Fig. 5 further comprises two recurrent convolu-

tion blocks. The input sample when fed into the recurrent

residual block passes from two back-to-back recurrent

convolution blocks. The final output from recurrent resid-

ual block is the feature-wise summation of the original

input at time step t and output from the second RCL block

at time step t. All the convolutional blocks in R2U?? are

recurrent residual convolution blocks.

3.3 Deep supervision

The added dense skip connections enable the network to

merge the architectures of various depths into a single

architecture, as shown in Fig. 3. Different depths are sep-

arately shown in Fig. 3a–d, where 3(a) shows the archi-

tecture with only one decoder making the architecture to be

a level-1 network. However, level-2 architecture is shown

in 3(b) with level-1 Xð0;0Þ;Xð0;1Þ and Xð1;0Þ embedded in it.

Similarly, level-3 and level-4 are shown in 3(c) and 3(d).

For 3 (a–d), the output is taken from L1; L2, L3 and L4,

respectively. These networks are trained without deep

supervision using Eq. 6. Figure 3e refers to the ensemble

network; when the final output is taken as an average of

output from different depths. Ensemble architecture shown

in Fig. 3e is a level 4 network embedded with all lower

depths, i.e., L1; L2 and L3. All of these four levels share the

same encoders but have their own decoders. Each of the

levels is trained separately with its own loss function, i.e.,

Xð0;qÞ where q�f1; 2; 3; 4g. At the inference, the final output
will be calculated by taking the average of the output from

each depth. It is trained using deep supervision scheme in

R2U??, the loss function is applied on the nodes Xð0;qÞ

where q�f1; 2; 3; 4g. A 1 9 1 convolution layer followed

by activation function is added at the output of nodes

Xð0;1Þ;Xð0;2Þ;Xð0;3Þ and Xð0;4Þ. This convolution layer has C

number of filters for the C segmentation classes in any

dataset. We have used the loss function defined for the U-

Net?? in [13, 15]. It is a hybrid loss function that com-

prises pixel-wise cross entropy loss and soft dice coeffi-

cient loss. The loss function is calculated for each of the

semantic level, i.e., Xð0;1Þ;Xð0;2ÞXð0;3Þ and Xð0;4Þ. The hybrid
loss function can enjoy the perks from both loss functions:

smooth gradients and dealing with class imbalance prob-

lems. Mathematically, it can be written as:

L Y ;Pð Þ ¼ � 1

N

XC
c¼1

XN
n¼1

yn;c log pn;c þ
2yn;cpn;c
y2n;c þ p2n;c

 !
ð6Þ

where, Y denotes the ground truth labels, P denotes the

predicted probabilities values, C represents the number of

segmentation classes. Furthermore, yn;c 2 Y and pn;c 2 P,

where n denotes the nth pixel in a batch with a total of N

pixels within a given batch. Finally, the total loss is the

weighted sum of the individual loss functions. Mathemat-

ically, it can be written as:

L ¼
Xd
i¼1

gi:L Y;Pi
� �

ð7Þ

The summation runs over the number of decoders rep-

resented by d. The value of gi is set to be one to assign the

same weight to all the decoder losses.

To sum up the benefits of our architecture, the Residual

Unit helps in training a deeper architecture by avoiding

degradation problems. The Recurrent Unit aids in feature

accumulation, which enables it to accumulate accurate

Fig. 5 Each recurrent residual block constitutes of two successive

recurrent convolution blocks which are explained in Fig. 3. The

residual connection is used to generate the final output from

combining the original input and output from second recurrent unit.

Conv represents convolution. (Figure adapted from R2U-Net [16])

Fig. 4 The unfolding of recurrent convolution block for time step

t = 2. For t = 0, the output is generated through convolution layer

with no recurrent inputs. For t = 1, the generated output from t = 0

combined with the original input at t = 1 is fed to the network.

Similar process is repeated for t = 2. Conv represents convolution.

(Figure adapted from R2U-Net [16])
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low-level features highly crucial for segmentation. Having

convolution layers on skip pathways reduces the dissimi-

larity in the features of the encoder and decoder. Having

dense skip/shortcut connections on skip pathways improve

gradient flow. Finally, ensemble multi-depth outputs ensure

better accuracy on multiscale foreground objects.

4 Experiments

The experimentation process involves two main steps;

training and testing, as shown in Fig. 6. For training, pre-

processed images are fed to R2U?? to train the model

using cross-validation. Once the training process is com-

pleted, unseen testing data is presented to the trained model

to make predictions.

4.1 Datasets

The proposed architecture has been evaluated on a range of

biomedical image segmentation datasets, namely: (1)

Electron Microscopy (EM) dataset of skin lesions, (2)

COVID-19 dataset of lung CT images, (3) DRIVE dataset

of retinal fundoscopic images, and (4) JSRT dataset of

chest X-ray images. These datasets cover the segmentation

of skin lesions, lungs, and retinal blood vessels, as shown

in Fig. 1. These datasets are generated from medical image

modalities like microscopy, CT scans and X-rays.

1. Electron Microscopic (EM): This publicly available

dataset is a part of the ISBI 2012 EM segmentation

challenge [44]. The dataset comprises a total of 30

images, with each having a dimensionality of

512 9 512. These images are extracted from serial

section transmission electron microscopy (ssTEM) of

Fig. 6 Process flow diagram of training and testing. Training and

validation images are pre-processed before presenting to R2U?? for

learning. Once the model has learned, pre-processed testing data is

presented to the trained model to predict the segmentation mask. The

predicted masks shown for each dataset are only for illustration

purposes. All the implementations are in Tensorflow and Keras

libraries
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the Drosophila first instar larva ventral nerve cord

(VNC). The dataset is provided with the fully anno-

tated ground truth labels for each image. The cells are

labeled as white, whereas the membranes are repre-

sented with the black pixels. For the experimentation

purpose, we randomly split the dataset into training 27

images from which 3 images are used for validation

while testing is performed on the remaining 3 images.

To overcome the small sample size of images, we have

used the patch-based strategy for both training and

inference. All the patches are generated using the

sliding window technique with a patch size of 96 9 96

and a stride of 48.

2. COVID-19 CT Images Dataset: It is the first publicly

available dataset for the COVID-19 segmentation [45].

The dataset comprises a total of 100 CT scans extracted

from 19 COVID-19 patients. These images are gath-

ered by the Italian Society of Medical and Interven-

tional Radiology. The ground truths of only 100 slices

are publicly available. To overcome the small sample

size of labeled ground truth, another dataset is gener-

ated in [46] by extracting the unlabeled images from

COVID-19 CT segmentation dataset. The unlabeled

CT volumes from all 19 patients are extracted and

pseudo labels for the 1600 2D slices from these

volumes are generated. We have used these pseudo

labels from [46] to pre-train our network. Subse-

quently, these weights are used to initialize our

network. From 100 labeled slices, 45 randomly

selected images are used for training, 5 for validation,

and 50 images are used to evaluate the model’s

performance. As these images are not of uniform

dimension, so we resized all images to 256 9 256.

3. JSRT dataset of chest X-ray images: The dataset used

for lung image segmentation is produced by the

Japanese Society of Radiological Technology (JSRT)

[47].The dataset contains 247 chest X-Rays with 154

nodule images and 93 non-nodule images The resolu-

tion of images is 2048 9 2048. We have split the

dataset into 80% training and 20% testing. From

training images, we have used 38 images for valida-

tion. We have resized the images to 256 9 256 to

reduce the computational complexity.

4. Blood Vessel Segmentation: In our experimentation,

we have used the DRIVE database [48] for retinal

blood vessel segmentation. The dataset has in total 40

retinal images. The dataset is split into 20 training

images and 20 testing images. Each image has a

dimensionality of 565 9 584. In order to square the

image dimensions, we have cropped images, taking the

portion from 19 to 554 rows and 29 to 564 columns.

The resulting images were of size 535 9 535. In our

experimentations, we have used patch-based technique

for both training and inference. The patches are

extracted using the sliding window technique with a

patch size of 96 9 96 and stride 5. We have generated

154,880 testing and 154,880 training patches from

which 30,976 are used for validation.

4.2 Quantitative analysis approaches

For the analysis of the experimental results the evaluation

metrics used in the study are as follows.

(1) Dice coefficient: The dice coefficient is a commonly

used metric for image segmentation which is com-

puted as follows:

DC ¼ 2
GT \ PRj j
GTj j þ PRj j ð8Þ

Where, GT represents the ground truth labels and PR

represents the predicted labels.

(2) Accuracy: Accuracy is used to measure the pixels

that are correctly classified by the network. The

formula used to calculate accuracy is given by

equation:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð9Þ

where, TP is true positive, TN is true negative, FP is false

positive, and FN is false negative.

(3) Intersection over union: Another commonly used

metric for image segmentation is intersection over

union (IoU). It is computed as ratio of intersection of

ground truth and predicted results with union of

ground truth with predicted labels. The formula is

given below:

IoU ¼ GT \ PRj j
GT [ PRj j ð10Þ

4.3 Baseline and implementation

We have compared the performance of our proposed model

with U-Net, R2U-Net, and U-Net??. The details of the

architecture and number of filters used in the study are

shown in Table 2. The numbers of filters used in the pro-

posed model are [32, 64,128, 256, 512]. For each convo-

lution block Xm;n; the number of filters used are shown in

Table 2, for example for m = 0 and n = 0 to 4, i.e.,

blockX0;0�4, 32 filters are used. The filter size is kept 3 9 3

in all layers with a stride of 2. The down-sampling is done

using max-pooling operation with a filter size of 2 9 2 and

a stride of 2. The batch normalization is followed by the

activation function ReLU. In the final layer sigmoid
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activation is used to generate predicted probabilities val-

ues. We have used Adam optimizer with the learning rate

set to 3e-4. All the experiments are implemented using

Keras and Tensorflow libraries on NVIDIA GeForce RTX

2060 with 6 GB dedicated memory. For the training, we

have used early-stop method on the validation datasets.

5 Results and discussion

The results of the R2U?? are compared with the U-Net,

R2U-Net, and U-Net?? model in terms of evaluation

metrics IoU and dice coefficient for EM, COVID-19 and

JSRT dataset. These networks are trained for 20 indepen-

dent trials and mean IoU and mean dice coefficient with

standard deviation (sd) are reported for these trials. The

performance on the Drive data set is evaluated using dice

coefficient, sensitivity, specificity, and accuracy. The

results reported in Tables 3 and 4 show that

R2U?? consistently outperforms U-Net??. In summary,

the IoU improvement achieved over UNet?? is up to

3.58% without deep supervision, and up to 1.87% with

deep supervision. Similarly, compared with R2U-Net, the

IoU improvement is up to 7.11%. The details are as

follows.

Table 2 Details of the

architectures and number of

filters used in each convolution

block Xm;n

Network t Params X0;0�4 X1;0�3 X2;0�2 X3;0�1 X4;0

U-NET [11] – 7.0 M 32 64 128 256 512

R2U-NET [16] 2 16.7 M 32 64 128 256 512

U-NET??

[15]

– 9.0 M 32 64 128 256 512

R2U?? (Ours) 1 9.7 M 32 64 128 256 512

R2U?? (Ours) 2 18 M 32 64 128 256 512

Comparison of number of parameters with different value of t

Table 3 Segmentation results for EM, COVID-19 and JSRT datasets for U-Net, R2U-Net, U-Net?? and R2U??

Network Value

of t
Parameters DS Application

EM COVID-19 JSRT

IoU ± sd Dice ± sd IoU ± sd Dice ± sd IoU ± sd Dice ± sd

U-Net [14] – 7.0 M – 88.45 ± 1.12 93.17 ± 0.64 38.29 ± 5.07 55.38 ± 5.48 76.34 ± 9.46 86.22 ± 6.85

R2U-Net [16] 2 16.7 M – 89.79 ± 0.31 94.12 ± 0.17 57.82 ± 2.39 72.10 ± 2.02 81.66 ± 12.59 89.50 ± 10.03

U-Net?? [3] – 9.0 M � 88.92 ± 0.14 94.09 ± 0.23 58.56 ± 1.59 73.85 ± 1.29 82.17 ± 1.81 90.2 ± 1.09

U-Net?? [3] – 9.0 M 4 89.33 ± 0.10 94.41 ± 0.45 61.08 ± 0.04 75.84 ± 0.03 86.9 ± 3.18 92.96 ± 1.88

R2U?? (Ours) 2 18.0 M � 89.83 ± 0.34 94.14 ± 0.19 60.59 ± 0.01 75.46 ± 0.01 85.75 ± 2.09 92.31 ± 1.22

R2U?? (Ours) 2 18.0 M 4 90.35 – 0.23 94.93 – 0.13 62.80 – 0.01 77.15 – 0.01 88.77 – 1.36 94.05 – 0.77

The results are reported as mean IoU ± sd and Dice ± sd on 20 independent trials for both networks with and without deep supervision (DS).

Standard deviation is represented in short by sd. The best scores are highlighted in bold

Table 4 The recorded dice

coefficient, sensitivity,

specificity and accuracy values

for U-NET, R2U-NET,

U-NET?? and R2U??

Network DS DRIVE dataset

Dice coefficient Sensitivity Specificity Accuracy

U-NET [11] – 79.58 74.65 98.55 96.15

R2U-Net [16] – 80.86 80.87 97.86 96.16

U-Net ? ? [15] � 79.89 73.69 98.80 96.36

U-Net?? [15] 4 80.91 76.87 98.72 96.51

R2U?? (Ours) � 80.02 73.71 99.02 96.46

R2U?? (Ours) 4 81.50 78.05 98.68 96.60

The best scores are highlighted in bold
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The improvements in comparison with U-Net?? in

terms of mean IoU and dice coefficient without deep

supervision are: (2.03:, 1.61:) for COVID-19, (3.58:,
2.11:) for JSRT, (0.91:, 0.05:) for EM. With deep

supervision, the improvements in terms of mean IoU and

dice coefficient are: (1.72:, 1.31:) for COVID-19, (1.87:,
1.09:) for JSRT, (1.02:, 0.52:) for EM. Similarly, the

improvement over R2U-Net with deep supervision is

(4.98:, 5.05:) for COVID-19, (7.11:, 4.55:) for JSRT,

(0.56:, 0.81:) for EM. It is evident from the results that

adding the recurrent residual connection has shown decent

improvement in the performance for both cases.

Image

R2U++

R2U++ 
Diff

U-Net++

U-Net++ 
Diff

R2U-Net

R2U-Net 
Diff

U-Net

U-Net 
Diff

Truth

Fig. 7 The semantic segmentation outputs and difference images with

ground truth for EM dataset from R2U?? (Ours), U-Net??, R2U-

Net, and U-Net. The first row has the input image, and the final row

contains the ground truth image. Diff represents the difference

Images

R2U++

R2U++ 
Diff 

U-
Net++ 

U-
Net++ 
Diff

R2U-
Net 

R2U-
Net 
Diff

U-Net

U-Net 
Diff

Truth

Fig. 8 The semantic segmentation outputs and difference images with

ground truth for COVID-19 dataset from R2U?? (Ours), U-Net??,

R2U-Net, and U-Net. The first row has the input image, and the final

row contains the ground truth image. Diff represents the difference
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The nature of the complexity of the EM dataset is dif-

ferent than the others because a major part of the image has

foreground pixels and very thin blood vessels belong to the

background. R2U-Net has more IoU than U-Net?? on EM

which shows that recurrent residual connections can help to

draw clear boundaries of thin background classes from

majority foreground classes. The dice coefficient achieved

by our method for COVID-19 is higher than the reported

dice coefficient by Inf-Net [46] by a factor of 3.25:. The
segmented images and difference images with ground

truths for EM, COVID-19, and JSRT, DRIVE datasets are

shown in Figs. 7, 8, 9 and 10, respectively. In the case of

EM segmentation in Fig. 7, the comparison of row 2, row

4, row 6, and row 8 shows that with R2U??, the contours

of cells are segmented properly while preserving the

thickness of cell membranes with no breakage. Similarly,

for COVID-19, the contours from R2U? ? are better

defined than U-Net? ? which are more rounded as shown

in Fig. 8. In addition to this, U-Net?? also has more false

positives than R2U??. Similar behavior can be observed

for JSRT in Fig. 9.

Experimental results for the DRIVE dataset are reported

in Table 4, in comparison with U-Net?? without deep

supervision, the increase in dice coefficient, sensitivity,

specificity, and accuracy is 0.13:, 0.02:, - 0.04;, and 0.1:
respectively. With deep supervision, the improvement

attained in dice coefficient, sensitivity, specificity and

accuracy is 0.59:, 1.18:, 0.22:, and 0.09:, respectively. It
can be observed from difference images shown in Fig. 10

that R2U?? is slightly better than U-Net?? in segment-

ing thin blood vessels. Similarly, the improvement over

R2U-Net is 0.64: in dice coefficient, 0.82: in specificity

values, and 0.44: in accuracy value with deep supervision.

The learning curves for the datasets by each model are

shown in Figs. 11 and 12 using loss function from Eq. 7 for

no deep supervision and with deep supervision, respec-

tively. It is obvious that R2U?? has the lowest validation

error in all the cases. The comparison of inference time

taken by models under study is shown in Fig. 13. The

models have been tested on 20,000 drive patches with the

size of 96 9 96. As expected, U-Net having the least

number of parameters takes the least amount while our

model takes the most.

While the proposed method consistently outperformed

U-Net?? and U-Net on the segmentation tasks, we

observed that there is a significant increase in the number

of trainable parameters and thus, an increase in the required

computational resources for training the model. However,

we believe that this requirement is alleviated by the larger

Images

R2U++

R2U++
Diff

U-Net++

U-Net++ 
Diff

R2U-Net

R2U-Net 
Diff

U-Net

U-Net 
Diff

Truth

Fig. 9 The semantic segmentation outputs and difference images with

ground truth for JSRT dataset from R2U?? (Ours), U-Net??, R2U-

Net, and U-Net. The first row has the input image, and the final row

contains the ground truth image. Diff represents the difference
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memory and number of cores in modern GPUs that are

rapidly becoming available. Furthermore, by modern

standards of deep learning, the proposed model with

parameters in the order of 18 M looks smaller when

compared to more recent models such as vision-trans-

formers that have parameters in the order of 632 M [49].

6 Conclusion

In this study, we introduced recurrent residual convolution

blocks and dense skip connections-based U-Net architec-

ture for medical image segmentation. The proposed

architecture extracts the features best representing ‘‘what’’

and ‘‘where’’ information, which is backed by the perfor-

mance of model. The improvement in the performance of

the segmentation task can be attributed to; (1) the use of

recurrent residual unit over a plain convolution which

enables the network to extract low level features precisely

without running into the degradation problem, (2) the dense

skip pathways help in reducing the semantic gap between

encoder and decoder thus more similar semantic concate-

nation results in improved performance and (3) the deep

supervision enables us to classify the multiscale foreground

objects correctly. The performance of R2U?? is evaluated

on four distinct medical imaging modalities: electron

microscopy (EM), X-rays, fundus, and computed tomog-

raphy (CT). The average gain achieved in IoU score is

1.5 ± 0.37%, and in dice score is 0.9 ± 0.33% over

UNET ? ? , whereas 4.21 ± 2.72 in IoU, and

3.47 ± 1.89 in dice score over R2U-Net across these dif-

ferent medical imaging segmentation datasets. Our future

work will focus on exploring the use of dense skip

Images

R2U++

R2U++ 
Diff 

U-Net++

U-Net++ 
Diff

R2U-
Net

R2U-
Net Diff

U-Net

U-Net 
Diff

Truth

bFig. 10 The semantic segmentation outputs and difference images

with ground truth for DRIVE dataset from R2U?? (Ours),

U-Net??, R2U-Net, and U-Net. The first row has the input image,

and the final row contains the ground truth image. Diff represents the

difference
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connections in deep generative models, particularly gen-

erative adversarial networks for medical image

segmentation.
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