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Purpose: The recurrence and metastasis of glioma are closely related to complex regulatory
networks among protein-coding genes, IncRNAs and microRNAs. The aim of this study was
to investigate core genes, IncRNAs, miRNAs and critical ceRNA regulatory mechanisms,
which are involved in lower-grade glioma (LGG) recurrence.

Materials and Methods: We employed multiple datasets from Chinese Glioma Genome
Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) to perform comprehensive
transcriptomic analysis. Further in vitro experiments including cell proliferation assay,
luciferase reporter assay, and Western blot were performed to validate our results.

Results: Recurrent LGG and glioblastoma (GBM) showed different transcriptome charac-
teristics with less overlap of differentially expressed protein-coding genes (DEPs), IncRNAs
(DELs) and miRNAs (DEMs) compared with primary samples. There were no overlapping
gene in ontology (GO) terms related to GBM recurrence in the TCGA and CGGA databases,
but there were overlaps associated with LGG recurrence. GO analysis and protein—protein
interaction (PPI) network analysis identified three core genes: TIMP1, COL1Al and
COLG6A2. By hierarchical cluster analysis of them, LGGs could be clustered as Low_risk
and High risk group. The High risk group with high expression of TIMP1, COL1Al, and
COLG6A2 showed worse prognosis. By coexpression networks analysis, competing endogen-
ous RNA (ceRNA) network analysis, cell proliferation assay and luciferase reporter assay,
we confirmed that IncRNA HOXA-AS2 functioned as a ceRNA for miR-184 to regulate
expression of COL6A2, which induced cell proliferation of low-grade glioma.
Conclusion: In this study, we revealed a 3-hub protein-coding gene signature to improve
prognostic prediction in LGG, and identified a critical ceRNA regulation involved in LGG
recurrence.
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Introduction

Glioma is the most common malignant brain tumor in human adults, with a low 5-
year overall survival (OS) rate (35%)." According to the World Health Organization
(WHO) grading system, gliomas are classified from grade I-IV. Grade II and III
gliomas are grouped as LGGs, and GBM is regarded as grade IV. GBM, as the most
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invasive and aggressive glioma, shows the highest mortal-
ity despite aggressive treatment.” Although LGGs have
identical morphological phenotypes, the range of patient
outcomes is wide.* Because of the aggressive nature of
gliomas, a residual tumor after excision is the leading
cause of recurrence and disease progression, which is a
major reason for the poor prognosis in glioma patients.’
Therefore, it is necessary to explore the tumor progression
mechanisms and identify potential therapeutic targets in
glioma.

Recently, many studies have revealed the distinctions
between GBM and LGG by integrating and analyzing
multilevel molecular data, including mutation, methyla-
tion, and gene expressions. Previous studies have reported
that somatic intronic microsatellite loci can differentiate
between GBM and LGG.®® Zhang et al revealed distinc-
tions between LGG and GBM by establishing a differen-
tial mMRNA-IncRNA network using mRNAs and IncRNAs
differentially expressed between GBM and LGG.’
Therefore, a separate exploration of the mechanisms of
LGG and GBM progression will be more appropriate.

Long noncoding RNAs (IncRNAs) and microRNAs are
classic noncoding RNAs and have been reported to reg-
ulate the development of glioma.'®"'? For example, Li et al
found that IncRNA SNHG! could upregulate FOXP2 and
KDMS5B by regulating the expression of miR-154-5p and
miR-376b-3p, which contributed to the malignant behavior
of glioma cells.'”> Wu et al reported that IncRNA Inc-
TALC increased the expression of O°-methylguanine-
DNA methyltransferase by regulating the c-Met pathway
by competitively binding with miR-20b-3p, and this bio-
logical process is required for temozolomide resistance
and GBM recurrence.'* To date, a number of public
open-access databases have helped uncover more complex
protein-coding gene-IncRNA-microRNA regulatory net-
works. By informatics analysis using TCGA and GEO
data, reciprocal regulatory networks among protein-coding
genes, IncRNAs and microRNAs have been revealed to
participate in cancer progression.'>'® Lou et al described a
miRNA-mRNA regulatory network by using DEPs
between GBM samples and normal samples that was
involved in tumorigenesis and the development of
GBM.'” Deng et al also revealed hub DEPs by construct-
ing PPI networks of DEPs between primary and recurrent
LGG tumor tissues in the TCGA database.'® Besides,
IncRNAs, microRNAs and mRNAs could form complex
ceRNA network to GBM growth
progression.'”?® Long et al revealed a complex IncRNA

promote and

mediated ceRNA network associated with GBM progres-
sion by analyzing TCGA and GEO data.?' However, the
complex regulatory networks and ceRNA networks among
protein-coding genes, IncRNAs and microRNAs are still
unclear in the recurrence of glioma.

In this study, DEPs, DELs and DEMs were identified, and
GO analysis was performed to explore transcriptome variation
in the process of LGG or GBM recurrence by cross-database
analysis using CGGA and TCGA data. By intersecting the
results from analyses of the CGGA and TCGA databases and
constructing a PPI network, three hub genes (TIMPI,
COL1A1 and COL6A2) were revealed to participate in
LGG recurrence. Using the three genes, primary LGGs were
clustered into two groups (High risk and Low risk), and the
High risk group showed poorer prognosis. Finally, protein-
coding gene-IncRNA-microRNA regulatory network analysis
and ceRNA network analysis were conducted to reveal hub
protein-coding genes, IncRNAs and microRNAs associated
with LGG recurrence.

Materials and Methods

Data Collection

We obtained transcriptomic data of GBM and LGG
samples from the TCGA (https://portal.gdc.cancer.gov/)
and CGGA (http://www.cgga.org.cn/) databases. The
details are illustrated in Table 1. We normalized raw
counts data from TCGA database by TMM using
GDCRNATools package in R software. In the TCGA
database, 14 LGG patients had both recurrent and pri-

mary samples, and RNA-Seq and miRNA-Seq data were
available for a total of 32 samples. In addition, 6 GBM
patients had both recurrent and primary samples, and
RNA-Seq data were available for a total of 13 samples.
RNA-Seq data of grade III glioma cell lines (SW1783,
SW1088, HS683 and GOS3) were downloaded from
CCLE database (https://portals.broadinstitute.org/ccle).
RNA levels of COL6A2, HOXA-AS2 and miR-184
were extracted and log2-transformed.

Differentially Expressed Protein-Coding

Genes, IncRNAs and microRNAs

Differentially expressed RNAs (including DEPs, DELs,
and DEMs) were analyzed between primary and recurrent
samples of LGG or GBM by using the “limma” package in
R software. Because some cases had both primary and
recurrent samples in the TCGA database, we identified
DEPs, DELs, and DEMs between primary and recurrent
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Table | Datasets Used in This Study
Database Dataset Data Type Sample (n) Patient (n) Sample Type (n)
GBM_P GBM_R LGG_P LGG_R
TCGA - mRNA-Seq 529 512 501 18
- mRNA-Seq 174 166 6 168 - -
- miRNA-Seq 530 512 - - 512 18
CGGA Dataset 2 mRNA-Seq 692 692 140 109 282 161
Dataset 3 mRNA-Seq 291 291 85 24 144 38
Dataset 6 miRNA-array 287 287 156 18 108 5
Dataset 4 mRNA-array 192 192 8l 4 99

Abbreviations: TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; GBM, glioblastoma; LGG, lower-grade glioma.

tumors in these patients. The DEPs, DELs, and DEMs that
met the criteria of P value < 0.05 and [log2 (fold change)|
>1 were selected for further analysis. Volcano plot and
heatmap were plotted to show DEPs, DELs, and DEMs by
using the “ggplot2” and “pheatmap” package in R soft-
ware. Venn diagrams were drawn to find overlap using the
Bioinformatics & Evolutionary Genomics website (http://
bioinformatics.psb.ugent.be/webtools/Venn/).

GO Enrichment Analysis

GO analysis was performed using DEPs with the
“clusterProfiler” package in R software. Dotplots were
generated to display the most significant GO terms
involved in LGG or GBM recurrence (P<0.001). Using
the “enrichplot” package in R, circular diagrams were
plotted to show the 5 most related GO terms (P<0.001).

Protein—Protein Interaction (PPI)

Network Analysis

To better understand the interactive relationships among
these enriched genes in GO terms, a PPI network was estab-
lished by using the STRING database.”” According to the
degree calculated using Cytoscape software (version 3.6.1),
the top 10 hub genes were identified from the PPI network.

Protein Coding Gene-IncRNA-miRNA

Coexpression Network Analysis

The R package “corrplot” was utilized to calculate the corre-
lation coefficients among prognostic DEPs, DELs and
DEMs. Then, node pairs with a correlation coefficient > 0.1
were selected for further analysis. A coexpression network
containing protein-coding genes, IncRNAs and miRNAs was
constructed, and further analysis was conducted to identify a

subnetwork by using Cytoscape software (https://cytoscape.
org/).

Construction of ceRNA Network
Interactions of IncRNAs with microRNAs and mRNAs
were predicted by using the miRcode database. Finally,
the IncRNA-miRNA-mRNA ceRNA network analysis was
conducted by using Cytoscape software.

Cell Lines and Cell Culture

Two grade III glioma cell line HS683 and SW1088 were
purchased from American Type Tissue Culture Collection.
The cell lines were maintained in DMEM supplemented
with 10% fetal bovine serum at 37°C under a humidified
atmosphere of 5% CO,.

Cell Transfection

miR-184 mimics, miR-184 inhibitor, or negative control were
transfected by Lipofectamine3000 (Invitrogen Inc., Carlsbad,
CA, USA), which were synthesized by GenePharma
(Shanghai, China). The sequences were listed as follows:*®
miR-184 mimic, 5-UGGACGGAGAACUGAUAAGGGU
CCUUAUCAGUUCUCCGUCCAUU-3'; the negative con-
trol for miR-184 mimic, 5'-UUCUCCGAACGUGUCACG
UTTACGUGACACGUUCGGAGAATT-3’; miR-184 inhibi-
tor, 5-ACCCUUAUCAGUUCUCCGUCCA-3, negative
control for miR-184 inhibitor, 5'-CAGUACUUUUGUGU
AGUACAA-3". siRNAs targeting COL6A2 and HOXA-
AS2 were synthesized by GenePharma, and eukaryotic vec-
tors expressing HOXA-AS2 were obtained from Genechem
(Shanghai, China). The siRNAs and vectors were used to
transfected to glioma cells by Lipofectamine3000. The
siRNA sequences were listed as follows:**** siHOXA-AS2,

sil: 5-AAACCUUGUAGAUAGCUUGAGCUGG-3', si2:
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5'-CAAGCUUGACAAGUUCAGCUCAA-3"; siCOL6A2:
sil: 5'-GGGCCUCCUUCAUCAAGAATT-3"; si2: 5'-GCAG
GCCUGGAUUCAGCUATT-3".

Western Blotting

Total protein was gathered by RIPA Lysis Buffer. The protein
samples were separated by 8% SDS-polyacrylamide gels and
transferred to PVDF membranes. After blocking with 5%
BSA for 2 h, the membranes were incubated overnight with
primary antibodies including mouse anti-GAPDH monoclo-
nal antibody (Catalog number: 60,004-1-Ig, proteintech,
Wuhan, China) and rabbit anti-COL6A2 monoclonal anti-
body (Catalog number: ab180855, Abcam, Cambridge, UK)
at 4°C. After being washed in TBST for three times, mem-
branes were incubated with HRP-conjugated anti-rabbit
(Catalog number: SA00001-2, proteintech, Wuhan, China)
or HRP-conjugated anti-mouse (Catalog number: SA00001-
1, proteintech, Wuhan, China) secondary antibodies at a
1:5000 dilution at room temperature for 1h. Then, the bind-
ing secondary antibody was detected and recorded using the
enhanced ECL Western blotting detection system.

Quantitative Real-Time PCR (qPCR)

The total RNA of glioma cells were extracted with Trizol
reagent (Invitrogen, USA) according to the manufacturer’s
instruction. Total RNA (1 pg) was used for cDNA synth-
esis using Reverse Transcription kit (TOYOBO, Osaka,
Japan). The primers were: GAPDH, forward: 5-AACGG
ATTTGGTCGTATTG-3', reverse: 5-GGAAGATGGT
GATGGGATT-3"; HOXA-AS2, forward: 5'-GTTCAGC
TCAAGTTGAACATA-3', reverse: 5'-AAACCTTGTAG
ATAGCTTGAG-3’; COL6A2, forward: 5- TGCTCCGT
GCTCCTGCTCTG-3', reverse: 5'- ATGGTGACGCTCT
CCGAGGTG —3'. The qRT-PCR assays were carried out
using SYBR Select Master Mix (Applied Biosystems,
Foster City, CA, USA) on ABI 7500 Real-Time PCR
system (Applied Biosystems). The PCR conditions were
as follows: step 1: 95°C for 5 min; step 2: 40 cycles
consisting of 95°C for 10 s, 60°C for 30 s, and 72°C
for30 s; step 3: 72°C for 5 min. Relative RNA level of
each gene was calculated as 27", Each sample was
performed in triplicate.

Cell Counting Kit-8 (CCK-8)
Proliferation Assay

The transfected HS683 and SW1088 cells were seeded
into 96-well plates at a density of 5000 cells/well. After

incubated at 37 °C for 2 h, the absorbance of each well
was measured at a wavelength of 450 nm.

Luciferase Assay

Glioma cells were seeded in 24-well plate, and allowed to
grow for 24 h. To test the binding specificity of miR-184 in
COL6A2, we constructed the wild type reporter vector
(COL6A2-3'UTR_WT: 5'-CCCGUCCA-3') and the corre-
sponding mutant (COL6A2-3'UTR MUT: 5'-CUUAG
UUA-3"). To test the binding specificity of miR-184 in
HOXA-AS2, we constructed the wild type reporter vector
(HOXA-AS2 WT: 5'-UCCGUCC-3’) and the corresponding
mutant (HOXA-AS2 MUT: 5'- GUUAGUU -3'). Then,
100ng pGL3-COL6A2-3"UTR-luciferase plasmid (or MUT)
and pGL3-HOXA-AS2-luciferase plasmid (or MUT) was
transfected into glioma cells using the Lipofectamine3000
reagent. Subsequently, the cells were transfected with miR-
184 mimics, miR-184 inhibitor, or negative control. The
luciferase activities in cell lysates were measured at 48 h
after transfection by the Dual Luciferase Reporter Assay Kit
(Promega, Madison, WI, USA) according the manufacturer’s
protocol. Three independent experiments were performed.

Immunohistochemistry (IHC) and

Evaluation

Four primary LGG tissues and four recurrent LGG tissues
were obtained from Department of Neurosurgery of
Shengjing Hospital affiliated to China Medical University
and histologically diagnosed with grade II or III glioma in
2017. These experiments were approved by Human Ethics
Committee of China Medical University and all patients
signed the informed consent. Tissues were fixed by formalin,
embedded by paraffin, and finally cut into 4um sections. The
sections were deparaffinized by three 10-min washes in
xylene, and then rehydrated by 100%, 95%, 85% and 75%
ethanol solutions (5min/time). Antigen retrieval was per-
formed in 0.01 M citrate buffer (pH 6.0) at 120°C for 5 min.
Endogenous peroxidase was blocked by 3% H,O, in PBS for
15 min and washed for 2x5 min in PBS. Then, non-specific
binding were blocked by 10% bovine serum albumin (BSA)
for 45 min. Subsequently, sections were incubated with the
primary antibody against COL6A2 (1:100) at 4 °C for over-
night. After washed using PBS, the sections were incubated
with HRP-conjugated goat anti-rabbit secondary antibody
(1:1000) for 45 min. Finally, the sections were stained using
3,3-diaminobenzidine (DAB) for 5 min, counterstained with
hematoxylin, mounted and captured representative images
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using an optical microscope (Olympus, Tokyo, Japan). As for
the IHC scoring, protein expression was calculated by multi-
ply the staining intensity scores and the positive cell rate
scores. Staining intensity scores: 0, negative; 1, weak; 2,
intense; and 3, strongly intense. Positive cell rate scores: 0,
0%; 1, 1-10%; 2, 11-25%; 3, 26-50%; 4, 51-75%; and 5,
76-100%.

Statistical Analysis

The main statistical analysis in this study is stated above.
Using a 3-gene expression value, hierarchical cluster analyses
were conducted with the “pheatmap” package in R. To explore
the prognostic significance of DEMs, ROC curves were
plotted, and optimal cutoff values were set to divide all LGG
samples as low and high expression groups. The survival
curves were plotted using GraphPad Prism 6.0 (La Jolla,
CA, United States). When we performed differential expres-
sion analysis, only protein-coding genes, IncRNAs or
miRNAs with |log2FC| > 1 and P<0.05 were considered
statistically significant. Univariate Cox regression analyses
were conducted using the “survival” package in R, The
Student’s #-test, or the chi-squared test, was used to evaluate
significant differences between groups of data. All data are
represented as the means + SD. Student’s #test using
GraphPad Prism 6.0 was used to determine significant differ-
ences between two groups. All data are represented as the
means and 95% CI. A P value < 0.05 was considered statis-
tically significant.

Results

Recurrence-Related RNA Expression
Patterns Vary in GBM and LGG

To explore whether GBM and LGG recurrences contribute to
distinct mechanisms, we compared the differentially
expressed RNAs between recurrent and primary samples of
GBM or LGG, including protein-coding genes, pseudogenes,
and long noncoding and short noncoding RNAs. In the
CGGA database, there were 183 upregulated and 38 down-
regulated RNAs in recurrent GBM samples (|log2 (fold
change)| > 1, P<0.05, Figure 1A and B, Table S1). A total
of'45 upregulated and 7 downregulated RNAs were observed
in recurrent LGG samples (|log2 (fold change)| > 1, P<0.05,
Figure 1C and D, Table S2). Venn diagrams showed that
there were only 6 overlapping RNAs among the upregulated
RNAs and 1 overlapping RNA among the downregulated
RNAs in recurrent LGG and GBM (Figure 1E and F). These

results revealed distinct recurrence mechanisms between
GBM and LGG at the transcriptional level.

To validate the above results, the same analyses were
conducted in the TCGA database. There were 1332 upregu-
lated and 466 downregulated RNAs in recurrent GBM samples
(log2 (fold change)| > 1, P<0.05, Figure 2A and B, Table S3).
A total of 401 upregulated and 616 downregulated RNAs were
observed in recurrent LGG samples (|log2 (fold change)| > 1,
P<0.05, Figure 2C and D, Table S4). Venn diagrams showed
that there were only 6 overlapping RNAs among the upregu-

lated RNAs and 14 overlapping RNAs among the downregu-
lated RNAs in recurrent LGG and GBM (Figure 2E and F).

Recurrent Mechanisms of GBM and LGG

are Different

GO analysis was performed using DEPs. The dotplot of
the top 10 enriched GO terms is displayed. In recurrent
GBM, there were no identical enriched GO terms between
the TCGA and CGGA databases (Figure 3A and B).
However, we observed the same enriched GO terms
involved in LGG recurrence (Figure 3C and D). The
results showed that LGG recurrence was positively asso-
ciated with GO terms involved in the extracellular matrix
(such as collagens, P<0.001).

GO and PPI Network Analysis Revealed
Three Core Genes Involved in LGG

Recurrence

To screen critical genes that mediate LGG recurrence, we
generated a circular diagram to show the top 5 related GO
terms with the enriched genes. Referencing the analysis
results from the CGGA and TCGA databases, a total of 20
genes were enriched in GO terms associated with the
extracellular matrix (Figure 4A and B). Using these 20
genes to construct a PPI network, the top 10 hub genes
were identified (Figure 4C). Among them, three genes
were also intersected in both TCGA and CGGA analysis
results: TIMP1, COL1A1 and COL6A2. Expression of the
three genes was increased more than double in recurrent
LGGs in the CGGA (Figure 4D, all P<0.001) and TCGA
databases (Figure 4E, all P<0.05).

To explore the prognostic significance of the 3 genes in
primary LGGs, we performed hierarchical cluster analysis. In
the TCGA project and CGGA dataset (dataset 2), all primary
LGG samples were clustered into two groups: High risk and
Low risk. The High risk group showed poorer prognosis
than the Low_risk group in the CGGA (dataset 2, HR=2.97
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Abbreviations: GBM_P, primary GBM; GBM_R, recurrent GBM; LGG_P, primary LGG; LGG_R, recurrent LGG.

(2.11-5.17), P<0.001, Figure 5A) and TCGA (HR=2.69
(1.86-3.75), P<0.001, Figure 5B) databases. Another two
CGGA datasets (dataset 3 and dataset 4) were used as exter-
nal validation, and the same results were observed (dataset 3,
HR=2.20 (1.42-4.09), P=0.001, Figure 5C; dataset 4,
HR=1.87 (1.08-3.01), P=0.025, Figure 5D).

Recurrence-Related miRNAs are Distinct

Between LGG and GBM

To further explore the roles of miRNAs in LGG and GBM
recurrence, we used CGGA microRNA array data for the
next analysis. In the CGGA dataset (dataset 6), 29 increased
and 59 decreased miRNAs were observed in recurrent GBM
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Notes: Differentially expressed RNAs between primary and recurrent GBM samples are displayed by volcano plot (A, |log2 (fold change)| > |, P<0.05) and heatmap (B, |
log2 (fold change)| > I, P<0.05). Differentially expressed RNAs between primary and recurrent LGG samples are displayed by volcano plot (C, |log2 (fold change)| > I,
P<0.05) and heatmap (D, |log2 (fold change)| > I, P<0.05). (E) Six overlapping genes were upregulated in recurrent GBM and LGG. (F) Fourteen overlapping genes were

downregulated in recurrent GBM and LGG.
Abbreviations: GBM_P, primary GBM; GBM_R, recurrent GBM; LGG_P, primary LGG; LGG_R, recurrent LGG.
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Notes: GO analysis of DEPs (|log2 (fold change)| > I, P<0.05) in recurrent GBM in the CGGA (A) and TCGA (B) databases (P<0.001). GO analysis of DEPs (|log2 (fold
change)| > |, P<0.05) in recurrent LGG in the CGGA (C) and TCGA (D) databases (P<0.001).
Abbreviations: GBM_P, primary GBM; GBM_R, recurrent GBM; LGG_P, primary LGG; LGG_R, recurrent LGG; BP, biological process; MF, molecular function; CC,

cellular component.

(llog2 (fold change)| > 1, P<0.05, Figure 6A and B, Table S5).
In LGG, we found 9 upregulated and 8 downregulated
miRNAs in recurrent samples (Jlog2 (fold change)|>1,
P<0.05, Figure 6C and D, Table S6). Venn diagrams showed
only 2 overlapping miRNAs among the upregulated miRNAs
and 1 overlapping miRNA among the downregulated
miRNAs in recurrent LGG and GBM (Figure 6E and F).

Prognostic miRNAs and IncRNAs in LGG
We further screened prognostic miRNAs in LGG patients by
using TCGA miRNA-Seq data. First, we compared differen-
tially expressed miRNAs between recurrent and primary LGG
samples from 14 LGG patients. There were 23 upregulated
and 20 downregulated miRNAs in recurrent LGGs (Figure 7A
and B, Table S7). Among them, 8 of 23 upregulated miRNAs
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Figure 4 |dentification of TIMPI, COLIAI and COL6A2 as the core genes involved LGG recurrence.

Notes: Circular diagram showed 5 most related GO terms involved in LGG recurrence in CGGA (A) and TCGA (B) database (P<0.001). (C) PPI network analysis showed
topl0 hub protein-coding genes among genes in GO term associated with extracellular matrix. The colors nodes of the network from light yellow, dark yellow to red
indicated gradually crucial members in the network. Of the 10 hub protein-coding genes, TIMPI, COLIAI| and COL6A2 were upregulated in LGG recurrence comparing

primary tumor in CGGA (D, all P<0.001) and TCGA (E, all P<0.05) database. *P<0.05, ***P<0.001.
Abbreviations: GBM_P, primary GBM; GBM_R, recurrent GBM; LGG_P, primary LGG; LGG_R, recurrent LGG.

were significantly associated with inferior prognosis, and 11 of
20 downregulated miRNAs were positively associated with
better prognosis (Figure 7C and Figure S1, P<0.01).
According to the above results on differentially expressed
RNAs, we identified 35 upregulated IncRNAs and 71

downregulated IncRNAs in recurrent LGGs. By Cox univari-
ate regression analysis, 31 of 35 upregulated IncRNAs were
significantly related to worse prognosis, and 60 of 71 down-
regulated IncRNAs were positively associated with better
prognosis (Table S8, P<0.01).
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Identification and Validation of LncRNA
HOXA-AS2/miR-184/COL6A2 ceRNA
Regulation Associated with LGG
Recurrence

The TCGA database supplies multidimensional data, which
includes somatic mutations, copy number variants (CNVs),
gene expression, IncRNA expression, and miRNA expression.
Therefore, we could establish a protein-coding gene-IncRNA-
miRNA coexpression network using these data. There were 12
protein-coding gens enriched in the GO terms involved in the
extracellular matrix, 19 prognostic miRNAs and 91 prognostic
IncRNAs in the TCGA database. Using the protein-coding

genes and prognostic IncRNAs and miRNAs, the node pairs
with correlation coefficients > 0.1 and P value < 0.05 were
selected for further analysis. Accordingly, we constituted a
complex co-expression network containing 12 protein coding
genes, 18 miRNAs and 29 IncRNAs (Figure 8A). To better
understand whether the above 29 hub IncRNAs regulated 12
protein coding genes via ceRNA regulatory mechanism, we
performed ceRNA network analysis by using miRcode data-
base. Finally, we constructed a ceRNA network including 9
protein coding genes, 6 miRNAs and 12 IncRNAs. As shown
in Figure 8B, HOXA-AS2 may act as a competing endogenous
RNA (ceRNA) for miR-184 to regulate the hub gene COL6A2
expression. COL6A2 expression was positively related to
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primary LGG samples in CGGA database (dataset 6). (E) Two overlapped microRNAs were up-regulated in recurrent GBM and LGG. (F) One overlapped microRNAs was

down-regulated in recurrent GBM and LGG.

Abbreviations: GBM_P, primary GBM; GBM_R, recurrent GBM; LGG_P, primary LGG; LGG_R, recurrent LGG.

LncRNA HOXA-AS2 expression, and negatively related to
miR-184 expression in glioma in TCGA database (Figure 8C).
In CCLE database, the four grade I1I glioma cell lines showed
different levels of expression of LncRNA HOXA-AS2,
COL6A2 and miR-184 (Figure 8D). Because HS683 showed
high expression of them and SW-1088 showed low levels of
them, we further selected these two cell lines for the next
experiments. We also detected the COL6A2 protein expression

by IHC, and COL6A?2 expression was significantly higher in
recurrent LGG tissues (n=4) than in primary LGG tissues
(n=4) (P<0.01, Figure 8E). By referencing to miRcode data-
base, we obtained two potential binding site of miR-184 in
LncRNA HOXA-AS2 mRNA (Figure 8F). In order to further
validate the interaction, luciferase reporter assays were per-
formed. The miR-184 inhibitors enhanced the luciferase activ-
ity of HOXA-AS2 WT reporter systems in SW1088, but not
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Figure 7 Identification of recurrence-related microRNAs in LGGs in TCGA database.
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HOXA-AS2 MUT (Figure 8G). The miR-184 mimics inhib-
ited the luciferase activity of HOXA-AS2 WT reporter sys-
tems in HS683, but not HOXA-AS2 MUT (Figure 8G).
Furthermore, we also obtained the binding site of miR-184 in
3'UTR of COL6A2 mRNA (Figure 8H). Similarly, the miR-
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184 inhibitors enhanced the luciferase activity of COL6A2-3'
UTR_WT reporter systems in SW1088, but not COL6A2-3'
UTR MUT (Figure 81). The miR-184 mimics inhibited the
luciferase activity of COL6A2-3'UTR_WT reporter systems in
HS683, but not COL6A2-3'UTR_MUT (Figure 8I).
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LncRNA HOXA-AS2/miR-184/COL6A2
ceRNA Regulation Promoted Glioma Cell

Proliferation

In order to explore whether LncRNA HOXA-AS2/miR-184/
COLG6A2 ceRNA regulation involved in glioma cell prolif-
eration, rescue experiments were performed. We first
knocked down (Figure S2A) or overexpressed HOXA-AS2
(Figure S2B), and knocked down COL6A2 (Figure S2C) in
glioma cells. The more effective siRNA sequence was
selected for the further experiments. HOXA-AS2 upregula-
tion increased COL6A2 expression in SW1088 cells, which
was partly reversed by miR-184 mimics (Figure 9A).
HOXA-AS2 downregulation suppressed COL6A2 expres-
sion in HS683, which was restored by miR-184 inhibitors
to some extent (Figure 9A). Forcing expression of HOXA-
AS2 enhanced cell proliferation ability of SW1088 cells, and
the effect was attenuated by miR-184 mimics (Figure 9B). In
HS683 cells, HOXA-AS2 knockdown mediated cell prolif-
eration inhibition was reversed by miR-184 inhibitors
(Figure 9B). HOXA-AS2-mediated COL6A2 upregulation
could be partly blocked by COL6A2 knockdown in SW1088
cells (Figure 9C). Double knockdown of HOXA-AS2 and
COL12A1 more apparently suppressed expression of
COL6A2 in HS683 cells than single knockdown of
HOXA-AS2 and COL6A2 (Figure 9C). Cell proliferation
ability of SW1088 was enhanced by HOXA-AS2, which
was attenuated by COL6A2 downregulation (Figure 9D).
Double knockdown of HOXA-AS2 and COL6A2 more
apparently inhibited cell proliferation in HS683 than single
knockdown of them (Figure 9D).

Discussion

Although glioma patients receive aggressive treatment
including surgery, chemotherapy and radiotherapy, some
patients suffer tumor recurrence.’®*” Therefore, exploring
the recurrence mechanisms of glioma will be conducive to
improving the diagnosis and treatment of glioma. An increas-
ing number of studies have inferred the distinctions between
GBM and LGG.*° Hence, we explored the recurrence
mechanisms of GBM and LGG separately. By comparing
them to primary samples, we found that recurrent samples of
GBM and LGG showed distinct changes in transcriptomic
characteristics due to less overlapping DEPs, DELs and
DEMs. Further GO analysis using DEPs also indicated that
the recurrent mechanisms of GBM were different from those
of LGG. However, in GBM, we did not obtain similar results
of GO analysis from the CGGA and TCGA databases, which

may be due to the large heterogeneity of GBM.?* For exam-
ple, the markedly enriched GO terms (MF) in recurrent
GBMs were protein heterodimerization activity and struc-
tural constituent of ribosome in CGGA database and channel
activity and passive transmembrane transporter activity in the
TCGA database, although these GO terms have been
reported to contribute to GBM progression.”* ! Glioma
stem cells play critical roles in glioblastoma multiforme
chemotherapy resistance and recurrence, such as CDI133
cells.*? Glioma stem cells can self-renew and differentiate
into other specific GBM subpopulations, which is involved in
activation of Wnt/B-catenin pathway.>* Maintenance of stem
cell characteristics may be involved in activation of the above
pathway related GBM recurrence.**~** Therefore, they have
been held responsible for malignant relapse after primary
standard therapy and the poor prognosis of recurrent GBM.
Nevertheless, the enriched GO terms in recurrent LGG in the
CGGA database were similar to those in the TCGA database,
which were involved in the extracellular matrix (mainly
including collagens). The extracellular matrix plays pivotal
roles in multiple biological processes in cancers, including
metastasis, immune evasion and drug resistance.*> >’

Of the genes in the top 5 most relevant GO terms
involved in LGG recurrence, TIMP1, COL1A1 and
COL6A2 were upregulated in recurrent samples in both
the CGGA and TCGA databases. In pancreatic cancer,
high expression of TIMP1 can attenuate the gemcitabine
therapy response and accelerate tumor growth and liver
metastasis.”® COLIA1 is a member of the collagen I
family and has been reported to be associated with tumor
cell proliferation and invasion in many cancers, such as
breast, lung and renal cancers.’”® As a member of the
Collagen VI family, COL6A2 is widely expressed in a
variety of cancers and favors cancer progression.*’ These
three core genes were found to interact with each other and
with other genes involved in the extracellular matrix as
demonstrated using the STRING database. Furthermore,
hierarchical cluster analysis using the three genes indi-
cated that there were two clusters of LGGs, and the
High risk group with high expression of these genes
showed poor prognosis in primary LGGs. These results
indicated the critical roles of these genes in LGG recur-
rence. These three genes have been reported to be signifi-
cantly associated with poor prognosis in other cancers,
such as bladder cancer and colorectal cancer.*'** Many
previous studies have been designed to acquire prognostic
signatures of microRNAs, pseudogenes and IncRNAs, and

the studies screened the genes by prognostic analyses.***°

submit your manuscript

5012

Dove

OncoTargets and Therapy 2020:13


http://www.dovepress.com/get_supplementary_file.php?f=245896.zip
http://www.dovepress.com/get_supplementary_file.php?f=245896.zip
http://www.dovepress.com/get_supplementary_file.php?f=245896.zip
http://www.dovepress.com
http://www.dovepress.com

Dove Chen et al
A
SW1088 HS683
HOXA-AS2: - + - + HOXA-AS2_si1: - + - +
miR-184 mimic: - - + + miR-184 inhibitor: - - * *
COLOAZ |1y e - A
GAPDH M S sy S GAPDH | " == s s
B
SW1088 HS683
g 1.0 . o NC § 1.0 - NC
g 081 i = HOXA-AS2 2 0.8+ = HOXA-AS2_sit
8 o6 I -+ mR184mimic S o6l “+ miR-184 inhibitor
z HOXA-AS2+miR- > % . HOXA-AS2_sit
= 0.4+ 184 mimic = 0.41 +miR-184 inhibitor
© ©
S 0.24 s 024
3 00 300
© 00 ; ; © 00T ; ;
Days Days
C
SW1088 HS683
HOXA-AS2: - + - + HOXA-AS2_si1: - + - +
COL6A2 si1: - - + + COL6A2_sit: - - + +
COL6AZ | S 3 W coLea2 [N el & = &
GAPDH | s i SN GAPDH | s s w— _—
D
SW1088 HS683
E 151 E 0.8,
E - NC E < NC
2 =+ HOXA-AS2 < 05 i =+ HOXA-AS2_si1
g 11 |: -+ COL6A2_si1 8., * . -~ COLBA2 sit
> . . HOXA-AS2 2% |+ |¥ . HOXA-AS2_sit
= 05 * +COL6A2_sit = +COL6A2_si1
© 8 0.24
L §
® ° . . i
Soot— T i © 00— 2 3
Days Days

Figure 9 HOXA-AS2/miR-184/COL6A2 ceRNA regulation promotes glioma cell proliferation.

Notes: (A) Overexpression of HOXA-AS2 increased COL6A?2 protein level in SW 1088 cells, which was blocked by miR-184 mimics. Knockdown of HOXA-AS2 decreased
COL6A2 protein level in HS683 cells, which was partly reversed by miR-184 inhibitors. (B) HOXA-AS2-mediated cell proliferation was attenuated by miR-184 mimics in
SW1088 cells. HOXA-AS2 knockdown inhibited cell proliferation in HS683 cells, which was partly reversed by miR-184 inhibitors. (C) Overexpression of HOXA-AS2
increased COL6A2 RNA and protein level in SW1088 cells, which was blocked by COL6A2 knockdown. Double knockdown of HOXA-AS2 and COLI2A| more apparently
decreased COL6A2 RNA and protein level in HS683 cells than single knockdown of HOXA-AS2 and COL6A2. (D) HOXA-AS2-mediated cell proliferation was attenuated
by COL6A2 downregulation in SW1088 cells. Double knockdown of HOXA-AS2 and COLI2AI more apparently inhibited cell proliferation of HS683 cells than single
knockdown of HOXA-AS2 and COL6A2. *P < 0.05, *P < 0.01, ***P < 0.001.

However, in this study, we screened the hub genes by

analyzing DEPs between recurrent and primary samples.

Deng et al also screened DEPs between recurrent and

primary samples using TCGA data and identified hub
genes (APOA2, COL3Al1, COL1Al, TYR, COL1A2,
COL5A1, PAPOLB, IGF2BP1 and ANHX) by PPI
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analysis, but did not intersect these data with those from
other databases.'® Our screened hub genes were validated
in another dataset. Because some cases had both primary
and recurrent lesions in the TCGA database, in order to
obtain more reliable results, we analyzed DEPs, DELs and
DEMs using mRNA-Seq and miRNA-Seq data from these
cases. LGG patients were Chinese in CGGA and
Westerners in TCGA. In this study, TIMP1, COLIA1
and COL6A2 were considered critical genes in the process
of LGG recurrence and were identical in different geo-
graphic locations.

It is well known that cancer progression is orchestrated
by a complex regulatory network.**” Recently, many stu-
dies have reported that miRNAs and IncRNAs are involved
in gene expression regulation. Song et al revealed a regula-
tory network of CLDN4 in gastric cancer, which was
mediated by miRNAs and IncRNAs, resulting in cancer
cell proliferation and invasion.** In GBM, AGAP2-ASI
epigenetically decreases TFPI2 expression by binding to
EZH2 and LSD1, and this biological process promotes can-
cer cell proliferation and invasion.*” Therefore, exploring
complex regulatory networks among protein-coding genes,
IncRNAs and miRNAs will contribute to clarifying the
recurrence mechanisms of cancer. In this study, we con-
structed a coexpression networks among 12 protein coding
genes, 12 miRNAs and 29 IncRNAs. Of the IncRNAs,
HOXA10-AS was upregulated in LUAD tissues and corre-
lated with poor prognosis in lung cancer patients, and
HOXA-AS2 could promote cancer progression via compli-
cated regulatory mechanisms, including induction of EMT,
direct inhibition of gene expression and methylation.”*"’
For the screened miRNAs, miR-139-3p was identified as a
key miRNA related to hepatocellular carcinoma, and miR-
326 could inhibit cell proliferation, migration, and invasion
by targeting oncogenic CCNDI1.°*** In skin fibroblasts,
IncRNA AC067945.2 overexpression inhibited the expres-
sion of COL1A1, COL1A2, COL3A1.>* Cao et al demon-
strated that IncRNA PVT1 promotes atrial fibrillation by
increasing collagen expression via the miR-128-3p-SP1-
TGF-B1-Smad axis in atrial fibroblasts.”> In this study, we
identified a complex regulatory network of extracellular
matrix-related genes, IncRNAs and miRNAs in the process
of LGG recurrence.

The ceRNA network is also a critical regulatory
mechanism between IncRNAs and Mrna”®>” We identified
a complex ceRNA network among 9 protein coding genes,
6 miRNAs and 12 IncRNAs. The results indicated that
HOXA-AS2 could act as a competing endogenous RNA

(ceRNA) for miR-184 to regulate the hub gene COL6A2
expression. In osteosarcoma cells, LncRNA HOXA-AS2
could promote cancer cell migration and invasion by act-
ing as a ceRNA of miR-520¢-3p.”® Although the research
is not innovative enough, we confirmed that LncRNA
HOXA-AS2 sponge miR-184 with complementary bind-
ing sites to increase expression of COL6A2, which
resulted in LGG proliferation.

Conclusion

We demonstrated that the recurrence mechanisms of GBM
and LGG are different at the transcriptional level, includ-
ing protein coding genes, IncRNAs and miRNAs. Further
analysis revealed three critical genes, TIMP1, COL1A1
and COL6A2, and the 3-gene signature was identified to
improve prognosis prediction in LGG. Finally, LncRNA
HOXA-AS2 acted as a ceRNA for miR-184 to regulate
COL6A2 expression, and this ceRNA regulation induced
cell proliferation in LGG.
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