
sensors

Article

Empiric Unsupervised Drifts Correction Method of
Electrochemical Sensors for in Field Nitrogen
Dioxide Monitoring

Rachid Laref * , Etienne Losson , Alexandre Sava and Maryam Siadat

����������
�������

Citation: Laref, R.; Losson, E.; Sava,

A.; Siadat, M. Empiric Unsupervised

Drifts Correction Method of

Electrochemical Sensors for in Field

Nitrogen Dioxide Monitoring. Sensors

2021, 21, 3581. https://doi.org/

10.3390/s21113581

Academic Editor: Alisa Rudnitskaya

Received: 1 April 2021

Accepted: 17 May 2021

Published: 21 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratoire de Conception, Optimisation et Modélisation des Systèmes, LCOMS EA 7306, Université de Lorraine,
57000 Metz, France; etienne.losson@univ-lorraine.fr (E.L.); alexandre.sava@univ-lorraine.fr (A.S.);
maryam.siadat@univ-lorraine.fr (M.S.)
* Correspondence: rachid.laref@univ-lorraine.fr

Abstract: This paper investigates the long term drift phenomenon affecting electrochemical sensors
used in real environmental conditions to monitor the nitrogen dioxide concentration [NO2]. Electro-
chemical sensors are low-cost gas sensors able to detect pollutant gas at part per billion level and
may be employed to enhance the air quality monitoring networks. However, they suffer from many
forms of drift caused by climatic parameter variations, interfering gases and aging. Therefore, they
require frequent, expensive and time-consuming calibrations, which constitute the main obstacle to
the exploitation of these kinds of sensors. This paper proposes an empirical, linear and unsupervised
drift correction model, allowing to extend the time between two successive full calibrations. First,
a calibration model is established based on multiple linear regression. The influence of the air
temperature and humidity is considered. Then, a correction model is proposed to solve the drift
related to age issue. The slope and the intercept of the correction model compensate the change over
time of the sensors’ sensitivity and baseline, respectively. The parameters of the correction model are
identified using particle swarm optimization (PSO). Data considered in this work are continuously
collected onsite close to a highway crossing Metz City (France) during a period of 6 months (July to
December 2018) covering almost all the climatic conditions in this region. Experimental results show
that the suggested correction model allows maintaining an adequate [NO2] estimation accuracy for
at least 3 consecutive months without needing any labeled data for the recalibration.

Keywords: electrochemical sensors; calibration; long term drift; multiple linear regression; particles
swarm optimization; in field nitrogen dioxide monitoring

1. Introduction

Life quality and human health are affected by air pollution especially in urban areas,
where most of the population lives [1,2]. Nitrogen dioxide (NO2) is one of the major pollu-
tant gases, and its emanation is mainly caused by traffic. Public environmental protection
organizations ensure the NO2 quantification using sophisticated and high precise analyz-
ers. These instruments are expensive and lodged in bulky stations which explain the poor
spatiotemporal resolution of the air pollution monitoring networks [3,4]. Several research
works revealed the low cost sensors potential for air quality monitoring systems [5–7].
Therefore, commercial systems have emerged to solve the above problem [8,9]. In fact,
many regulatory organizations such as European commission and U.S Environmental
Protection Agency recognized and encouraged the development of low cost technologies
of air quality sensors in order to implement mixed networks including reference monitors
and low cost sensors [10,11].

Electrochemical cell based sensor is a promising technology for air pollution monitor-
ing [11]. This type of sensor provides high selectivity, low limit of detection, low power
consumption and linear response to the target gas [12,13]. Most of low cost commercials
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air monitoring systems are based on this technology [14]. However, several issues impede
these systems to provide data with quality similar to those obtained by the analyzers [15].
The mechanism of the sensor drifts is clearly presented in [16]. The main reason is that
electrochemical sensors are affected by environmental factors, mainly the temperature and
humidity [17,18]. In fact, temperature and humidity variation influence directly the sensors
signal. On one hand, the chemical reaction depends on the temperature variation. On
the other hand, high or low humidity rate can change the electrolyte volume inside the
chemical sensors: high humidity rate may cause leakage of electrolyte, while low humidity
dries the sensor electrolyte. Other obstacles are related to interfering gases and over time
drifts caused by sensor aging. Several studies have been undertaken to understand and to
deal with these issues. Mead et al. [19] considered the effect of the environmental factors
and the interfering gases on electrochemical sensors for NO2, CO and NO concentration
monitoring. They also addressed the short and long terms drifts. The authors assume
that the change in baseline is due to temperature and humidity, but they did not take
into consideration the aging issue. Papoola et al. [20] proposed a method to quantify
and fit baseline variation caused by environmental variations. Their results showed good
correlation between electrochemical sensors and reference data after extracting and cor-
recting the baseline effect. Masey et al. [21] tested Aeroqual S500 systems including an
electrochemical sensor for NO2. They tested three calibration protocols based on labeled
data. They concluded that calibration model using labeled data from different periods
is more performant than using labeled data collected solely from the first period. Wei
et al. [17] proposed different linear models to compensate environmental factors and long
term drift. However, data are collected during a short period (11 days) which is not enough
time to study the long term drift. According to European protocol used to evaluate low cost
sensors for air pollution monitoring, it is recommended to take some measurements each
half a month for a period of 3 months to quantify long term drift [22]. Similar work was
conducted in Sun et al. [23], where the long term drift was addressed using data collected
over 28 days. Mijling et al. [24] calibrated an electrochemical sensor in field next to an
air monitoring station during an 8-day period; their results showed that it is necessary to
include temperature and relative humidity, by using a multilinear regression approach,
to improve significantly the NO2 accuracy with R2 ranging from 0.6 to 0.9. They also
highlighted that it is necessary to perform a full recalibration after a period of 2 months.
Zhang et al. [25] proposed simple time series estimation methods to correct the baseline
of metal oxide gas sensors. These methods are based on auto regressive moving average
(ARMA) and Kalman filter. They showed that both models can realize the prediction of
sensors’ long-term baseline in e-nose application, but the model based on ARMA has a
more significant prediction of sensors’ long-term baseline effect.

In this work, we propose a linear and empirical method for long term drift correction
based on data collected in field, during 6 months, which cover almost all the climatic
conditions in this geographical region. The parameters of long term drift correction model
are identified using particle swarm optimization algorithm (PSO). To the best of our
knowledge, it is the first study that addresses an unsupervised drift correction method
based on data gathered in field during 6 consecutive months.

The remainder of this paper is organized as follows. In the next section we present
the experimental set up, the data collection and the pretreatment procedures. Section
3 deals with the input selection for the recalibration model and presents our empirical
unsupervised recalibration strategy. First, we consider the effect of placing the sensors
inside a monitoring station, in a controlled environment, on the estimation accuracy. Then
we introduce our approach for drift correction. We show that it is possible to make
unsupervised drift correction and to extend the calibration model for more than 3 months
without any recourse to labeled data. Finally, we conclude this paper with a conclusion
and perspectives.
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2. Data Collection and Pretreatment

To measure the concentration of nitrogen dioxide in real conditions, we designed a
device composed of an electrochemical sensor NO2-B41F provided by Alphasense LTD
with its conditioning circuits, the gas exposure chamber and the data acquisition unit.

2.1. Electrochemical Sensor Principle

The working principle of the NO2 electrochemical sensor is based on electrochemical
reaction. When the gas passes through the filter, it creates a reaction in the electrochemical
cell. The surface of the working electrode is the site for the first half reaction (oxidation)
generating an electronic charge balanced by the second half reaction (reduction) that occurs
at the counter electrode [19]. The reference electrode helps to maintain the potential of
the working electrode at a defined value while the potential of the counter electrode
varies in presence of the target gas, generating a balancing current proportional to the
gas concentration to compensate the current generated at the working electrode [26]. A
fourth electrode (the auxiliary electrode) is considered as a second working electrode,
which has no contact with the target gas (Figure 1). It can generate a background current
related the change of environmental conditions allowing to correct the working electrode
current. New generation NO2 electrochemical sensors contain an ozone filter to forbid
the access of this interfering gas to the electrochemical cell [27]. Alphasense guaranties
the 80% of the original signal for 18 months of use. This lifetime is of course correlated
to the environmental conditions such as humidity rate (dry air can reduce the electrolyte
volume that influences the chemical reaction rate), gas concentration and interfering gas
concentration that affect the electrode surface and filter capacity.

A potentiostat circuit for signal conditioning allows amplifying and converting the
working and auxiliary electrode currents to voltage. Then, the concentration of the target
gas is calculated as follows:

[NO2] =
(WE − WE0)− (AE − AE0)

S
(1)

where [NO2] is the concentration of the target gas; WE, AE are signals of the working and
the auxiliary electrodes, respectively; WE0 and AE0 are the total zero voltage offsets of WE
and AE, respectively; S is the total sensitivity [mV/ppb], as calibrated in laboratory.

Equation (1) can be written:

[NO2] =
(WE − AE) + (AE0 − WE0)

S
(2)

This is equivalent to:

[NO2] = (WE − AE) ∗ α1 + α2 (3)

where α1, α2 can be determined by a linear regression replacing 1/S and (AE0 − WE0)/S
respectively.

Due to the difference between the surface of the working and auxiliary electrodes, it
is recommended to assign an independent coefficient regression for each electrode signal.
Therefore, it would be better to use Equation (4) rather than Equation (3):

[NO2] = WE ∗ a − AE ∗ b + c (4)

where a, b and c are regression coefficients obtained using multiple linear regression.

2.2. Sensor Data Collection

The sensor device is placed inside the measurement station managed by French
air quality monitoring agency named ATMO Grand Est agency. This station is located
beside the highway crossing the city of Metz, France. As shown in Figure 1, our device
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operates with a dynamic air-sampling mode using a pump and a mass flow controller
(from Bronkhorst, France) placed on the sensor chamber exit to generate a constant and
continuous airflow. This technique allows eliminating the influence of the wind speed
variation. We set the airflow rate to 500 mL/min, in order to obtain the same airflow rate
as the ATMO Grand Est NO2 analyzer (considered as reference instrument). This analyzer
is based on chemiluminescence method according to standard NF EN 14211. The ambient
air is led from the outdoor to both reference and our sensor device using inert pipes.

Figure 1. Experiment setup diagram and the schematic of four electrodes electrochemical sensor.

We collected data continuously over several months. Device operation started on July
2018. We note that inside the station, the temperature was controlled and fixed at 22 ◦C.
The influence of the outside air temperature variation is reduced, but it is not eliminated.
Therefore, we collected the temperature and relative humidity data to analyze their impact
on the sensor response accuracy. Collected data present the voltages of the sensor responses
with a sampling frequency of 200 Hz. Sensor responses are then averaged over a period
of 10 s and recorded on a computer using Matlab software. Finally, collected data are
averaged again each 15 min in order to comply with the reference data provided by ATMO
Grand Est.
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2.3. Data Series Pretreatment

Data collected during these 6 months of continuous operation, may contain outliers
and irrelevant values due to technical issues affecting both our sensor device and the NO2
analyzer.

The first step of pretreatment aims to remove outliers in our dataset. To that extent,
we fixed a minimum and a maximum threshold on data values. Data that do not belong
to this interval are outliers to be eliminated. We use the Equation (1), where WE0, AE0
and S are provided by Alphasense. Then we fixed the minimum threshold at 0 and the
maximum threshold at 2 times the hourly limit value (2 × 200 µg/m3) defined by European
directives [22]. We should note that there is not a systematic method to fix the threshold,
but our proposition can eliminate the extreme outliers, without removing any relevant
data.

In this work, we investigate data that are collected over a period of 6 months. This is a
very long period for continuous measurement where many issues and problems can arise.
For example, the reference data can be affected by maintenance or re-calibration of the
analyzer. In addition, some technical issues may cause missed data from our sensor device.
Therefore, there is a need to identify these data, and to remove them from both sensor and
reference datasets. After this treatment, a small desynchronization may appear between the
two datasets. To solve this issue, we calculated the cross correlation between sensor data
and reference data which reaches a maximum value when the two signals are maximally
correlated. The location of the maximum value of the cross-correlations indicates time lag
between two signals. Therefore, it is possible to synchronize the two datasets by removing
delay [28]. We performed the data synchronization using the following algorithm:

• Compute the cross-correlations between the reference data Xref and the NO2 con-
centration Xsens obtained with sensor data series and the Equation (1): [Cor,lag] =
xcorr(Xsens, Xref); where Cor is the cross correlation vector and lag is the shift time
vector of each shifted copy of Xref.

• The time lags are equivalent to the location of the maximum of the cross-correlations.
[M21,I21] = max(Cor); M21 is the value of the maximum cross-correlation and I21 is
the rank (location) of this maximum. Shiftedtime = lag (I21);

• Synchronize the two data series Xref and Xsens by clipping the lags from both times
data series. Xref = Xref (Shiftedtime:end); Xsens = Xsens (1:(end-Shiftedtime)).

Actually, as the missing data exist in many places of both time series datasets, it is
not possible to synchronize the two time series by applying this algorithm on the overall
dataset at one time. Therefore, we split the sensor and reference datasets in batches, and we
applied the previous algorithm on each batch. Batches were then assembled to reconstitute
the two data time series Xsens and Xref.

Figure 2 illustrates the complete sensor dataset (corresponding to NO2 estimated
concentrations) and the reference data (corresponding to reference concentration) along
with the time before and after synchronization. The zoom in a particular time can illustrate
the shift between reference and sensor data.
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Figure 2. Synchronization between reference and sensor time series: (A) the entire dataset; (B) zoom
to illustrate the time lags of the two times series; (C) zoom to show the synchronization after using
cross correlation.

3. Empirical Unsupervised Recalibration Strategy

Gas sensors show drift over time making the calibration model useless after a certain
period. New calibrations are often needed. However, new calibrations or the application of
methods such as calibration transfer, that we proposed in our previous work, need labeled
data [29]. In this work, we propose a new approach aiming to correct long term drift
without any recourse to labeled data. We analyzed first the impact of environmental factors
on the sensor response and show the evolution of the prediction error over time. Then we
proposed an empirical unsupervised drift correction method based on linear regression
and particles swarm optimization.
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3.1. Impact of Environmental Factors

This study considers only the impact of the temperature and the humidity of the air
for two reasons. First, the wind speed and the air pressure do not affect our sensor response
considering our constant air flowrate sampling. Secondly, electrochemical sensor as we
used in this work, can be considered as greatly selective.

The impact of temperature and humidity on electrochemical sensors response was
addressed recently in [30] using multiple linear regression.

To show whether temperature and humidity of the air influence the sensor response
placed inside the station, we compared calibration models obtained by using the sensor
response alone or with temperature and humidity parameters. Linear regression algorithm
is applied on data collected during each month, from July to December to cover the most
temperature and humidity conditions.

We use the root mean square error (RMSE) and the score of linear regression R2

(coefficient of determination) as performance metrics to quantify the accuracy and the
correlation between the estimated and the reference concentrations:

RMSE =

√√√√N−1
N

∑
i=1

(ỹi − yi)
2 (5)

R2 =
∑N

i=1(ỹi − y)2

∑N
i=1 (yi − y)2 (6)

where N is the number of data; ỹi, the estimated concentration; yi, the concentration
provided by reference instrument, and y, the mean of reference concentrations.

The first calibration model uses only the NO2 sensor responses, without considering
the environmental factors. For the other three models, we include these influential factors:
(1) humidity, (2) temperature and (3) temperature and humidity variation, respectively.

According to Table 1, during the summer season (July and August) there is no signifi-
cant difference between these models in terms of accuracy. However, during the months
of October, November and December, the model including temperature and humidity
reduces the RMSE by about 1 µg/m3. This observation concludes that the influence of the
temperature and humidity must be taken into account to address the climatic condition
variations.

Table 1. The accuracy of different calibration models obtained with or without environmental factors.

Model Using

Summer Autumn Winter

July August September October November December

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Sensor data 7.857 0.86 6.734 0.88 7.8 0.83 8.78 0.84 9.57 0.84 9.21 0.85

Sensor + humidity data 7.852 0.86 6.7154 0.89 7.579 0.84 8.1 0.87 8.93 0.86 9.18 0.85

Sensor + temperature data 7.851 0.86 6.73 0.88 7.523 0.84 7.82 0.88 8.73 0.87 8.53 0.87

Sensor + temperature +
humidity data 7.807 0.86 6.688 0.89 7.517 0.84 7.76 0.88 8.72 0.87 8.05 0.88

Figure 3 summarizes the results of Table 1 by illustrating the box plot of the RMSE
and the score of linear regression R2 for each calibration model. We observe that the model,
which considers temperature and humidity, is more stable comparing to other models
and the gain in terms of accuracy is noticeable as shown in Figure 3 (the median of RMSE
decreases from 8.3 to 7.9 and the R2 increases from 0.851 to 0.875).

Technically, using a long length of pipe tube to guide the air to sensor inside the
station, in order to warm the air before exposing it to sensors, can reduce the influence of
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temperature variation. Beside this, a pump is necessary to suck air inside the station and to
control the airflow. This eliminates the effect of wind speed.

Figure 3. Box plot of the RMSE and R2 for each calibration model during a 6 month period (July to December).

3.2. Unsupervised Empirical Drift Correction Algorithm

Our investigations led us to suggest the following experimental recalibration model
for estimating the NO2 concentration.

First, we establish a calibration model that includes temperature and humidity values
by applying multiple linear regression to calculate NO2 concentrations [NO2].

Then we propose a model to correct the sensitivity coef1 and the baseline coef2. This
model supposes that the degradations of the sensitivity and baseline are uniform over the
time. Thus, the coefficients coef 1 and coef 2 are temporal functions. After testing different
functions, we propose the following model that gives the optimum results.

[NO2]corr = [NO2] ∗ coe f 1 + coe f 2 (7)

coe f 1 = λ1 exp
(

time
λ2

)
(8)

coe f 2 = λ3 ∗
time
λ2

(9)

where [NO2]corr is the corrected concentration, λ1, λ2 and λ3 are correction parameters, and
the time is the rank of data collected. These parameters are calculated using PSO algorithm,
the reader can find a detailed presentation of the PSO algorithm in [31].

3.3. Experimental Validation and Implementation Guideline

To establish guideline for the practical implementation of this algorithm we considered
several scenarios. First, we partitioned the 6-month data onto n batches of 2000 data
(approximately 20 days) with n = 8. The aim of this partition is to create different scenarios
and also to show the evolution of the RMSE from one batch to another. Figure 4 illustrates
the evolution of the RMSE without applying any correction. Model calibrations built on the
first batch keep providing a good concentration estimation for the first three batches then
the RMSE value increases with time reaching 19 µg/m3 in the last batch. This is due to
the changes in sensor baseline and sensitivity, and certainly to humidity and temperature
variations.
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Figure 4. Evolution of the RMSE along with time in absence of drift correction.

We made different scenarios to evaluate our approach of correction model. In each
scenario, we used the batch number ni to build the correction model which was tested
on the succeeding batches (starting from ni + 1 to n8). According to Figure 4, we started
constructing scenarios from the batch n4 when sensor degradations were observed. The
evaluation of each scenario is based on calculating the RMSE. Table 2 summarizes the
different scenarios, and the procedure of our method is illustrated in Figure 5.

Table 2. Scenarios used to validate the correction model.

Scenarios Batch Used for
Model Calibration

Batch Used for
Model Correction

Batches Used for
Test

1 1 4 5,6,7,8
2 1 5 6,7,8
3 1 6 7,8
4 1 7 8

The results obtained using our correction model and applied in different scenarios are
shown in Figure 6. The RMSE comparison when using different models (without correction
or with our correction), shows the improvement of the concentration estimation quality in
terms of precision. For the last batch (batch 8), regardless of the scenario order, the RMSE
is reduced significantly from 19 to a value between 10.8 and 12.1 µg/m3. The correction
model obtained by using batch 4 or batch 5 improves the concentration estimation of
batches 6, 7 and 8 allowing to conclude that our approach can be used to extend the time
between full recalibrations over more than 3 months.

Figure 7 shows the impact of our approach on improving the estimation of nitrogen
dioxide concentration. The correlation between the reference concentration and the esti-
mated concentration demonstrates that the corrected model can rectify both the baseline
and the sensitivity. The slope and the intercept of linear regression between the reference
and estimated concentrations were 0.81 and −8.4 before the correction, and 0.94 and −2.23,
respectively, after the correction. Based on the scenarios, we suggest guidelines for long
term drift correction method and we highlight its practical advantage regarding existing
methods based on frequent full calibration.
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Figure 5. Empirical unsupervised drift correction algorithm procedure.

To summarize, our proposed method supposes that linear gradual changes of the
sensor sensitivity and baseline accrued over time. Therefore, we propose a time related
correction model to consider the effect of baseline and sensitivity variation on the estimated
concentration. First, we built a calibration model using data with known concentration
obtained from a reference analyzer. Then we constructed a correction model using labeled
data obtained from the reference analyzer. The parameters of the correction model are
related to time. Once the model correction was established, we did not have recourse to
label data, and we kept correcting the estimated concentration for more than 3 months
(from batch 4 to batch 8). These results encourage the investment of low cost sensors which
may partly replace the expensive air pollution monitoring instruments.
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Figure 6. Comparison of the RMSE of nitrogen dioxide estimation before and after correction drift using different scenarios
to evaluate our approach.

Figure 7. Correlation between reference concentration and estimated concentration of the 8th batch before (blue) and after
drift correction (red) using the 7th batch.

4. Conclusions

Electrochemical sensors are the most frequently used type of low cost gas sensors for
air pollution monitoring, thanks to their small size, low cost, reproducibility, selectivity,
linearity and low energy consumption. In this paper, we evaluated the performance of a
four electrodes electrochemical sensor for in field nitrogen dioxide monitoring, and we
proposed an empirical unsupervised recalibration method based on data collected over a
period of 6 months, covering many climatic conditions.

First, we presented the data pretreatment, which is a very important step before
establishing any calibration and/or correction model. Then we investigated the influence
of the outdoor temperature and humidity on the response of NO2 electrochemical sensor
placed in an air quality monitoring station. Thus, we compared different calibration models
that consider or do not consider the temperature and relative humidity variations. The
results show that there is a key difference in terms of accuracy even if the sensor is lodged
in a controlled environment (temperature and air flow).
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Then, we proposed an empirical unsupervised linear correction method by assuming
the long term drift can affect uniformly the baseline drift and sensor sensitivity. We used
PSO algorithm to identify the parameters of the correction model.

The performance of this method was assessed through experimental results based on
various scenarios. The results allow to establish guidelines for the implementation of this
method and highlight its practical interest.

The study presented in this paper reveals the effectiveness of the proposed drift correc-
tion approach. Nevertheless, low-cost gas sensor drift counteraction remains a challenging
task, especially for air pollution monitoring where the pollutant gas concentrations and
their variations are very low.

Our future work aims to further investigate the long term drift phenomenon and to
elaborate formal criteria to help decision making in order to optimize the exploitation cost
and the performance of outdoor air quality monitoring by using low-cost electrochemical
sensors.

Author Contributions: The work presented here was carried out in collaboration between all authors.
Conceptualization, R.L.; methodology, R.L.; validation, E.L., A.S. and M.S.; writing—original draft,
R.L.; writing—review and editing, E.L., A.S. and M.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank ATMO GRAND EST agency for their support, including
access to monitoring stations and data from their analyzers. The authors would also to thank Damien
Durant from ATMO GRAND EST, head of metrological unit for his assistance and his helpful advice.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor

platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [CrossRef] [PubMed]
2. Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost

sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [CrossRef] [PubMed]
3. Brienza, S.; Galli, A.; Anastasi, G.; Bruschi, P. A Low-Cost Sensing System for Cooperative Air Quality Monitoring in Urban

Areas. Sensors 2015, 15, 12242–12259. [CrossRef] [PubMed]
4. McKercher, G.R.; Salmond, J.A.; Vanos, J.K. Characteristics and applications of small, portable gaseous air pollution monitors.

Environ. Pollut. 2017, 223, 102–110. [CrossRef]
5. Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors

for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [CrossRef]
6. Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially

available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem. 2017, 238, 706–715. [CrossRef]
7. De Vito, S.; Di Francia, G.; Esposito, E.; Ferlito, S.; Formisano, F.; Massera, E. Adaptive machine learning strategies for network

calibration of IoT smart air quality monitoring devices. Pattern Recognit. Lett. 2020, 136, 264–271. [CrossRef]
8. Qin, X.; Hou, L.; Gao, J.; Si, S. The evaluation and optimization of calibration methods for low-cost particulate matter sensors:

Inter-comparison between fixed and mobile methods. Sci. Total Environ. 2020, 715, 136791. [CrossRef]
9. Zauli-Sajani, S.; Marchesi, S.; Pironi, C.; Barbieri, C.; Poluzzi, V.; Colacci, A. Assessment of air quality sensor system performance

after relocation. Atmos. Pollut. Res. 2021, 12, 282–291. [CrossRef]
10. Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin,

M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they
gone? Environ. Int. 2018, 116, 286–299. [CrossRef]

11. Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.K.E.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.P.; et al. The next
generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Tech. 2014, 7, 3325–3336.
[CrossRef]

12. Helm, I.; Jalukse, L.; Leito, I. Measurement Uncertainty Estimation in Amperometric Sensors: A Tutorial Review. Sensors 2010, 10,
4430–4455. [CrossRef] [PubMed]

http://doi.org/10.1016/j.envint.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/28038970
http://doi.org/10.1016/j.scitotenv.2017.06.266
http://www.ncbi.nlm.nih.gov/pubmed/28709103
http://doi.org/10.3390/s150612242
http://www.ncbi.nlm.nih.gov/pubmed/26016912
http://doi.org/10.1016/j.envpol.2016.12.045
http://doi.org/10.1016/j.snb.2015.03.031
http://doi.org/10.1016/j.snb.2016.07.036
http://doi.org/10.1016/j.patrec.2020.04.032
http://doi.org/10.1016/j.scitotenv.2020.136791
http://doi.org/10.1016/j.apr.2020.11.010
http://doi.org/10.1016/j.envint.2018.04.018
http://doi.org/10.5194/amt-7-3325-2014
http://doi.org/10.3390/s100504430
http://www.ncbi.nlm.nih.gov/pubmed/22399887


Sensors 2021, 21, 3581 13 of 13

13. Aleixandre, M.; Gerboles, M. Review of Small Commercial Sensors for Indicative Monitoring of Ambient Gas. Chem. Eng. Trans.
2012, 30, 169–174. [CrossRef]

14. Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the
Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [CrossRef]

15. Maag, B.; Zhou, Z.; Thiele, L. A Survey on Sensor Calibration in Air Pollution Monitoring Deployments. IEEE Internet Things J.
2018, 5, 4857–4870. [CrossRef]

16. Lin, L.; Zeng, X. Toward continuous amperometric gas sensing in ionic liquids: Rationalization of signal drift nature and
calibration methods. Anal. Bioanal. Chem. 2018, 410, 4587–4596. [CrossRef] [PubMed]

17. Wei, P.; Ning, Z.; Ye, S.; Sun, L.; Yang, F.; Wong, K.C.; Westerdahl, D.; Louie, P.K.K. Impact Analysis of Temperature and Humidity
Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring. Sensors 2018, 18, 59. [CrossRef] [PubMed]

18. Liu, X.; Jayaratne, R.; Thai, P.; Kuhn, T.; Zing, I.; Christensen, B.; Lamont, R.; Dunbabin, M.; Zhu, S.; Gao, J.; et al. Low-cost
sensors as an alternative for long-term air quality monitoring. Environ. Res. 2020, 185, 109438. [CrossRef]

19. Mead, M.I.; Popoola, O.; Stewart, G.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.; McLeod, M.; Hodgson, T.; Dicks, J.; et al.
The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 2013, 70,
186–203. [CrossRef]

20. Popoola, O.A.; Stewart, G.B.; Mead, M.; Jones, R.L. Development of a baseline-temperature correction methodology for electro-
chemical sensors and its implications for long-term stability. Atmos. Environ. 2016, 147, 330–343. [CrossRef]

21. Masey, N.; Gillespie, J.; Ezani, E.; Lin, C.; Wu, H.; Ferguson, N.S.; Hamilton, S.; Heal, M.R.; Beverland, I.J. Temporal changes in
field calibration relationships for Aeroqual S500 O3 and NO2 sensor-based monitors. Sens. Actuators B Chem. 2018, 273, 1800–1806.
[CrossRef]

22. Spinelle, L.; Aleixandre, M.; Gerboles, M.; European Commission; Joint Research Centre; Institute for Environment and
Sustainability. Protocol of Evaluation and Calibration of Low-Cost Gas Sensors for the Monitoring of Air Pollution; Publications Office:
Luxembourg, 2013. Available online: http://dx.publications.europa.eu/10.2788/9916 (accessed on 14 January 2020).

23. Sun, L.; Westerdahl, D.; Ning, Z. Development and Evaluation of a Novel and Cost-Effective Approach for Low-Cost NO2 Sensor
Drift Correction. Sensors 2017, 17, 1916. [CrossRef] [PubMed]

24. Mijling, B.; Jiang, Q.; De Jonge, D.; Bocconi, S. Field calibration of electrochemical NO2 sensors in a citizen science context. Atmos.
Meas. Tech. 2018, 11, 1297–1312. [CrossRef]

25. Zhang, L.; Peng, X. Time series estimation of gas sensor baseline drift using ARMA and Kalman based models. Sens. Rev. 2016,
36, 34–39. [CrossRef]

26. Baron, R.; Saffell, J. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring
Applications: A Review. ACS Sens. 2017, 2, 1553–1566. [CrossRef] [PubMed]

27. Hossain, M.; Saffell, J.; Baron, R. Differentiating NO2 and O3 at Low Cost Air Quality Amperometric Gas Sensors. ACS Sens.
2016, 1, 1291–1294. [CrossRef]

28. Align Signals Using Cross-Correlation—MATLAB & Simulink—MathWorks France. Available online: https://fr.mathworks.
com/help/signal/ug/align-signals-using-cross-correlation.html (accessed on 23 March 2021).

29. Laref, R.; Losson, E.; Sava, A.; Siadat, M. Support Vector Machine Regression for Calibration Transfer between Electronic Noses
Dedicated to Air Pollution Monitoring. Sensors 2018, 18, 3716. [CrossRef] [PubMed]

30. Liang, Y.; Wu, C.; Jiang, S.; Li, Y.J.; Wu, D.; Li, M.; Cheng, P.; Yang, W.; Cheng, C.; Li, L.; et al. Field comparison of electrochemical
gas sensor data correction algorithms for ambient air measurements. Sens. Actuators B Chem. 2021, 327, 128897. [CrossRef]

31. Lin, S.-W.; Ying, K.-C.; Chen, S.-C.; Lee, Z.-J. Particle swarm optimization for parameter determination and feature selection of
support vector machines. Expert Syst. Appl. 2008, 35, 1817–1824. [CrossRef]

http://doi.org/10.3303/CET1230029
http://doi.org/10.3390/atmos10090506
http://doi.org/10.1109/JIOT.2018.2853660
http://doi.org/10.1007/s00216-018-1090-y
http://www.ncbi.nlm.nih.gov/pubmed/29947905
http://doi.org/10.3390/s18020059
http://www.ncbi.nlm.nih.gov/pubmed/29360749
http://doi.org/10.1016/j.envres.2020.109438
http://doi.org/10.1016/j.atmosenv.2012.11.060
http://doi.org/10.1016/j.atmosenv.2016.10.024
http://doi.org/10.1016/j.snb.2018.07.087
http://dx.publications.europa.eu/10.2788/9916
http://doi.org/10.3390/s17081916
http://www.ncbi.nlm.nih.gov/pubmed/28825633
http://doi.org/10.5194/amt-11-1297-2018
http://doi.org/10.1108/SR-05-2015-0073
http://doi.org/10.1021/acssensors.7b00620
http://www.ncbi.nlm.nih.gov/pubmed/29025261
http://doi.org/10.1021/acssensors.6b00603
https://fr.mathworks.com/help/signal/ug/align-signals-using-cross-correlation.html
https://fr.mathworks.com/help/signal/ug/align-signals-using-cross-correlation.html
http://doi.org/10.3390/s18113716
http://www.ncbi.nlm.nih.gov/pubmed/30388748
http://doi.org/10.1016/j.snb.2020.128897
http://doi.org/10.1016/j.eswa.2007.08.088

	Introduction 
	Data Collection and Pretreatment 
	Electrochemical Sensor Principle 
	Sensor Data Collection 
	Data Series Pretreatment 

	Empirical Unsupervised Recalibration Strategy 
	Impact of Environmental Factors 
	Unsupervised Empirical Drift Correction Algorithm 
	Experimental Validation and Implementation Guideline 

	Conclusions 
	References

