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Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using

multi-regional sampling of nine resected HCC with different aetiologies, here we construct

phylogenetic relationships of these sectors, showing diverse levels of genetic sharing,

spanning early to late diversification. Unlike the variegated pattern found in colorectal

cancers, a large proportion of HCC display a clear isolation-by-distance pattern where

spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases

showed genetic divergence occurring before and after primary tumour diversification,

respectively. Metastatic tumours had much higher variability than their primary tumours,

suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant

location. The presence of co-existing mutations offers the possibility of drug repositioning for

HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a

comprehensive understanding of the evolutionary trajectories of HCC and suggest novel

avenues for personalized therapy.
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L
iver cancer is the fifth most common cancer globally but
the second most important cause of cancer deaths1.
An important contribution to this grave prognosis is the

paucity of efficacious systemic treatment2. The current systemic
therapy sorafenib has no validated biomarker and improves
survival in advanced hepatocellular carcinoma (HCC) by only a
few months (2.8 months in Caucasians3 and 2.3 months in
Asians4).

Understanding the origin and development of intra-tumour
heterogeneity (ITH) has the potential to yield important
insights for therapeutic target selection and drug development5.
Although ITH has been observed for many clinical and
molecular phenotypes in HCC (for example, histologic grade6,
cell proliferation7, morphological and immunohistochemical
profiles8), ITH survey at the genomic level for single lesion
HCC has only been explored using single patient cases9–11,
revealing appreciable variability possibly driven by non-
Darwinian forces9. A related study focusing on multi-lesion
Hepatitis B Virus (HBV)-positive HCC discovered variable extent
of genetic variability12. Considering the diverse aetiologies and
ethnic backgrounds contributing to HCC2, a systematic survey of
ITH across diverse patient groups is fundamental to
understanding the evolutionary trajectories of HCC.

In this study, using multi-regional sampling of nine resected
HCC with different aetiologies, we find that the phylogenetic
relationships of tumour sectors from the same patients have
diverse levels of genetic sharing, spanning early to late
diversification. Distinct to what is found in colorectal cancers
where genetic variegation accompanies the development from
adenoma to carcinoma13, a large proportion of HCC displays a
clear geographic segregation where spatially closer sectors
are genetically more similar. Multi-sector analysis of the two
intra-hepatic metastases revealed much higher genetic variability
than their primary tumours, suggesting that intra-hepatic
metastasis is accompanied by rapid diversification at the distant
location. Our results draw a comprehensive understanding of
HCC development and pinpoint unique evolutionary trajectories
for intra-hepatic metastases.

Results
Spatial sectoring and sequencing. We studied early pathological
stages (American Joint Committee on Cancer stages I and II (ref.
14) of surgically resected HCC with clear microscopic margins
(R0 resection) from patients with good liver function (Child-Pugh
A). Eight HCC were solitary and one had a concomitant second
smaller tumour in the contralateral lobe, treated by intra-
operative radiofrequency ablation. These HCC have arisen from
chronic viral hepatitis B (five cases), chronic viral hepatitis C
(three cases) and diabetes mellitus with steato-hepatitis (one case)
from five ethnic groups namely Singapore Chinese, Singapore
Malay, Indonesian, Cambodian and Burmese (Supplementary
Table1).

To elucidate the spatial organization of the ITH, we sampled a
grid of sectors through a central slice of each tumour (Fig. 1a).
Forty-seven whole-genome (WGS, 37� coverage) and 13 whole-
exome sequencing (WES, 85� coverage) were performed across
the 9 tumours (Fig. 1a and Supplementary Table 2). Two of the
nine patients were subsequently diagnosed with intra-hepatic
metastases and were both surgically resected at approximately 12
months after the index surgery (interval of 384 days in patient 1
and 381 days in patient 2). These resected metastases were
similarly subjected to multi-sectoring (two sectors for the first
patient and four sectors for the second patient).

Raw sequence data were processed through a series of cancer
genomic analyses pipeline (Methods). Through experimental

validation, we found that the true positive rate of the somatic
variants was high (96%, Supplementary Note 1 and
Supplementary Data 1). In all patients, the rates of somatic
mutation in the primary tumour ranged from 2.95 to
17.23 single-nucleotide variants per Mb (Fig. 1b) and were
intermediate compared with many other common cancer types
(Supplementary Fig. 1 and Supplementary Note 2). Interestingly,
patient 9 who had much higher mutation burden than other
patients carried a strong AA signature possibly driven by herbal
chemicals (Supplementary Fig. 2)15,16. Using genome-wide copy
number and minor allele frequency profiles, we estimated the
tumour purity across the samples (Methods and Fig. 1b). All the
sectors in our sample showed good tumour purity (mostly
between 0.5 and 0.9) with a mean purity of 0.69. This matched
earlier observations that tumour cell content in HCC is generally
much higher than many other cancer types17.

Driver mutations and copy number variations across cases. By
extracting a total of 1,185 WGS/WES of liver cancer genomes
from open sources together with the 9 cases here (Methods), we
identified 65 significantly mutated driver genes for HCC18

(Supplementary Data 2). The most frequent driver genes for
HCC were CTNNB1 and TP53 (Fig. 1b). Of these 65 driver genes,
16 genes bore at least 1 non-synonymous mutation in the 9
patients (Fig. 1b). TP53 was the most frequent driver with hotspot
mutations identified in six patients. Inspection of the location of
these mutations revealed that patient 3 and patient 6 shared TP53
mutations at the same location but with different alternative
alleles (Supplementary Table 3). Combining these with previously
identified TERT promoter mutations, most of the somatic
mutations in the driver genes were in higher allele frequencies
than the background mutations (w2-test, P-value o1E� 6) and
were shared among all tumour sectors (Fig. 1b). This suggested
that known driver mutations arose very early in the
tumourigenesis of HCC19.

Similar to point mutation analyses, we also surveyed copy
number variations (CNVs) across the genome for all the samples
(Supplementary Fig. 3)20. The most significantly mutated CNVs
were amplifications in chromosome 1q, 6p and 8q, as well as
deletions in 4q, 8p, 13q and 17p (Methods). Chromosome 8q
amplification was observed for patients 1, 5 and 6, and
chromosome 4q deletion in patients 1, 2, 3, 4 and 7 (Fig. 1c
and Supplementary Fig. 4). Inspecting previously identified HCC
drivers as well as genes in the cancer gene census within these
segments, important cancer driver genes such as CCND1 were
found to be amplified in patient 6 and patient 9 (Fig. 1d). In
general, the CNV profiles across the genome were quite similar
across sectors in HCC12. This is consistent with the notion that
genome instabilities are early events in tumourigenesis21–24.

The spatial organization of genetic variability. Using somatic
variants called from individual sectors, we constructed the
evolutionary relationships for primary tumour sectors (Methods).
Mutations that were common to all sectors appeared on the trunk
of the tree and mutations that were private to subsets of the
samples appeared on branches. Among all cases, the level of
differences between tumour sectors varied considerably (Fig. 2).
To compare genetic diversity across cases, we plotted the
relationship between detected variability and the number of
samples (Methods). Using the amount of mutation detected using
single samples as the baseline, we found that observed variability
increases rapidly with the multi-regional sampling of tumour
sectors (Fig. 3a). Using the slope of the upward trajectories as a
surrogate for the degree of ITH in a tumour, the wide variation in
the slope suggested that the evolutionary trajectories of HCC were
very diverse (Fig. 2).
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Across nine cases, the phylogenetic trees took a variety of
forms. For example, patients 1, 4 and 6 showed typical star
genealogies with very short internal branches, indicating rapid
population expansion in the history of the tumour25. Using a
computational procedure from Statistical Phylogenetics known as
bootstrapping26, we assessed the confidence in the topological
relationships among the sectors. Statistical analyses showed that
the evolutionary relationships are highly consistent (bootstrap
score 40.7) with the exception of patients 1 and 4, where the
population diversification was very recent and the sectors were
highly similar to each other (Supplementary Fig. 5). WGS
provided high-resolution for the phylogenetic relationships across
all the other patients including patient 6.

Across all phylogenetic trees with sufficient divergence (that is,
except patients 1 and 4), sectors from one end of the tumour
consistently grouped together, with separation of the two clades
setting apart from the tumour centre (Fig. 2). This suggested that,
HCC generally arose from ancestral clones found in the centre of
the tumour and genetic lineages diverged as the tumour grew
outwards. When the ancestral clone at the centre of the tumour
was sampled in the tumour sectoring, the phylogenetic tree took a
slightly different form where the ancestral clone (that is, basal
lineage) would first branch off (Fig. 2 legend). This was observed
in patients 6 and 7 (that is, T2 for patient 6 and T3 for patient 7
in Fig. 2).

The phylogenetic analysis was based on the presence and
absence of somatic changes across tumour sectors, which only
utilized a portion of the available genetic information. Next,

we quantified the genetic relationships among populations by
measuring allele frequency differences among samples using a
classical metric that was derived from population genetics
(defined as the Fixation Index or Fst27). Fst measures the
proportion of the total variance in allele frequency caused by
frequency differences between populations. When we plotted the
levels of population differentiation as a function of the physical
distances between tumour sectors, controlling for tumour
purity (Methods and Supplementary Note 3), a clear pattern
was observed. Tumour sectors that are physically closer tend to be
genetically more similar (defined as isolation-by-distance (IBD)
relationship in Evolutionary Genetics28) (Fig. 3b and
Supplementary Fig. 6). Patient with late diversification (for
example, patients 1 and 4) show much weaker isolation with mild
slope in the linear regression, matching the pattern found in the
phylogenetic inference (Fig. 2 and Supplementary Fig. 6).

The origin of IBD pattern and spatial modelling. The IBD
pattern together with the phylogenetic relationship strongly
implied a range expansion dynamics in the growth of HCC29. To
test this hypothesis, we built a spatial model to simulate tumour
growth and outward expansion of cell populations (Fig. 3c and
Methods)13,30. We found that mutations arose in the history of
tumour development tend to segregate in clear geographic
locations (Supplementary Fig. 7)13,29,30. By sampling different
tumour sectors and measuring their genetic differentiation (Fst),
we found that a variety of growth models can contribute to the
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Figure 1 | Spatial sampling and genomic profiles. (a) A schematic flow of our sectoring design. A central slice was cut from the patient tumour. A linear

grid of tumour sectors was then harvested. (b) Oncoprint plot for 18 HCC drivers across 9 patients. Mutation rates, tumour purity and mutation presence

data are shown in the top, middle and bottom panels. The mutation frequencies of each HCC driver gene (left side bar) were extracted from a large

collection of public data sets (Methods). Sectors from each patient are ordered from left to right according to their names (T1 being the most left sector).

Red shows the mutations whose frequencies are 415% and blues are those with frequencies o15%. For patient 3, we have no information for TERT

promoter mutations due to exome sequencing. (c) Copy number profiles at GISTIC cytobands. Each cytoband is one row and chromosomal arms of the

cytobands are shown on the right. The number in the parentheses is the total number of cytobands in that chromosome arm. Precise cytoband IDs are

listed in Supplementary Fig. 4. Left side bar is the copy number profile in the GISTIC analysis. Red designates amplifications and blue is for deletions.

(d) Copy number profiles of potential driver genes. Format is as c.
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observed IBD pattern observed in HCC (Supplementary Note 4).
Interestingly, when mimicking a sampling strategy similar to our
sequencing approach (Fig. 3d), we could easily recapitulate our
observation in the real data (for example, bipartite distribution of
genetic lineages across the tumour centre and the IBD pattern).
Overall, we conclude that our data are compatible with the model
of a range expansion process13,29,30 driven by an ancestral clone
from the centre of the tumour.

Clinical phenotypes and targetable mutations. Previous studies
found that tumours with higher levels of genetic diversity (that is,
early diversification) tend to result in poorer clinical prognosis
across several cancer types31,32. We inspected clinical phenotypes
across these nine patients and correlated them with their levels of
ITH (Fig. 2). Even though there was a tentative trend of higher
alpha-feto protein in tumours with higher ITH, most of the other
tumour characteristics did not correlate with the evolutionary
trajectories in our collection. Quite possibly, a larger cohort study
will be needed to explore the potential link between clinical
phenotypes and ITH for HCC33.

Although there are currently no established therapies against
previously described HCC drivers, many co-existing mutations
(for example, EGFR and KIT) can be targeted with existing
therapeutics (Methods and Fig. 2). Although the locations of most
of these mutations were not necessarily found on the exact same
genomic loci of well-known oncogenes (for example, EGFR
L858R for lung cancer), several of them were on important
functional domains (Supplementary Table 4). Given that
many cancer drugs target important functional pathways rather
than specific mutations, genetic changes detected through ITH
analyses in HCC may probably allow for the re-positioning of
existing therapeutics through better patient stratification34.

High variability in the metastatic tumour. From patients 1
and 2, we were able to obtain multiple sectors from resected

intra-hepatic metastases. The monophyletic relationships
(forming a single clade) seen in the sectors from metastatic
tumours suggested a single point of origin for the metastases
(Fig. 4a). Interestingly, in both patients, the topological
relationship between the metastatic clone and the primary
tumour took two different forms. For patient 1, the metastatic
clone connected to the trunk of the primary phylogeny and the
genetic divergence occurred before the genetic diversification of
the primary tumour. The opposite was true for patient 2. Lineage
neighbouring to the T7 (the most outer tumour sector; Fig. 2)
gave rise to the metastatic clone and the migration occurred
after the diversification of the primary tumour. Intra-hepatic
metastases in HCC could undertake two classical scenarios where
metastatic clone can originate before (early migration) or after
(late migration) diversification in the primary tumour.

During metastases, when a small group of cells (clone) leaves
the parental population to form a newly established colony, two
major expectations known as the founder effect35 are generally
anticipated. First, the migratory population will be quite different
from the parental population due to the population bottleneck.
Previous studies across several cancer types often reveal high
genetic divergence between metastatic and primary tumour36–39,
matching the expectation from the founder effect. Second, the
genetic variability will be much reduced in the new population.
Surprisingly, neither of these two expectations was true in the
metastases from both patients’ tumours.

The divergence between the metastatic and primary tumour,
represented by the migratory branch (Fig. 4a), was quite short in
comparison with the branches of the tumour sectors from the
primary tumour. The short migratory branches suggest that
the metastatic clones did not further evolve from the
primary tumour. In other words, following migration to the
distant location, the migratory clone did not require further
adaptation before the genetic diversification. This may be enabled
by the local microenvironment of the regenerating liver
following tumour resection40. Rapid growth stimulated by liver
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regeneration allows the metastatic tumour to quickly diversify
and attain high genetic variability. The cases described above
represent the first descriptions of the complete clinical trajectory
of HCC (from primary resection to metastases) and such
observations posit strong clinical implications on how systemic
therapeutic intervention should be planned for the more effective
control of HCC and the arising metastases (see Discussions).

Dynamic viral integration across tumour evolution. Another
important driver of HCC development is the viral integration.
Using a computational procedure to search for paired-end reads
where one end maps to the human genome and the other end
maps to the HBV genome, we identified viral integrations in four
HBV-positive patients from our cohort41 (patient 3 was omitted,

as it was not sequenced by WGS). HBV integrations were more
abundant in patient 6 than in patients 1 and 8 (Fig. 4b,
Supplementary Note 5 and Supplementary Table 5). Interestingly,
no viral integration was found for patient 7, possibly due to low
viral burden (Supplementary Table 6). In patients 1, 6 and 8, viral
integrations were found in adjacent normal tissue, in addition
to tumour sectors, indicating that HBV viral infection and
integration were very active processes during HCC development
and progression. When classifying the genome into integration
hotspots (Methods and Supplementary Fig. 8)41,42, two TERT
gene integration and one non-coding integration hotspot on
chromosome 10 (far from any known gene) were found43.
The pattern of viral integration suggested that viral population
evolved together with the tumour population and integration
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simulation were found to be similar to Figs 2 and 3b.
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could be frequent in the history of tumourigenesis. Viral
integration in the TERT gene occurred early in the history of
tumour progression and was also found in all tumour samples for
patients 1 and 8 (including the metastatic tumour for patient 1).
Together, these results suggested that viral integration can be an
important early driver for HCC41 in patients with chronic
hepatitis B.

Discussions
In colorectal cancers, genetic lineages often segregate in a
variegated pattern where cell populations from the left and right
side of the tumour interleave in the phylogenetic relationship13.
The transition from clear spatial organization to variegated
pattern has been associated with the transformation from
adenoma to carcinoma and the mixing of clones was suggested
to be of the ‘born to be bad’ type13. In our analyses, HCC were

largely organized spatially (including the metastatic tumour of
patient 2) and showed a clear distribution compatible with range
expansion dynamics9. Interestingly, computational modelling
suggests that the patterns observed for HCC can be easily
recapitulated using relatively simplistic models. This might be a
distinctive feature of HCC that could be related to tissue anatomic
organization (for example, the lack of mucosal crypts) or/and
the liver regenerative capacity whereby the vast majority of
hepatocytes appear to be self-renewed (as opposed to a stem cell
hierarchy model) driving the rapid progression of HCC44.
It remains to be tested whether other tumour types follow these
disparate colon or liver growth patterns.

Our study offers the first insights into interesting dynamics
in intra-hepatic HCC metastasis. The comparisons between
metastatic and primary tumour have so far revealed high genetic
divergence across several cancer types36–39. This is in stark
contrast to our findings for HCC. If multi-sectoring of the
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metastatic tumour had not been carried out, distant divergence
would have been inferred from high ITH in the metastatic
tumour11,12. The short migratory branch instead suggests
minimal further adaptation (clonal sweeps) was required at
the distant location. The higher genetic diversity specific to the
metastatic tumour suggests that it is quite inadequate to use
the primary tumour for therapeutic prediction.

The absence of further adaptation at distant metastasis
could be a feature specific to the liver, where the organ
microenvironment appears to be more homogeneous across the
liver. Mechanisms allowing local migration in the primary
tumour may overlap with pathways for intra-hepatic migration45.
Intra-hepatic metastases therefore does not require drastic
adaptations to survive growth and colonize. Another possible
triggering factor for rapid metastatic outgrowth may be related to
the intrinsic regenerative capacity of the liver. Upon partial
hepatectomy, dramatic systemic and localized influences that
promote normal hepatocyte regeneration is also likely to drive the
growth of metastatic carcinoma cells within the organ40.

The clear spatial segregation of genetic lineages in HCC is
analogous to the annual ring in woody plants and they offer a
useful approach for understanding clonal evolution in the context
of cancer. As ancestral lineages tend to segregate inside the
tumour, spatial sampling will allow the reconstruction of more
realistic and clinically relevant pre-clinical models (for example,
patient-derived cell lines) that reconstitute various levels of
genetic transformation (some ancestral lineages and some
derived/evolved). Such a history of tumour evolution may, for
instance, be constructed to investigate functional or adaptive
differences between ancestral and derived clones (for example, the
metastatic abilities between different clones). Notwithstanding,
spatially separated biopsies may be necessary for sampling even
greater genetic variability within the tumour.

Owing to limited sample size in patient number, the
correlation between clinical phenotypes (for example, patient
survival) and the ITH profiles are still provisional. In addition, the
number of intra-hepatic metastases presented here is still small.
Further studies with a larger cohort will be needed to further
confirm and extend the conclusions of this study. The natural
history of tumour progression is often described as belonging to
either one of two classical models: either a linear evolution model
with sequentially acquired driver mutations (late diversifica-
tion)46 or branched evolution with many standing lineages (early
diversification)47. In our study, a wide variety of genetic sharing
between tumour sectors (both early and late diversification) was
observed12. Applying ITH analyses, the discovery of actionable
mutations will probably provide hopeful new avenues for more
effective targeted therapies for HCC. These data suggest that an
understanding of ITH has the potential to illuminate mechanisms
driving tumour evolution and guide therapeutics selection for
personalized medicine.

Methods
Patient recruitment and spatial dissection. All patients had surgical resection
performed by the joint Hepato-Pancreato-Biliary Surgery service of the National
Cancer Center Singapore and the Singapore General Hospital. Pre-operative
diagnoses and staging were performed by multi-phasic radiological scans
(computed tomography or magnetic resonance imaging) and diagnoses were
confirmed histologically after surgery. All nine HCCs were early-stage tumours
(AJCC stages 1 and 2). The study was approved by the Central Institution Review
Board of SingHealth of which both National Cancer Center Singapore and SGH
were constituent members (CIRB 2012/669/B) and each patient gave informed
written consent. Entire resected surgical specimens were retrieved immediately
after removal from the surgical field in the operating room and transported on ice
in a temperature controlled cooler container to a pathologist at the SingHealth
Tissue Repository situated in an adjacent building. Each specimen was then
measured and photographed. Normal non-tumour liver tissue at least 2 cm away
from the tumour was harvested and labelled as normal liver (control). A single slice

was then made in the tumour through the capsule and the cut section of the liver
tumour photographed. The tumour was then inspected for necrosis, fibrosis,
haemorrhage and cystic changes. Multiple pieces along the long axis of the tumour
were then harvested, often at least 1 cm apart and cut into pieces measuring 1�
0.5� 0.5 cm. Circumstances such as cystic change, haemorrhage or necrosis would
reduce the number of tumour pieces harvested. The numbers of sectors harvested
depend on the size of the tumours.

All harvested tissues were snap frozen using liquid nitrogen and stored
afterwards in a � 80 �C freezer. Matching pieces were collected for routine
processing and histological examination. Real-time quantitative PCR (Roche
COBAS Ampliprep/COBAS TaqMan HBV Test version 2.0) was used to quantify
the viral load in the HBV positive patients.

DNA sequencing and somatic variant calling. DNA was extracted from the
normal and tumour tissues independently using Qiagen DNeasy Blood and Tissue
kit. After quality check with electrophoresis, DNA were sonicated to shorter
fragments using the Covaris system. Following quality check with Agilent 2100
Bioanalyzer, DNA fragments were end-repaired, ligated with sequencing adapters,
amplified before WGS or WES by the sequencing platform at the Genome Institute
of Singapore. For WES, NimbleGen SeqCap EZ Human Exome Library v3.0 was
used for exome capture before sequencing. Illumina sequencing platform was used
for both WGS and WES (Earlier samples were done using WES and subsequent
samples were processed using WGS).

Raw sequence reads were mapped to the human reference genome (hg19) with
the Burrows–Wheeler Aligner48. After removing duplicated reads using PICARD
(http://broadinstitute.github.io/picard/), sequence data then follow through base
quality recalibration and realignment using the Genome Analysis Tool Kit49.
Somatic variants were called comparing tumour against normal using the Mutect
programme (Version 1.1.4)50 (Supplementary Data 3). Using sequenom platform
(a mass spectrometry-based technology), a small subset of somatic variants were
experimentally validated (Supplementary Note 1). Copy number alterations were
called using the Sequenza package20. The significantly perturbed gene segments
(Genome Identification of Significant Targets in Cancer, a.k.a GISTIC result) were
extracted from a previous study (qo0.1 from Supplementary Table 10 from Totoki
et al.42) as the potential driver CNV for HCCs42. The R programme Rcircos was
used to plot the circos plot for the copy numbers. Tumour purity is estimated using
a modified version of ASCAT51 using sequencing data (https://github.com/
cancerit/ascatNgs). To match the WES data to the WGS in comparing the ITH
profiles (for example, Fig. 3a), we downsampled the WES data to match the
coverage used in the WGS sequencing. The downsampled data sets follow the same
pipeline as our WGS data.

HCC data curation and driver genes. Somatic mutation across many cancer types
were downloaded from a previous study through http://www.tumorportal.org/
(Supplementary Note 2). HCC data sets were curated from several previous
publications. In total, 1,185 data sets (198 from TCGA52, 242 from ICGC/French53,
514 from ICGC/Japanese42 including part of a recent WGS work54, 231 from a
Korean study55 and 88 from a HongKong/Chinese study56) were downloaded from
the publications and consortium websites. Mutational frequencies of each gene
were then compiled across all these cases. MutSigCV was used to identify the driver
genes for HCC across all these cases18.

To test whether HCC driver mutations tend to be of higher frequency than the
background mutations, we used a w2-test to compare the proportion of mutations
whose frequency is higher than 0.15 in the two sets (HCC driver mutations and
background mutations). For mutation signatures in patient 9, we first compiled the
mutation pattern across all sites and then projected the mutation pattern as a
combination of 30 known signatures using a linear model similar to previous
studies (http://cancer.sanger.ac.uk/cosmic/signatures)53.

Missing variability and ranking the evolutionary trajectories. The upward
trajectories were drawn by randomly sampling a subset of sectors from the total
collection of sectors for each patient. For example, if the number of sectors for a
tumour is N, we will randomly sample n (n4¼ 1 and noN) sectors and count the
total number of detected somatic mutation for that subsample. For each n, we
subsampled multiple times and computed the mean number of detectable somatic
changes at that n (denoted as Xn). Using the mean value of detected somatic change
at n¼ 1 (that is, X1) as the baseline, we calculated the fold increase in detectable
somatic variant at each n (that is, Xn/X1). To rank the trajectories observed in
Fig. 3a, the slope (that is, the value at x¼ 2, that is, randomly sample two sectors)
was ranked across cases. For patient 2 and 3 (WES), we used the downsampled data
sets to calculate these values (that is, matching the sequence coverage see above).

Phylogeny reconstruction and IBD. Using the presence and absence of individual
somatic changes, we calculated the hamming distances between individual samples
from each patient. With a distance matrix between all sectors, neighbour-joining
algorithm implemented in PAUP57 was employed to infer the evolutionary
relationship between all the samples. To access the statistical confidence of the
phylogenetic tree, a bootstrap procedure is implemented by sampling from the list
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of mutations with replacement26. The consensus tree and the bootstrap values was
computed using the sumtrees programme implemented in DendroPy58.

Using the allele frequencies extracted from the sequencing output (mpileup
output from SAMtools59), we calculated the Fst statistic between samples using the
Weir and Cockerham method27. To adjust the tumour purities of the sectors in
calculating the Fst value, we recalibrated the allele frequencies by resampling the
same number of reads taking into account the differences in tumour purities
(Supplementary Note 3). With the Fst values calculated between each pair of
samples, we plotted the relationship between physical distance of the sectors and
the Fst values as a boxplot (IBD pattern; Fig. 3b and Supplementary Fig. 6). To fit a
linear model between Fst and physical distances, we pooled all Fst values across all
sites and samples (for each sample pair, we will calculate a Fst value for each
somatic mutation). We then used all these information to fit a linear model using
lm() in R. In the boxplot, the box marks the 1st and 3rd quantile of the distribution.
The median is labeled with a band in the box. Upper whisker¼min(max(x), Q3þ
1.5 *IQR) and lower whisker¼max(min(x), Q1–1.5 *IQR). Q1 and Q3 are the first
and third quantile of the distribution and IQR¼ Q3–Q1.

The spatial model. To simulate a spatial population which expands outwards, we
first allocated a grid of points in the computer memory. A single cell was then
seeded in the centre of the grid. The population expansion was conducted by
allowing cells to divide in all six possible directions if the space is available. In each
cell division, two descendent cells will be randomly allocated to the original
location of the parental cell and the available nearby position. When cells divide,
there will be x number of mutations accumulated. We assumed a mutation rate of
0.5 per genome per division. A series of cell populations were then sampled from
different geographic locations and mutations from these cells were harvested
for subsequent phylogenetic and IBD analysis. Many different versions of the
simulations (for example, different population size, birth/death rates and selective
schemes) were also attempted (Supplementary Note 4).

HBV integration and integration hotspots. Following an earlier publication on
HBV integration, we identify all read pairs that can align to both human and the
HBV genome using both BLAST and short reads aligner Batmis60 (reads near to
the HBV integration sites are more difficult to align with short reads aligner).
Among the identified reads, the programme clusters the reads into groups based on
their positions found in the human genome. Among each group of clustered reads,
integration junction point can be identified among a subset of them (not all
junction points can be found). The final result of the analysis is a list of integration
sites together with the number of supported reads.

We downloaded the HBV integration (a total of 1,027 integration sites) found
in two previous studies41,42. A slide window approach is conducted to scan the
genome for regions of intense integration (defined as the integration hotspot).
We used a slide window of 20 kb and a step size of 10 kb. Windows with the
number of integration sites 43 is designated as a hotspot region (a total of 24
windows or 0.016% of the genome; Supplementary Note 5).

Drug targets and their genes. A list of drugs and their associated targets were
curated from the FDA website (http://www.fda.gov/drugs/scienceresearch/
researchareas/pharmacogenetics/ucm083378.htm) and from http://www.genome.
jp/kegg/drug/br08341.html.

Data availability. The raw data (WGS and WES) have been deposited in European
Nucleotide Archive under accession code EGAS00001001603. The authors declare
that all data supporting the findings of this study are available within the article and
its Supplementary Information files or from the corresponding author upon
reasonable request.
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