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Abstract: Polylactic acid (PLA) and polyglycolic acid (PGA) are well-known medical-implant mate-
rials. Under the consideration of the limitations of degradable polymeric materials, such as weak
mechanical strength and by-product release through the biodegradation process under in vivo en-
vironments, PLA–PGA block copolymer is one of the effective alternative implant materials in the
clinical field. In our previous study, two types of extremely effective PGA–PLA copolymers (multi/tri-
block PGA–PLA copolymers) were synthesized. These synthesized block copolymers could overcome
aforementioned issues and also showed good biocompatibility. In this study, the PGA–PLA block
copolymers with large molecular weight were synthesized under the same chemical scheme, and
their bio durability was confirmed through the in vivo degradation behavior and histochemical
analyses (by hematoxylin and eosin and immune staining) in comparison with commercial PLGA
random copolymer (medical grade). Specimens for the degradation test were investigated by SEM
and X-ray diffractometer (XRD). As a result, the synthesized PGA–PLA block copolymer showed
good biocompatibility and had a controlled biodegrading rate, making it suitable for use in resorbable
spinal-fixation materials.

Keywords: PGA–PLA block copolymer; bio-resorbable; in vivo degradation test; histochemical
analysis

1. Introduction

In the orthopedic surgery for vertebral disease therapy, the need for resorbable ma-
terials for implants was steadily increased for the treatment of older patients. The use of
resorbable polymeric implanting materials can lessen the difficulty for the patient, such
as secondary surgeries for removing the implanted device. Among the resorbable mate-
rials for medical use, polylactic acid (PLA), polyglycolic acid (PGA), and their random
copolymer (PLGA) were consistently researched, developed, and widely used for clinical
applications [1–3]. Commercial random PLGAs must, however, overcome their inadequate
mechanical strength and fast-degrading characteristics under in vivo condition of load-
bearing applications within 3–6 months if they are to be used in the orthopedics field [4,5].
In our previous study [6], PGA–PLA block copolymers (inherent viscosity: 0.9486 dL/g
(30 ◦C, 0.5 g/dL, Hexafluoroisopropanol (HFIP))) that had a longer degradation period than
random PLGA were synthesized and reinforced by blending with hydroxyapatite-grafted
PLA and PGA fiber to improve their mechanical property (for example, tensile strength
of more than 100 MPa). Synthesized copolymers demonstrated good biocompatibility
through in vitro and in vivo biosafety studies, as well as improved mechanical properties
through reinforcing processes. However, synthesized block copolymers (with/without
reinforcing) showed complete biodegrading behavior 6 months after implantation and
were found to be insufficient for long-term (more than 6 months) implantation [6]

One of the reasons for the complete degradation of block copolymers over 6 months
was that the residual moisture in 1,4-butanediol (used as initiator in the synthesis of PLA
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block in synthetic scheme, moisture content: 500–2000 ppm) suppress the polymerization
rate and molecular-weight increment [7,8].

In this study, to improve the molecular weight of PGA–PLA block copolymer, anhy-
drous ethylene glycol (residual water content: less than 100 ppm, as alternated initiator
for 1,4-butanediol) was used to synthesize PLA block (PLA-diol) and then this PLA-diol
was used as the starting moiety to synthesize high-molecular-weight PGA–PLA block
copolymer. The molecular-weight increment of synthesized PGA–PLA block copolymer
was confirmed by inherent viscosity, glass transition, and melting-temperature (Tg and
Tm) measurement. For the investigation of sustained degradation behavior, the obtained
PGA–PLA block copolymers were conducted by an in vivo biodegradation test covering 6
months with random PLGA as the control. Generally, the degradation characteristics under
in vivo conditions were affected by surface morphology, crystallinity, the molecular weight
of the polymer, and so on [9]. According to the predetermined schedule, the specimens
for the in vivo degradation test using SD-rats were investigated using SEM and TGA to
confirm the surface erosion and thermal stability of block copolymers. The specimens for
the initial stage of the in vivo degradation test covering 3 months were examined by X-ray
diffractometer (XRD) measurement, specifically to demonstrate the sustained degradation
tendency of the PGA–PLA block copolymer backbone. Additionally, paraffin-embedded
samples, including the tissues surrounding the SD-rat specimen-insertion site, were exam-
ined by histochemical analysis for the confirmation of a foreign-body reaction during the
period of deterioration. From these results, the synthesized PGA–PLA block copolymers
showed enhancing biocompatibility, mechanical strength (over 120 MPa in flexure strength),
and sustained biodegradation behaviors for a long period compared with a random PLGA
copolymer and, therefore, were shown to be suitable materials for long-term implantation
(more than six months).

Furthermore, the above-mentioned improved mechanical strength is expected to
enhance the mechanical properties through combination with a reinforcing agent (such as
PLA fiber) in the next step.

2. Materials and Methods
2.1. Materials

L-Lactide, glycolide (LA, GL, >99% purity, respectively), and tin (II) 2-ethylhexanoate
(Sn(Oct)2), as the monomers and catalyst for ring-opening polymerization, were purchased
from Medichem (Gongju, Korea) and Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA),
respectively. Anhydrous ethylene glycol, as an initiator for the ring-opening polymerization,
was purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). Random poly (lactide-
co-glycolide) (PLGA, PLA: PGA = 30:70 mole ratio, inherent viscosity: 1.0 dL/g (25 ◦C, in
HFIP) was purchased from Meta Biomed Co., Ltd. (Cheongju, Korea).

2.2. Experimental Method
2.2.1. Synthesis PGA–PLA Block Copolymer

PGA–PLA block copolymer was synthesized in two steps and shown in Figure 1.
PLA diol was first synthesized via the ring-opening polymerization of lactide (144 g,

1 mol) with initiator and catalyst (anhydrous ethylene glycol (0.24 g, 1.6 mmol) and Sn(Oct)2
(100 ppm) as initiator and catalyst, respectively) at 170 ◦C for 5 h under a nitrogen atmo-
sphere [10]. The monomer (lactide), initiator, and catalyst were quantified and vacuum-
dried for 1 h before polymerization. The obtained PLA diol was treated under vacuum
conditions (<1 torr) at 120 ◦C for 4 h to remove any unreacted monomers (lactide < 0.5%).
Next, the PGA–PLA block copolymer was synthesized via the ring-opening polymeriza-
tion of glycolide (61 g, 0.52 mol) with the presynthesized PLA diol (32 g, 0.22 mol) at
190 ◦C for 1 h under a nitrogen atmosphere. The obtained PGA–PLA block copolymer
was treated under the same conditions (vacuum-dried for 4 h) to remove any unreacted
monomer (<0.5%).
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Figure 1. Synthesis of PGA–PLA block copolymer.

The synthesized PGA–PLA block copolymer was characterized via thermal analy-
sis using differential scanning calorimetry (DSC, TA instruments Inc., DSC Q200, New
Castle, DE, USA, heating rate: 10 ◦C/min, temperature range: 0~240 ◦C under nitro-
gen) and using gel-permeation chromatography (GPC, elute of HFIP and 0.01 N sodium
trifluoroacetate (NaTFA), flux rate; 0.3 mL/min, concentration: 3 mg/mL, PMMA stan-
dard condition, Tosoh bioscience, EcoSEC HLC-8320GPC, Tokyo, Japan at 40 ◦C) for
molecular-weight measurement.

Block copolymer’s chain microstructure was examined using 13C nuclear magnetic
resonance spectroscopy (13C-NMR, JEOL Ltd., JNM-ECZ500R, Tokyo, Japan) with triflu-
oroacetic acid-d (as solvent, Sigma-Aldrich Korea, Seoul, Korea) and universal testing
machine (UTM, 2 mm/min, span: 64 mm, INSTRON®, INSTRON 3365, Norwood, MA,
USA) according to ISO 178 (2019). Crystallinity of the synthesized block copolymer was
also assessed by XRD, (Malvern Panalytical, AERIES 600, Worcestershire, UK) using Cu Kα

radiation at a scanning speed of 5 ◦C/min.

2.2.2. In Vivo Animal Degradation Test and Histochemical Analysis

The in vivo degradation test was reviewed and approved by the Institution Animal
Care and Use Committee (IACUC) of Sungkyunkwan University, School of Medicine
(SUSM) (Approval No. SKKUIACUC2019-08-21-1). 3Rs, Replacement of animals by al-
ternatives wherever possible, Reduction in number of animals used and Refinement of
experimental conditions and procedures to minimize the harm to animals were ensured in
this in vivo degradation test. For investigating biodegradation behaviors, synthesized PGA–
PLA block copolymers and commercial PLGA random copolymer (as a control group) were
inserted in the Sprague Dawley rats’ (SD-rat, n = 3, 8 weeks old, Orient Bio Inc., Seongnam,
Korea) intradermal back skin (Figure 2).

The PGA–PLA block copolymer and PLGA random copolymer cube-type implantation
specimens (10 × 10 × 4 mm, length×width×height) for the in vivo test were produced
using an injection-molding device (Mini Molder BA-915A, Bautek Co. Ltd., Pocheon,
Korea) under processing temperatures between 220 ◦C and 240 ◦C and were sterilized by
ethylene-oxide gas before implantation. Sample insertion was conducted under insufflation
narcosis using isoflurane (0.5–2.0%) with O2 gas for the fixation process. After inserting
the specimens, the incision site was sutured by nonabsorbable EZ clip wound closures
(Stoelting Co., Wood Dale, IL, USA). Furthermore, 40 mL/kg of Metacam® (Boehringer
Ingelheim Co., Ingelheim am Rhein, Germany) was subcutaneously injected once per day
for pain management.
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Figure 2. Scheme image of in vivo animal degradation test, which is sample insertion procedure.

The SD rats were subsequently sacrificed according to the predetermined time sched-
ule (once a month up to half a year after implantation surgery) and inserted specimens were
extracted for histochemical analyses with the surrounding tissue [6]. The residual tissues
on the inserted PGA–PLA block copolymer and random PLGA copolymer specimens were
gently removed from the harvested samples and dried in vacuo. Next, the weights of the
harvested block and random copolymer specimens were measured (Adventurer™ AR2140,
Ohaus Co., Pine Brook, NJ, USA) for the confirmation of biodegradation.

Surficial morphologies of specimens of 1 and 2 months after insertion were observed
by scanning electron microscope (SEM, JSM7000F, Jeol Co., Ltd., Tokyo, Japan) for the
investigation of surface erosion [8]. The crystallinity of the specimens c 1 for 3 months after
insertion was assessed by X-ray diffractometer using Cu Kα radiation at a scanning speed
of 5 ◦C/min.

The surrounding tissues of the PGA–PLA block copolymer specimens in the back
sites of the SD rats were subjected to fixation procedures with paraffin for biopsy sample.
Extracted tissues around the samples were fixed by 10% neutral buffered formalin (NBF, BN-
019, Biosesang Co., Ltd., Seungnam, Korea). Fixation was performed after more than 2 days,
and the NBF solution was refreshed every day. Next, fixed tissues were trimmed by razor
and dehydrated by ethanol and xylene, respectively. The staining process for histochemical
analyses was conducted using hematoxylin and eosin and CD-68 antibody (Thermo Fisher
Scientific, Rockford, IL, USA) to detect the nuclei of the associated macrophages owing
to foreign-body reaction. Digital images of the paraffin-embedded tissue sections were
obtained using slide scanner scope (Aperio ScanScope® CS system, Leica Biosystems,
Wetzlar, Germany).

3. Results and Discussion
3.1. Synthesis of PGA–PLA Block Copolymer

Synthesized PLA moiety and PGA moiety in block copolymer were characterized by
DSC, GPC, and flexural-strength measurement, and their data are summarized in Table 1.

As a result of DSC analysis in Figure 3, the Tg and Tm of the PLA moiety in
block copolymer were 58.87 ◦C and 167.84 ◦C, and those of PGA were 40.44 ◦C and
218.11 ◦C, respectively.
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Table 1. Characterization of PGA–PLA block copolymer.

Name
Tg (◦C) a Tm (◦C) a

Molecular Weight b

(Mw)
Flexural Strength c

(MPa)PLA PGA PLA PGA

PGA–PLA block
copolymer 40.44 58.87 167.84 218.11 159,000 137

a DSC, 0~270 ◦C, heating rate: 10 ◦C/min, 2nd run, N2(g) condition; b GPC, 40 ◦C, Elute of HFIP: 0.3 mL/min,
concentration: 3 mg/mL, PMMA standard; c UTM according to ISO 178:2019, flexion speed: 2 mm/min, span
length: 64 mm, n = 5.
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Figure 3. DSC curve of synthesized PGA–PLA block copolymer. (0 ◦C~270 ◦C, heating rate:
10 ◦C/min, 2nd run, N2(g) condition).

These results were concurrent with recently reported papers [6,8,10–12]. The molecular
weight of the polymerized PGA–PLA block copolymer was confirmed to be 159,000 (Mw) by
GPC data analysis (PDI: 2.04, data not shown). Because of the molecular-weight increment
in this study (inherent viscosity: 1.22 dL/g (25 ◦C, 0.5 g/dL, Hexafluoroisopropanol
(HFIP))), the flexural strength of the newly synthesized PGA–PLA block copolymer was
also increased to 137 MPa compared to relevant data in our previous report [6,10]. The
copolymer’s mole-fraction ratio of PGA/PLA was determined by 13C-NMR spectroscopy
and summarized in Figure 4.

From Figure 4A, homosequential-centered-integration-ratio data based on the car-
bonyl region of the glycolidyl (-GGGG- at 169.2 ppm) moiety and the lactidyl (-LLLL- at
172.2 ppm) moiety were obtained as 80.6: 19.4 (PGA/PLA mole ratio) in the block copoly-
mer. However, these PGA and PLA mole ratios in the block copolymer were changed
through an in vivo degradation test period, and the mole fraction of the PGA in the copoly-
mer decreased from 80.6% to 45.1% at 3 months after insertion surgery (Figure 4A,D).

By XRD diffractometer (scanning speed; 5◦/min, scanning region (2θ); 10◦ to 50◦)
measurement, the crystallinity differences owing to the biodegradation period of PGA–PLA
block copolymer were shown to range from 92.2% (before insertion) to 63.1%, 53%, and
41% covering 1, 2, and 3 months after insertion (based on each peak area of Figure 5).
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3 months after insertion.

In Figure 5A,B, the broad peaks between 16◦ and 23◦ in the random PLGA polymer
0M (as control sample) indicate the amorphous region [13]. However, in the PGA–PLA
block copolymer, semi-crystalline PLA block peak according to (I110/200) weakly appeared
at 16.5◦, and crystalline PGA block peaks according to (I110, I020) and (I121) are shown in
22.2◦, 28.9◦, and 35.8◦, respectively [14,15].

In the case of random PLGA, the PGA moiety was rapidly degraded and quickly dis-
appeared through its own crystalline characteristics over the course of the biodegradation
time, but the semi-crystalline PLA moiety showed relatively slow degradation behavior
and maintained its characteristics over the 3-month in vivo biodegradation test [16–18].
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From the prementioned GPC, DSC, and XRD data of the synthesized PGA–PLA block
copolymer, it was confirmed that a single backbone polymer including PLA and PGA
blocks was synthesized according to the chemical scheme, as shown in Figure 1.

3.2. In vivo Degradation Test

As shown in Figure 6, the specimens implanted in the intradermal back skins of the
SD rats were removed according to the predetermined schedule.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

Figure 5. XRD spectra of random PLGA (A) and PGA–PLA block copolymer (B), harvested 0 to 3 
months after insertion. 

In Figure 5A, B, the broad peaks between 16° and 23° in the random PLGA polymer 
0M (as control sample) indicate the amorphous region [13]. However, in the PGA–PLA 
block copolymer, semi-crystalline PLA block peak according to (I110/200) weakly appeared 
at 16.5°, and crystalline PGA block peaks according to (I110, I020) and (I121) are shown in 
22.2°, 28.9°, and 35.8°, respectively [14,15]. 

In the case of random PLGA, the PGA moiety was rapidly degraded and quickly 
disappeared through its own crystalline characteristics over the course of the biodegra-
dation time, but the semi-crystalline PLA moiety showed relatively slow degradation 
behavior and maintained its characteristics over the 3-month in vivo biodegradation test 
[16–18]. 

From the prementioned GPC, DSC, and XRD data of the synthesized PGA–PLA 
block copolymer, it was confirmed that a single backbone polymer including PLA and 
PGA blocks was synthesized according to the chemical scheme, as shown in Figure 1. 

3.2. In vivo Degradation Test 
As shown in Figure 6, the specimens implanted in the intradermal back skins of the 

SD rats were removed according to the predetermined schedule. 

 
Figure 6. Schematic image of in vivo animal-degradation test showing sample-extraction proce-
dure and samples after harvesting steps. 

Furthermore, the surface morphological changes (including surficial and cross-
sectional areas), weights, and thermal properties of the dried specimens after their re-
moval from the implanted site were investigated by SEM, digital camera, and electronic 
balance, respectively. Digital-camera images of the extracted specimens covering 6 
months are summarized in Figure 7. 

Figure 6. Schematic image of in vivo animal-degradation test showing sample-extraction procedure
and samples after harvesting steps.

Furthermore, the surface morphological changes (including surficial and cross-sectional
areas), weights of the dried specimens after their removal from the implanted site were
investigated by SEM, digital camera, and electronic balance, respectively. Digital-camera
images of the extracted specimens covering 6 months are summarized in Figure 7.
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The degradation behaviors of the implanted copolymer specimens were investigated
using weight changes. Generally, biodegradation occurred through surface hydrolytic
erosion and sequential bulk degradation [9]. Surface and bulk erosions were affected by
many parameters, such as the shape, crystallinity, porosity, and tortuosity of the polymeric
materials [19]. From the SEM and optical-observation-analysis data, surface swelling was
observed in all of the random PLGA samples up to 6 months. In particular, the surfaces of
random PLGA specimens were found to be mashed in shape and crushed into small pieces
3 months after surgery. In random PLGA specimens 6 months after insertion, the implanted
specimens were found to be vestiges in the incised back skins of the SD rats (Figure 8).
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However, even 6 months after insertion, the surfaces of the PGA–PLA block copoly-
mer specimens still exhibited their original morphologies and shapes. Therefore, the
crystallinity alterations in the extracted samples were examined among the key reasons for
this occurrence in order to validate such differences in biodegradation behavior between
the random PLGA and block PGA–PLA copolymer. As shown in Figure 5A, amorphous
peaks of random PLGA (0M) were observed at 16.5◦, 19.1◦, and 22.2◦ according to PLA
(I110/200 and I203) and PGA (I110), as semi-crystalline peaks originating from homo PLA and
PGA polymer [20–22]. Because the amorphous and crystalline regions of the random PLGA
degraded at different rates, the relative proportion of the surviving crystalline sections
increased as a result of progressive degradation in vivo [23].

Meanwhile, Figure 5B shows that the intensities of the PGA peaks at 22.2◦, 28.9◦, and
35.8◦ (PGA (I110, I020, and I121, respectively [14,15]) were decreased and that the PLA peaks
at 16.5◦, 19.1◦, and 22.2◦ (PLA (I110/200 and I203)) were temporarily increased 1 month after
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insertion and remarkably decreased over 3 months. In the PGA–PLA block copolymer
in the 1M-to-3M specimens, the intensity of the PGA peaks was decreased owing to the
hydrolytic degradation of the crystalline parts. The PLA had a hardly swellable molecular
structure compared with the PGA and PLA moieties in the block copolymer, hydrophobic
methyl group in the semi-crystalline PLA block. By contrast, the PGA easily absorbed
water. Consequently, it underwent hydrolysis and rapidly degraded.

Therefore, 3 months after surgery, the broad peak region was shown as random PLGA
and PLA peaks, and the PGA peaks faded out due to degradation [16,17]. The greatest
amount of crystallinity was found in the PGA peaks (22.2◦, 28.9◦, and 35.8◦, 1M) and
decreased by degradation (3M). However, the data for the crystalline PLA peaks (16.5◦

and 19.1◦) up to 1 month revealed structural and morphological changes, including the
formation of cleavage-induced crystallization and lamellar stacks, and disappeared after
2 months through lamellar-stack collapse [18].

As shown in Figure 9, the surfaces of the extracted block copolymer samples were
investigated by SEM for the confirmation of surface erosion.
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Figure 9. SEM images of surfaces of extracted samples, which were harvested after 0 to 2 months’ insertion.

On the other hand, substantial surface and bulk erosion and complete degradation
occurred in the random PLGA throughout the same implantation period. According to
the previous report, the amorphous region of the polymer had a relatively easy path of
water diffusion (the cause of the hydrolytic degradation) compared with the crystalline
region of the polymer. The amorphous region contained disordered chain folds, chain ends,
and tie-chain segments. At the interface between the amorphous and crystalline regions,
hydrolysis occurred. This hydrolytic degradation led to the scission of the amorphous
chain, causing a decrease in molecular weight and an increase in mobility [19].

In Figure 10, the random PLGA sample showed a rapid weight decrease of up to 70
wt% in the 2-month implantation sample.

The PGA–PLA block copolymer sample, on the other hand, showed a decrease in
weight of up to 50 wt% in a 6-month implantation sample. In the random PLGA, their
rapid decrease in thermal stability and their own weight were caused by the bulk degrada-
tion mentioned above [9]. And the meaningful differences time-depending degradation
behavior of PGA-PLA block copolymer. (Appendix A, Figure A1)
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The histochemical analysis results with H&E staining and CD-68 immunostaining are
shown in Figures 11–13.

Initial granulomatous inflammation and fibrous encapsulation were observed at an
early stage of insertions up to 2 months (Figure 11). This phenomenon was closely related
to rapid surface swelling (leading to surficial erosion and hydrolysis) by water absorp-
tion [24,25]. Furthermore, the shape of the inserted random PLGA sample changed to oval,
which caused sample swelling. Both copolymers showed signs of recovery due to the elimi-
nation of angiogenesis (one of the processes contributing to inflammation) in the 3M and 4M
samples. The tissues around the inserted random PLGA sample (Figures 11–13(A-1 to A-6))
exhibited mild inflammation from the initial stage until 2 months. Additionally, inflamma-
tion by any macrophage, angiogenesis, or giant cell were not observed in the samples up to
3 months after the insertions [26]. Since the random PLGA samples were rapidly degraded
and swelled, fewer stimuli caused by foreign-body reactions were reported [27,28].

On the other hand, the tissues around the inserted PGA–PLA block copolymer sample
(Figures 11–13(B-1 to B-6)) exhibited mild inflammation until 4 months after insertion.
The PGA–PLA block copolymer showed slow degradation, slow swelling behavior, and
fewer stimulated tissues, causing surface erosion, for 4 months (Figure 13(B-4)). This
phenomenon was caused by the slow degradation of the surface erosion. Bulky hydrolysis
was postponed in the following stage of degradation and the inserted sample’s rectangular
shape was preserved for up to 6 months. Block copolymer, which is difficult to hydrolyze
and residues with relatively high bulk molecular weights were the causes of the inhibition
of the degradation. However, the random PLGA containing tissue after 6 months was not
visible in the biopsy specimen because of its complete degradation (Figure 13(A-6)) [6].
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Figure 11. Histochemical analysis (upper: H&E staining, below: immunostaining) of in vivo animal
degradation test. (A-1, 2: tissue around a PLGA sample which 1 and 2 months, B-1, 2: tissue around
a PGA–PLA block copolymer sample that was inserted at 1 and 2 months).
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B-3, 4: tissue around a PGA–PLA block copolymer sample that was inserted 3 and 4 months).
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Figure 13. Histochemical analysis (upper: H&E staining, below: immunostaining) of in vivo animal
degradation test. (A-5, 6: tissue around a PLGA sample which 5 and 6 months after insertion,
B-5, 6: tissue around a PGA–PLA block copolymer sample that was inserted at 5 and 6 months).
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4. Conclusions

Large-molecular-weight PGA–PLA block copolymers were synthesized in this study
and, unlike the random PLGA, they demonstrated good biocompatibility and a slow rate of
biodegradation. The random PLGA was found to be fully deteriorated after 3 months by the
in vivo animal-degradation test (which was supported by the SEM and XRD measurements
and the optical-analysis test), whereas the PGA–PLA block copolymer was still intact and
thermally stable 6 months after insertion surgery. Furthermore, the histochemical analyses
revealed that the PGA–PLA block copolymer did not exhibit any inflammation or irritation
due to the breakdown by-product. Therefore, the PGA–PLA block copolymers were good
alternatives to spinal-fixation material for long-term durability.
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Appendix A

From the in vivo animal-degradation test, the inserted specimens were extracted once
a month up to half a year after implantation surgery, and the harvested specimens of the
PGA–PLA block copolymer and random PLGA were characterized by thermogravimetric
analysis equipment (TGA, TGA Q50, TA instruments Inc., New Castle, DE, USA) with
a heating rate of 10 ◦C/min and a temperature scan ranging from 30 to 600 ◦C under a
nitrogen atmosphere for the confirmation of biodegradation.

As shown in Figure A1, the temperature of the half-mass trace rapidly dropped in the
random PLGA sample after 2-month insertion period. Due to the original shape loss, it
was no longer measurable in the random PLGA sample. In the random PLGA, the rapid
decrease in thermal stability and weight was based on bulk degradation. However, the
temperature of the half-mass trace of the PGA–PLA block copolymer was maintained above
300 ◦C until the 6-month insertion period.
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