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Introduction

The realization that prolonged combination antiretroviral treat-
ment (cART) did not lead to eradication of HIV infection has 
spurred an impressive scientific effort in characterizing latent 
HIV reservoirs and understanding the intricate mechanisms that 
establish HIV latency and enable the virus to persist for decades 
evading host immune responses and potent cART. In terms of 
defining latent HIV reservoirs it is useful to distinguish between 
proviral latency, referring to the presence of replication compe-
tent but transcriptionally silent provirus within resting cells,1 and 
residual viremia, referring to the continuous existence of trace 
levels of extracellular HIV-RNA in plasma during suppressive 
cART.2,3

Whereas the pool of latently infected memory CD4+ T-cells 
is now the most well-defined latent HIV reservoir and presum-
ably the primary obstacle to the eradication of HIV infection,4,5 
the origin and significance of the residual viremia, in particular 
whether this is caused by on-going replication, is still debated. 
Yet, the lack of genetic evolution6,7 and absence of resistance 
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Combination antiretroviral therapy (cArT) has transformed 
Hiv from a deadly to a chronic disease, but Hiv patients are 
still burdened with excess morbidity and mortality, long-term 
toxicities from cArT, stigmatization, and insufficient access to 
cArT worldwide. Thus, a cure for Hiv would have enormous 
impact on society as well as the individual. As the complexity 
and mechanisms of Hiv persistence during therapy are being 
unraveled, new therapeutic targets for Hiv eradication are 
discovered. Substances that activate Hiv production in the 
latently infected cells have recently received much attention. 
By turning on expression of latent Hiv proviruses, reactivation 
strategies could contribute to the eradication Hiv infection. 
Compounds that are currently being or soon to be tested in 
clinical trials are emphasized in this review. The results from 
these trials will provide important clues as to whether or not 
reactivating strategies could become significant components 
of a cure for Hiv.
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development strongly suggest that effective rounds of new repli-
cation are not occurring in patients on suppressive cART. Finally, 
other cellular reservoirs have been suggested to persist in mono-
cytes,8 macrophages,9,10 astrocytes,11 hematopoietic stem cells,12 
naïve T cells,13 and regulatory T cells,14 but opposing findings 
are also reported.15 Importantly, contrary to latently infected 
memory CD4+ T cells, these cellular reservoirs have not been 
longitudinally quantified and, therefore, it remains uncertain 
whether these cells carry inducible replication competent virus 
for prolonged periods in vivo.

Several therapeutic strategies are pursued to achieve a cure 
for HIV (Table 1). First, intensification studies have explored 
whether adding an extra antiretroviral drug to an already sup-
pressive cART regimen can reduce the residual viremia or the 
latent HIV reservoir. Overall, there seems to be little or no effect 
from these interventions,16-21 but there are conflicting results.22,23 
Second, the remarkable case report of an HIV-infected patient 
who was cured for HIV after receiving bone marrow transplanta-
tion containing a 32 base pair deletion in the HIV co-receptor 
CCR5 gene24 has inspired studies entailing infusion of autologous 
CCR5-deleted CD4+ T cells25,26 and studies of chemotherapy in 
HIV infected patients with lymphoma.27 Third, elimination of 
latently infected T cells by reactivating HIV-1 expression using 
agents like histone deacetylase inhibitors (HDACi),28-40 IL-7,41,42 
disulfiram43 or prostratin31,44-46 have been investigated in numer-
ous studies in vitro, ex vivo and in vivo. Finally, as reactivation 
of HIV-1 expression in latently infected cells may be insufficient 
to ensure the removal of these cells,47 immunotherapy to enhance 
HIV specific immunity are continuously being developed and 
tested.48

This review will be focused on reactivation strategies describ-
ing compounds that are being considered for the eradication of 
HIV infection by turning on expression of latent HIV proviruses 
with emphasis on agents that are currently being or soon to be 
tested in clinical trials. Immunotherapy and immunomodulatory 
effects will be dealt with in detail. The majority of HIV infected 
individuals reside in areas with deprived health care systems and 
inadequate infrastructure, and, therefore, the development of an 
HIV cure will ultimately be faced with the challenge of global 
accessibility and low cost. As most currently investigated reacti-
vation compounds can be produced on a large scale and adminis-
tered irrespective of HIV-subtype and HLA-profile, they do seem 
to possess this potential.
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class I and II HDACs.64 Having received FDA-approval in 2006 
for the treatment of cutaneous T cell lymphoma there is now 
considerable clinical experience with the use of this drug. It is 
the most extensively investigated HDACi in HIV context having 
consistently shown the ability to reactivate HIV-1 expression at 
therapeutic concentrations in latently infected cell lines, latently 
infected primary cells, and resting CD4+ T-cells from HIV-
infected patients on suppressive HAART.28,29,35,65 In contrast, 
a recent study, investigating the HDACi vorinostat, VPA and 
oxamflatin, found that the levels of HIV production by HDAC 
inhibitor stimulated resting CD4+ T-cells from aviremic donors 
were not significantly different from those of cells treated with 
media alone.66 Of note, in this study virion-associated (extra-
cellular) HIV-RNA rather than cell-associated HIV-RNA was 
quantified. Two clinical trials are currently undertaken to evalu-
ate whether vorinostat can reactivate latent HIV in vivo. The 
first data from one these trials was recently published showing 
that a single dose of 400 mg vorinostat significantly increased 
expression of HIV-RNA in isolated resting CD4+ T cells in 8 
of 8 evaluated subjects without any safety issues.40 This is a very 
important result establishing proof-of-concept for the use vorino-
stat to reactivate latent HIV. However, as the 8 evaluated subjects 
were selected from a total of 16 based upon demonstrable virus 
production following 335 nM vorinostat ex vivo stimulation, the 
effect on a non-selected study group may be of less magnitude. 
The results from a clinical study (NCT01365065) conducted in 
Melbourne, Australia in which HIV infected patients on sup-
pressive cART receive 400 mg vorinostat daily for 14 consecutive 
days are awaited with much anticipation.

HDAC Inhibitors

Role of histone deacetylases and HDACi in HIV 
Latency. There are 11 known histone deacetylase 
(HDAC) metalloenzymes, which are classified into class 
I (HDAC 1, 2, 3, and 8), class IIa (HDAC 4, 5, 7 and 
9), class IIb (HDAC 6 and 10), and class IV (HDAC 
11).49 The counteracting mechanisms of HDACs and 
histone acetyl transferases (HAT) exert a key function 
in regulating gene expression by controlling the degree 
of acetylation/deacetylation of histone tails, which in 
turn influences chromatin condensation. The HIV 5' 
long-terminal repeat (LTR) that contains promoter and 
enhancer elements and has binding sites for several tran-
scription factors is arranged in two nucleosomes, nuc-0 
and nuc-1.50 In the transcriptionally silent state of HIV 
latency various transcription factors recruit HDACs to 
the HIV-1 5' LTR where they induce chromatin con-
densation by promoting deacetylation of lysine residues 
on histones51-57 keeping nuc-1 in the hypoacetylated 
state and preventing HIV transcription. HDACi off-
sets these mechanisms by inhibiting HDACs (Fig. 1). 
Chromatin immunoprecipitation assays have shown 
that the class I HDACs, HDAC1, 2 and 3, may be par-
ticularly important to maintaining latency.53,58 Notably, 
a recent study correlating HDACi isoform specificity 
with the ability to reactivate latent HIV-1 expression, 
showed that potent inhibition or knockdown of HDAC1 was not 
sufficient to disrupt HIV latency. Instead, HDAC3 inhibition 
was found to be essential for reactivating viral expression.59 Class 
I HDACs are ubiquitously expressed60 and deacetylation of lysine 
residues on histones is a key function of class I HDACs. However, 
recent data suggest that they may deacetylate more than 1750 
non-histone proteins.61 To which degree, if any, the non-histone 
effects of HDACi contribute to the desired circumvention of 
HIV latency is largely unknown.

The HDACi acting on HDAC metalloenzymes may be cat-
egorized according to their chemical structure into short chain 
fatty acids, hydroxamic acids and cyclic tetrapeptides,62 and 
are further characterized as selective or pan-inhibitors accord-
ing to their spectrum of action. Consistent with the role histone 
deacetylases play in repressing transcription, HDAC inhibitors 
have been shown to disrupt HIV-latency and induce virus HIV-1 
expression in latently infected cell lines, latently infected primary 
T-cells, resting CD4+ T-cells isolated from HIV-infected donors 
and, recently, in vivo.28-36,40

Valproic acid and vorinostat. Valproic acid (VPA), a known 
anticonvulsant that also exerts weak HDAC inhibition, was the 
first HDACi to be tested in a clinical study with the objective 
of depleting the latent reservoir of HIV-1 infection. Whereas a 
substantial decline was seen in the frequency of replication com-
petent HIV in circulating resting CD4+ T cells in the initial 
study,37 additional studies failed to demonstrate any effect of 
VPA, even in the setting of intensified cART.38,39,63 HDACi with 
much higher potency are now being investigated. Vorinostat is 
a hydroxamic acid containing pan-HDACi with activity against 

Figure 1. Disruption of Hiv latency by HDAC inhibitors. in the latent state HDACs 
suppresses Hiv-1 expression by catalyzing deacetylation of histone tails and keep-
ing the chromatin in a compacted state. inhibition of HDACs by HDACi promotes 
histone acetylation by HATs leading to relaxation of the chromatin and initiation of 
transcription. HDACs: histone deacetylases; HDACi: histone deacetylase inhibitors; 
HATs: histone acetyl transferases; LTr: long-terminal repeat.
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entinostat (cell lines and primary T cells),31,65 trichostatin A 
(cell lines and primary T cells),31,59,76,77 oxamflatin (cell lines 
and patient cells),34,66 apicidin (cell lines),78,79 NCF-51 (cell 
lines)80 and scriptaid (cell lines).76 Also, explorations of HDACi 
generated by Merck (MRK1, MRK4, MRK10–14) with vary-
ing degree of HDAC selectivity showed that inhibitors of class I 
HDACs were more efficient inducers of HIV-1 expression than 
inhibitors of class II HDACs in cell lines and resting CD4+ T 
cells from patients on cART.78 Similarly, givinostat analogs ITFa, 
ITFb and ITFc increased HIV-1 expression in latently infected 
cell lines and higher levels of virus production was seen with 
compounds that exhibited the highest inhibitory potential for 
class I HDACs.30 Romidepsin (Istodax®), like vorinostat, is an 
FDA-approved HDACi for the treatment of cutaneous T cell 
lymphoma. Romidepsin has high potency specificity for HDAC1 
and HDAC2,81 but there is no published data on the effect on 
latent HIV. The Aids Clinical Trial Group (ACTG) is reportedly 
making preparations toward a romidepsin ascending single dose 
study to investigate the in vivo effect on virus production.

Immune Modulatory Effects of HDAC Inhibitors

While HDACi initially attracted attention in the oncology field 
due to their proapoptotic and cell cycle arrest actions on malig-
nant cells, their potential as immunotherapy is now also being 
intensively tested focusing on anti-inflammatory effects. Clinical 
and experimental studies have identified a range of immune 
modulatory effects of HDACi involving both specific inflamma-
tion signaling pathways (e.g., regulation of NF-κB via IκBα or 
p65) as well as epigenetic mechanisms.82,83 Most of these effects 
are anti-inflammatory but the biologic roles of individual HDAC 
isoforms and their corresponding selective inhibitors are complex 
and show great diversity.

In the context of HIV, HDACi’s action on T cells and regu-
latory T cells (Tregs) in particular is highly relevant. Therapy 
with a pan-HDACi (e.g., SAHA or panobinostat) can stimulate 
thymic production of Foxp3+ Tregs, promote conversion of T 
cells into Tregs, and enhance the immune suppressive function 
of human Tregs. In addition, HDACi increase Foxp3 acetyla-
tion thereby protecting it from proteasomal degradation.84 Thus, 
HDACi induced immune suppression via Tregs may impact the 
course of HIV infection given the fact that the virus induces 
excess inflammation that drives disease progression in untreated 
HIV infection and causes premature immunosenescence and 
morbidity in persons on HAART.71 In HIV eradication, the 
consequences of HDACi induced Treg expansion and/or func-
tion, could be either beneficial, by suppressing generalized T-cell 
activation, or detrimental, by weakening HIV-specific responses 
and thereby hindering immune-mediated clearance of latently 
infected reactivated CD4+ T cells. However, predicting differ-
ent HDACi’s in vivo anti- or pro-inflammatory effects in HIV 
may prove challenging since even structurally related com-
pounds have been shown to have opposing actions. For example, 
in a rodent model of graft-vs.-host disease (GVHD) vorinostat 
reduced inflammation and GVHD-related mortality85 while 
Wang et al. found that panobinostat induced a Th1-directed 

Givinostat, panobinostat and belinostat. Givinostat, pano-
binostat and belinostat are all hydroxamic acid containing pan-
HDACi. Givinostat was initially compared with VPA in an in 
vitro study employing the latently infected cell lines, ACH2 and 
U1. Robust induction of HIV-1 expression was shown, approxi-
mately 10 times more efficient than VPA at clinically relevant 
concentrations.30 These results were confirmed recently in the 
same cell lines showing higher potency for HIV reactivation 
than vorinostat.67 In addition, givinostat was shown to decrease 
CXCR4 and CCR5 expression,30 which is probably owing to its 
anti-inflammatory properties. At nanomolar concentrations, this 
compound inhibits production of pro-inflammatory cytokines 
and reduces systemic inflammation.68,69 Furthermore, givino-
stat was used in a clinical study to treat systemic-onset juvenile 
arthritis with an acceptable safety profile at a therapeutically 
effective dose of 1.5 mg/kg.70 Chronic immune activation as 
evidenced by higher levels of pro-inflammatory biomarkers and 
T-cell activation is a hallmark of HIV infection and contributes 
to HIV disease progression,71-74 but may also promote HIV per-
sistence by inducing homeostatic proliferation of latently infected 
cells5 and inhibiting the function of HIV-specific effector T-cells. 
Whether givinostat has any effect on these HIV-related patho-
logical processes is unknown, but would be important to explore 
in future HIV-related trials. In the latently infected cell lines, 
ACH2 and U1, belinostat has activity against class I and II 
HDACs with similar potency to givinostat36,67 and also displayed 
ability to induce HIV production at therapeutic concentrations 
in a primary CD4+ T cell model of latency (Rasmussen et al., 
unpublished). However, as belinostat has primarily been used 
intravenously, published pharmacokinetic information on the 
oral formulation of belinostat is limited.

Panobinostat has recently displayed considerable potency in 
reactivating HIV-1 expression in latently infected cell lines and 
primary resting CD4+ T cells as compared with other HDACi 
in clinical development.67 In this study, panobinostat reactivated 
HIV-1 expression at concentrations as low as 8–32nM – well 
below the levels obtained with oral clinical dosing. Panobinostat 
is likely one of the most potent pan-HDAC inhibitors in clinical 
development and as the elimination time of panobinostat is rela-
tively long, prolonged histone hyper acetylation can be observed 
7 d after a second dose with this compound.75 This allows for 
dose reductions or intermittent dosing schedules to diminish 
the problematic thrombocytopenia seen with all HDAC inhibi-
tors. A clinical trial to investigate the in vivo effect of panobi-
nostat on HIV-1 expression and HIV reservoir size has been 
initiated by our group at Aarhus University Hospital, Denmark 
(NCT01680094). This study entails 8 week of cyclic panobino-
stat therapy with a primary endpoint of change from baseline 
in cell-associated unspliced HIV-RNA and will also provide 
a unique opportunity for studying the effect on host immune 
responses.

Other HDAC inhibitors. An increasing number of other 
HDACi have been tested in different models for the ability to 
reactivate HIV-1 expression in latently infected cells, but most 
of these compounds have never been administered to humans. 
These investigations include sodium butyrate (cell lines),31 
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milliliter blood, but not per 106 CD4+ T cells, increased sug-
gesting that IL-7 treatment could have induced homeostatic 
proliferation of latently infected cells. An ongoing clinical trial 
(ERAMUNE) is currently investigating IL-7 for its effect on the 
latent HIV reservoir.

Toll-like receptor (TLR) agonists. Non-pathogen specific 
stimulation of the innate immune system via TLRs is used to 
treat certain viral diseases (e.g., Imiquimod against genital warts) 
and as adjuvant in immunization. In addition, some TLR ligands 
appear to modulate latent HIV infection. First, the TLR-5 ago-
nist flagellin results in NF-κB activation and induces expression 
in latently infected cell lines and resting central memory T-cells 
transfected with HIV-1, but could not be shown to reactivate 
HIV-1 in purified resting CD4+ T cells from aviremic HIV-
patients.98 Second, the TLR7/8 agonist, R-848, activated HIV 
from cells of myeloid-monocytic origin through TLR8-mediated 
NF-κB activation.99,100 Finally, synthetic CpG oligodeoxynu-
cleotides (CpG ODNs) that stimulate immune cells via TLR9 
induced HIV reactivation in vitro.101,102 We recently conducted 
a double-blind randomized controlled vaccine trial in which 95 
HIV-infected adults were randomized to receive pneumococcal 
vaccines with or without the synthetic CpG ODN, CPG 7909, as 
adjuvant.103 This trial provided a unique opportunity to explore 
whether CpG ODNs might have impacted upon the proviral 
reservoir in vivo despite the limitations in dosage and sampling 
inherent to the vaccine trial design. Inclusion into this post hoc 
analysis was restricted to 54 participants who were on cART, 
had available sample material and had quantifiable HIV-DNA at 
the time of immunization. Indeed, we observed a moderate but 
statistically significant reduction in proviral HIV-DNA among 
CPG 7909 recipients compared with those receiving placebo 
adjuvant (p = 0.02) advising that further investigation into the 
effect of TLR9 agonists on HIV latency is warranted (personal 
communication). Interestingly, in vitro studies conducted at 
our laboratory revealed a synergistic effect of CpG ODNs and 
HDACi in combination. Treating the latently infected cell line 
U1 with increasing concentrations of CpG ODNs produced 
marked increases in HIV production following stimulation with 
low concentrations of the HDACi panobinostat (Fig. 2). Briefly, 
cells were incubated with indicated drug concentrations for 48 
h followed by cell lysis and p24 ELISA enumeration as previ-
ously described.104 Combining CpG and Panobinostat induces 
significantly HIV production than both treatments individually  
(p < 0.001, ANOVA).

Protein Kinase C (PKC) Activators

Brostatin-1 is a natural occurring PKC activator belonging to 
the marine macrolide class of molecules. It is isolated from the 
marine bryozoan Bugula neritina105 and has been administered 
in numerous clinical trials for its anti-cancer effect. In cell lines 
bryostatin-1 reactivated HIV-1 expression more potently than 
vorinostat and prostratin via activation of PKC.106 In addition, 
lipid nanoparticles with bryostatin-2 incorporated have been 
developed and were shown to stimulate HIV production in T cell 
lines in vitro and in latently infected cells ex vivo in a humanized 

pro-inflammatory response and augmented GVHD progres-
sion.86 This divergent effect of two hydroxamic acid containing 
pan-HDACi may be explained by differences in their isotype-
specific HDAC inhibitory potential. Knockout of HDAC3 have 
been shown to induce upregulation of NF-κB, one of the main 
pro-inflammatory pathways. Panobinostat inhibits HDAC3 at 
10-fold lower EC

50
 concentrations than vorinostat suggesting 

that panobinostat may have more pronounced pro-inflammatory 
effects than vorinostat.64 On the other hand, panobinostat’s EC

50
 

for inhibition of HDAC9 is approximately 30–40 fold lower 
than the EC

50
 for vorinostat.64 Inhibition of HDAC9 leads to 

enhanced suppressive Tregs’ function and proliferation pointing 
toward a more potent induction of anti-inflammatory T-regs by 
panobinostat than vorinostat.83

Nevertheless, in oncologic studies various HDACi have 
repeatedly been shown to enhance anti-tumor effects by stimu-
lating antigen-presenting cell and T cell activity.87 Collectively, 
the current literature suggest that the anti-inflammatory effects 
of HDACi in vivo generally tend to target pathologic inflamma-
tory responses while preserving normal immune cell function.

Immunotherapy

Cytokines. Early studies suggested that interleukin (IL)-2 ther-
apy might impact on the frequency of resting cells harboring rep-
lication competent virus,88 but rebound viremia occurred rapidly 
in these subjects upon interruption of cART.89 Moreover, addi-
tional studies could not establish an effect of IL-2 on the pool of 
latently infected CD4+ T cells or HIV production,90,91 and when 
IL-2 was used in combination with anti-CD3 antibody OKT3 
this led to detrimental T cell activation and irreversible CD4+ T 
cell depletion.92 Currently, there is more focus on the prospects of 
the homeostatic cytokine, IL-7. Several studies have shown that 
IL-7 induce virus outgrowth ex vivo in the resting CD4+ T cells 
of HIV infected patients on cART.41,42 Two small clinical trials 
conducted in HIV infected patients reported that IL-7 adminis-
tration increased CD4+ and CD8+ T cells with a memory phe-
notype. Furthermore, transient increases in plasma HIV-RNA 
was seen in 4 of 13 and 6 of 11 study subjects, respectively.93,94 
To identify the sources of HIV detected, HIV-RNA and HIV-
DNA sequences present before, during and after transient vire-
mic episodes were analyzed and these results indicated that the 
release of virus originated from a preexisting pool of HIV-RNA 
rather than activation of silent proviruses.95 Also, a recent study 
showed that, whereas partial reactivation of latent HIV-1 can be 
achieved with IL-2 and IL-7 in combination, this does not reduce 
the pool of latently infected cells.96 Rather, homeostatic prolifera-
tion induced by these cytokines may favor the maintenance of 
the latent HIV-1 reservoir.5,96 Collectively, these findings indi-
cate that the homeostatic proliferation induced by IL-7 therapy 
could be counterproductive in HIV eradication therapy. A recent 
clinical study among 32 HIV-infected subjects confirmed that 
administration of recombinant human IL-7 increases CD4+ T 
cells of predominantly naïve and central memory phenotype.97 
Interestingly, transient low-level viremia was seen in a minority 
of study subjects and, moreover, levels of total HIV-DNA per 
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h after the first dose.113 Full results from this study are expected 
in the near future.

In addition to the actions of HDACs that repress HIV-1 tran-
scription by keeping nuc-1 in the hypoacetylated state, histone 
methyltransferases (HMTs) have been shown to inhibit viral 
expression by promoting histone H3 methylation in nuc-1.114 
Two inhibitors of HMT, chaetocin and BIX-01294, have been 
described so far. These compounds induced virus outgrowth 
in resting CD4+ T cells from aviremic HIV infected donors 
on cART, but cannot be administered safely to humans.115 
Hexamethylbisacetamide (HBMA) is a kinase agonist that was 
tested in a few clinical studies more than 20 y ago for its effect 
on hematologic malignancies.116 It has been shown to promote 
HIV-1 expression in latently infected cell lines in a Tat inde-
pendent manner117 and induce outgrowth of HIV-1 from rest-
ing CD4+ T cells recovered from aviremic patients on cART.118 
While thrombocytopenia appears to limit the clinical use of 
HMBA,116 findings that HMBA mediates its effect on HIV 
latency through signaling via both protein kinase C (PKC) μ and 
phosphatidylinositol 3-kinase, reveal cellular kinases that may be 
therapeutically exploited.118

Discussion

Thus, while an increasing number of substances that could 
reactivate HIV-1 from latency are being described, there are 
limitations to this approach and significant gaps in knowledge. 
Ongoing viral replicative activity or cell-to-cell spread119 is not 
targeted by reactivation approaches and, to the extent that this 
is at all occurring during suppressive therapy, must be addressed 
by improvements in drug delivery to tissues of residual HIV 
exchange. Moreover, for reactivating strategies to be successful, 
the induced HIV-1 expression in latently infected cells must be 
followed by the removal of these cells by viral cytopathic effects 
or immune mediated mechanisms. It is currently unknown to 
which extend this occurs in vivo as chronic HIV-infection is 
characterized by an impaired cytolytic capacity of CD8+ T cells, 
which is not restored by cART.120 Notably, a recent in vitro study 
showed that reactivation of virus production in latently infected 
resting cells was insufficient to eliminate these cells; only after 
stimulation of HIV-1 specific cytolytic T cells was efficient kill-
ing of latently infected cells achieved.47 This suggests that com-
bining pharmacological reactivation of HIV-1 from latency with 
therapies designed to improve the killing capacity of cytolytic 
T cells could be needed and would be a logical next step once 
HDACi induced HIV reactivation in vivo is described in more 
detail. In addition, there are several unique challenges related 
to testing strategies in clinical trials that require careful con-
sideration. While eradication therapies that could significantly 
impact the latent reservoir may also have associated toxicities 
or unknown long-term effects, there is little chance of a health 
benefit for study participants in the initial trials. Thus, careful 
consideration of acceptable risks weighed against possible long-
term benefits is necessary and poses challenges for investigators 
and regulatory authorities. Also, difficulties in measuring the 

mouse model.107 The limited supply of natural occurring bryo-
statin has impeded the clinical use of this compound, but pro-
duction of bryostatin analogs that reactivate latent HIV with 
similar or higher potencies was described recently.108 Another 
naturally occurring PKC activator, prostratin, is isolated from 
the Samoan medicinal plant, Homalanthus nutans. Prostratin 
induces HIV-1 expression in latently infected cell lines and cells 
isolated from aviremic HIV-infected patients on cART through 
PKC-mediated activation of NF-κB.45,46,109 However, the in vivo 
toxicity and safety of prostratin is unknown and advancing this 
compound to the level of clinical testing, if feasible, will take 
some time. Notably, synergistic effects of activating virus expres-
sion have been described for both bryostatin-1110 and prostratin31 
indicating that targeting mechanistically different pathways 
implicated in silencing HIV transcription is desirable for break-
ing latency.

Other Activators of HIV

Recently, using a primary CD4+ T cell model, in which HIV-1 
latency was established by transducing primary human CD4+ 
T cells with the prosurvival gene bcl-2 and infecting them with 
HIV-1 before allowing the cells to return to a resting state, drug 
libraries were screened for compounds that reverse HIV-1 latency 
in vitro without cellular activation.111 Disulfiram, an inhibitor 
of acetaldehyde dehydrogenase used to treat alcoholism, was 
identified as a potential re-activator of latent HIV-1,43 presum-
ably owing to depletion of the phosphatase and tensin homolog 
(PTEN) resulting in activation of the Akt signaling pathway.112 A 
single arm pilot study has been undertaken to evaluate whether 
adding 500 mg disulfiram daily for 2 weeks to stable cART will 
increase HIV production and decrease the HIV reservoir in vivo. 
Preliminary results showed no significant effect of disulfiram on 
these endpoints. However, increases in plasma HIV-RNA were 
observed among study subjects with available blood samples 1–2 

Figure 2. Stimulation of Hiv-1 expression by CpG 2006 and panobi-
nostat. Hiv-1 expression in the latently infected cell line U1 following 
treatment for 48 h with combinations of CpG 2006 (0–10 μg/mL) and 
panobinostat (LBH589; 0–15 nM). virus production was estimated by 
p24 levels in supernatant; mean +/- SeM shown in figure.
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impact on society as well as the individual and continues to be a 
high research priority. As the complexity and mechanisms of HIV 
persistence during therapy are unraveled, new therapeutic targets 
are discovered. A growing number of substances that could pro-
mote the eradication of HIV through activating HIV production 
in latently infected cells are now being described. Whether or not 
reactivating strategies will prove to be a significant component of 
a cure for HIV is a key question within this field of research. The 
first indications of what the answer will be will come from clini-
cal trials currently conducted or underway.
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effects on HIV transcription or the latent reservoir are significant 
barriers to expanding clinical trial strategies. Large cell numbers 
and complex assays are currently applied and these methods, 
and the inherent high costs, will be difficult to operate in larger 
clinical trials. In the end viral rebound parameters during cART 
interruption will be the most relevant clinical endpoint, but will 
require careful consideration of when this is justified and which 
efficacy criteria should be met.

The development and implementation of cART has been a 
major medical achievement that has transformed HIV from a 
deadly to a chronic disease, but HIV infected patients are still 
burdened with excess morbidity and mortality, long-term toxici-
ties from cART, stigmatization and, finally, insufficient access to 
cART worldwide. Thus, a cure for HIV would have a substantial 
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