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Whole-genome DNA methylation
and DNA methylation-based biomarkers
in lung squamous cell carcinoma

Qidong Cai,1,2,9 Boxue He,1,2,9 Guangxu Tu,1,2 Weilin Peng,1,2 Shuai Shi,1,2 Banglun Qian,1,2 Qingchun Liang,3

Shaoliang Peng,4,5,6 Yongguang Tao,1,2,7,8 and Xiang Wang1,2,10,*

SUMMARY

Exploring early detection methods through comprehensive evaluation of DNA
methylation for lung squamous cell carcinoma (LUSC) patients is of great signifi-
cance. By using different machine learning algorithms for feature selection and
model construction based on The Cancer Genome Atlas (TCGA) and Gene Expres-
sion Omnibus (GEO) databases, five methylation biomarkers in LUSC (along with
mapped genes) were identified including cg14823851 (TBX4), cg02772121
(TRIM15), cg10424681 (C6orf201), cg12910906 (ARHGEF4), and cg20181079
(OR4D11), achieving extremely high sensitivity and specificity in distinguishing
LUSC from normal samples in independent cohorts. Pyrosequencing assay veri-
fied DNA methylation levels, meanwhile qRT-PCR and immunohistochemistry re-
sults presented their accordant methylation-related gene expression statuses in
paired LUSC and normal lung tissues. The fivemethylation-based biomarkers pro-
posed in this study have great potential for the diagnosis of LUSC and could guide
studies in methylation-regulated tumor development and progression.

INTRODUCTION

Lung cancer has over 2.2 million new cases and caused about 1.8 million deaths in 2020, taking a major part

in the global cancer burden.1 More than 80% of primary lung carcinoma is non-small cell lung cancer

(NSCLC), which has two predominant subtypes pathologically—lung adenocarcinoma (LUAD) and lung

squamous cell carcinoma (LUSC).2 Although a lot of significant advancements have been achieved for

the treatment, most patients with LUSC still cannot get diagnosed at the early stage and have an unsatis-

factory 5-year survival rate.3 Nowadays, high-resolution computed tomography (HRCT) is the dominant

screening method for lung cancer, which has dramatically reduced NSCLC-related mortality rates through

early detection. However, many problems, including a high false-positive rate, patient fear of radiation,

excessive cost, the requirement for long-term follow-up, and the risk of overdiagnosis,4 have started to

emerge. The development of dynamic determination of early tumor markers combined with imaging

methods may bring new hope for early detection and early diagnosis of LUSC. The serum proteins carci-

noembryonic antigen (CEA) and neuron-specific enolase (NSE) are widely used for assisting early

NSCLC diagnosis. However, the diagnostic performances of CEA and NSE are unsatisfactory (sensitivities

of 26% and 21–39%, respectively).5 Advancing early detection methods, mining new diagnosis biomarkers,

and understanding the progression mechanisms of LUSC are of great clinical significance.

DNAmethylation isa kindof epigeneticmodificationwhichplays significant roles ingene regulationandgenome

stability.6 In mammals, DNA methylation principally appears in the context of 5’—Cytosine—phosphate—Gua-

nine—3’ (CpG) dinucleotides andwas also often referred to as ‘‘CpGmethylation’’. Research about DNAmethyl-

ation anddemethylationhas provided somenuancedunderstandingof humandiseases, like cancer.7 It has been

proved by methylome profiles that different cancer subtypes have nonrandom DNA methylation nature. In

considerationof the advantages such as cell-typespecificity, occurring frequently andstably, andbeingeasily de-

tected even by circulating tumor DNA, DNAmethylation aroused a lot of interest with the potential to be cancer

diagnosticbiomarkers.8However,although thousandsofscientificarticlesprovidedDNAmethylation-basedbio-

markers for cancer diagnosis, only a few of them were eventually considered for clinical utilization, majorly

because of obstacles methodologically or experimentally.9 Hence, we are in sore need of easily implement
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DNA methylation-based models with strong diagnostic performance. Besides, DNA methylation-correlated

geneexpressionwasoftenobserved incancer cells, likemanysilenced tumor-suppressorgenesalongwithhyper-

methylation, as well as some activated repetitive elements with hypomethylation,10,11 suggesting underlying

regulation mechanisms to be found. Previous studies also expounded that the CpG island (CGI) methylator

phenotype (CIMP), which refers to a subgroup of tumor patientswith extensive hypermethylationof a large num-

ber of CGIs in the gene promoter region, has a close association withmany clinicopathological characteristics in

multiple cancers,12 while the CIMP-related genemutations and their impact on prognosis have rarely been stud-

ied in LUSC.

Actually, recently several publications have introduced diagnostic methylation biomarkers for NSCLC pa-

tients,13,14 and themajority of themwere concernedwith LUAD,15,16 whilemethylation-baseddiagnosticmodels

specially for LUSC and comprehensive analysis for LUSCmethylome data were rarely provided. In this study, we

analyzedmethylation profiles in the TheCancer GenomeAtlas (TCGA)-LUSCdataset and explored differentially

methylated positions (DMPs) of LUSC and normal lung tissues, based on which wemade functional annotations

and scannedCIMPof LUSC. Then, utilizing random forest-based approaches, we discriminated important CpGs

as candidate biomarkers for LUSCdiagnosis, followedby random forest-basedapproaches todetermine apanel

of CpGs with the smallest average error rate in the nested 5-fold cross-validation. Next, test cohorts from the

Gene Expression Omnibus (GEO) databases and DNA pyrosequencing assays of patients in our department

were introduced for verification of our diagnostic model. What’s more, we identified the expression of mapped

genes by qRT-PCR and protein immunohistochemistry (IHC).

RESULTS

Integrated methylation profiles of LUSC

After differential analysis, 12,958 hypermethylated DMPs were identified, 4,650 of which were located in the

intergenic region (IGR), and the remaining 8,308 DMPs corresponded to 2,489 genes. 20,917 hypomethy-

lated DMPs were identified, 7,672 of which were located in IGR, and the remaining 13,245 DMPs

corresponded to 5,254 genes. As shown in Figure 1B, the number of hypermethylated DMPs was highest

in chromosome 2 (1,311 CpGs, 5.7%), followed by chromosome 1 (1,239 CpGs, 5.4%), while it was lowest in

chromosome 21 (91 CpGs, 0.4%) and chromosome 22 (121 CpGs, 0.5%); the number of hypomethylated

DMPs was highest in chromosome 1 (1,969 CpGs, 7.7%) and chromosome 7 (1,781 CpGs, 6.9%), while it

was lowest in chromosome 18 (228 CpGs, 0.9%) and chromosome 21 (155 CpGs, 0.6%). Besides, 81.9%

DMPs were hypermethylated in the CGIs, and 93.7% DMPs were hypermethylated in the promoter area

of CGI (Figure 1C). As the probes were far away from the CGI,17,18 the percentage of hypermethylated

DMPs gradually decreased (Figure 1D). Gene body and IGR were dominant by hypomethylation, while

DMPs in transcription start site (TSS) 200 and the first exons were more frequently hypermethylated (Fig-

ure 1E). The genome-wide hypomethylation and promoter CGI hypermethylation have been recognized

in a variety of tumors,19 and the methylation characteristic in LUSC was consistent with that.

Functional annotation

Under the screening criteria, 303 hypermethylated and 463 hypomethylated genes were selected for Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Reactome functional enrichment analyses, respectively.

The results demonstrated that LUSC hypermethylated genes were mainly enriched in pathways including

‘‘regulation of TP53 activity through association with co-factors’’, ‘‘activation of anterior HOX genes in hind-

brain development during early embryogenesis’’, ‘‘transcriptional misregulation in cancer’’, ‘‘SUMOylation

of transcription factors’’, etc (Figure S1A). And, LUSC hypomethylated genes were mainly enriched in path-

ways including ‘‘cell-cell communication’’, ‘‘GPCR downstream signaling’’, ‘‘calcium signaling pathway’’,

and ‘‘inflammatory mediator regulation of TRP channels’’ (Figure S1B).

CIMP

A total of 2,120 most variable CpGs were included in further analysis. After excluding the samples with

missing data, a total of 337 patients were used for consistency clustering and 3 clusters were obtained (Fig-

ure 2A). Compared to cluster 1 (N = 156) and cluster 3 (N = 67), cluster 2 (N = 114) showed a global hyper-

methylated status, and its methylation levels were significantly higher than others, which was preliminarily

identified as CIMP (Figures 2B and 2C). We next analyzed the association between the clusters and clinical

characteristics, in which American Joint Committee on Cancer (AJCC) stage, TP53 mutation, KEAP1 muta-

tion, CDKN2A mutation, and KMT2D mutation were significantly associated with clusters (Table 1).
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Furthermore, we compared the overall survival (OS) of CIMP patients (cluster 2) with others. Different from

the clinical outcomes of the CIMP group in hepatocellular carcinoma,20 the CIMP group in LUSC was un-

likely to be associated with shorter OS (Figure 2D).

A

B

C

D

E

Figure 1. Scheme of this article and distribution characteristics of DMPs in LUSC

(A) Scheme showing the bioinformatic analysis and the experiment process.

(B) Number distribution of DMPs on autosomes.

(C) Distribution of DMPs across regions of the genome. CGI, CpG islands; WG, whole genome.

(D) Distribution of DMPs by distance from CGI. From left to right, the shore (regions up to 2 kb from CpG island), shelf (regions up to 2 to 4 kb from CpG

island), and opensea areas (the rest of the genome) are with increasing distance from the CGI.

(E) Distribution of DMPs by distance from TSS. The 50UTR, 1stExon, Body, 30UTR, and IGR areas have increasing distances from the TSS. TSS, transcription

start site.
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Using the transcriptomic data of these patients, gene set enrichment analysis (GSEA) was performed by

comparing gene expression profiles between each cluster and the remaining two clusters. The result

showed cluster 1 was mainly enriched in immune response-related pathways and cluster 2 was mainly

A B

C

D

Figure 2. CpG island methylator phenotype of LUSC

(A) Principal-component analysis (PCA) showing that the 3 clusters divided can be clearly distinguished. The percent sign in the title of the horizontal and

vertical axes indicates the proportion of variance that the corresponding principal component can explain. Each point presents one patient involved in PCA.

(B) The mean CpG methylation levels of the 3 clusters. Data were presented as mean G SEM.

(C) Heatmap reflecting the overall methylation levels of the 3 methylation subtypes. A higher number on the color scale means a higher hypermethylation

level. A total of 2,120 most variable CpGs were involved.

(D) Survival curves of the 3 clusters. C1, cluster 1; C2, cluster 2; C3, cluster 3.
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enriched in ‘‘KEAP1-NFE2L2 pathway’’ and multiple cell cycle-related pathways; meanwhile cluster 3 was

mainly enriched in pathways including ‘‘Meiotic chromosome segregation’’, ‘‘RNA polyadenylation’’, ‘‘pro-

tein DNA complex subunit organization’’, etc (Figure S2). Interestingly, both the SNP data andGSEA results

indicated the dysregulated KEAP1-NFE2L2 signaling pathway is closely associated with cluster 2 (namely,

LUSC CIMP). Therapies targeting this pathway may lead to more benefits for LUSC CIMP patients.

Methylation-based diagnostic model

To reduce the noise from the data as much as possible and filter out the most important CpGs to identify

normal or LUSC samples, the Boruta algorithm was applied to the stage I subgroup, stage II-IV subgroup,

and the entire training cohort. Then overlapped 32 hypermethylated CpGs and 37 hypomethylated CpGs

in all three subgroups were obtained (Figure 3A, Table S2), which were used for the latter nested 5-fold

cross-validation. And the best classification performance was achieved at the lowest cross-validation error

with 5 CpGs (cg14823851 of T-box transcription factor 4 (TBX4), cg02772121 of tripartite motif-containing

15 (TRIM15), cg10424681 of C6orf201, cg12910906 of Rho guanine nucleotide exchange factor 4

(ARHGEF4), and cg20181079 of OR4D11) (Figure 3B). Internal verification using the 5-fold cross-validation

method showed the classificationmodel was highly fitted to the training data (area under the receiver oper-

ating characteristic (ROC) curve (AUC) = 1 in 5-folds, Figure 3C).

The model was further imported into 2 test cohorts. Distinct methylation differences of the 5 CpGs were

shown between normal and LUSC samples. Noticeably, apart from the consistent methylation differences

Table 1. Clinical features and somatic mutation differences of three clusters

Characteristics Classes Cluster 1 Cluster 2 Cluster 3 Adjusted p value

n 156 114 67

Gender (%) Female 51 (32.7) 24 (21.1) 14 (20.9) 0.057

Male 105 (67.3) 90 (78.9) 53 (79.1)

Age at diagnosis (%) <65 45 (28.8) 43 (37.7) 20 (29.9) 0.301

R65 111 (71.2) 71 (62.3) 47 (70.1)

Smoking history (%) Nonsmoker 6 (3.8) 5 (4.4) 2 (3.0) 1.000

Current or past smoker 150 (96.2) 109 (95.6) 65 (97.0)

Stage (%) High (Stage I, Stage II) 17 (10.9) 19 (16.7) 18 (26.9) 0.014

Low (Stage III, Stage IV) 139 (89.1) 95 (83.3) 49 (73.1)

TP53 (%) Mutation 113 (72.4) 98 (86.0) 56 (83.6) 0.018

Wild-type 43 (27.6) 16 (14.0) 11 (16.4)

KEAP1 (%) Mutation 10 (6.4) 18 (15.8) 3 (4.5) 0.014

Wild-type 146 (93.6) 96 (84.2) 64 (95.5)

CDKN2A (%) Mutation 18 (11.5) 27 (23.7) 11 (16.4) 0.031

Wild-type 138 (88.5) 87 (76.3) 56 (83.6)

KMT2D (%) Mutation 25 (16.0) 30 (26.3) 21 (31.3) 0.020

Wild-type 131 (84.0) 84 (73.7) 46 (68.7)

EGFR (%) Mutation 8 (5.1) 3 (2.6) 2 (3.0) 0.660

Wild-type 148 (94.9) 111 (97.4) 65 (97.0)

KRAS (%) Mutation 3 (1.9) 0 (0.0) 0 (0.0) 0.306

Wild-type 153 (98.1) 114 (100.0) 67 (100.0)

ROS1 (%) Mutation 12 (7.7) 10 (8.8) 9 (13.4) 0.388

Wild-type 144 (92.3) 104 (91.2) 58 (86.6)

ALK (%) Mutation 7 (4.5) 4 (3.5) 2 (3.0) 0.873

Wild-type 149 (95.5) 110 (96.5) 65 (97.0)

STK11 (%) Mutation 2 (1.3) 0 (0.0) 0 (0.0) 0.686

Wild-type 154 (98.7) 114 (100.0) 67 (100.0)
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of the candidate CpGs in 3 cohorts, unsupervised hierarchical clustering with dendrogram showed a

consistent clustering relationship between CpGs in different cohorts (Figures 4A and 4B), both of which

indicated the robustness of the results.

As presented in Figures 4C and 4D, the ROC curves and confusion matrices showed great discriminative

ability of the model in differentiating groups (AUC = 0.998, sensitivity = 97.6%, and specificity = 99.7% in

training cohort; AUC = 1.000, sensitivity = 100.0%, and specificity = 100.0% in test cohort 1; and AUC =

0.983, sensitivity = 97.5%, and specificity = 82.4% in test cohort 2). Since test cohort 2 had well-established

AJCC staging data, we further analyzed the performance for early-stage LUSC. 56 stage I samples were

analyzed, and the results showed its classification performance (AUC = 0.983, sensitivity = 96.4%, and spec-

ificity = 82.4%) was barely changed for samples from early-stage LUSC (Figure S3). We also compared the

performance in discriminating between LUSC and normal samples with a previous study.21 After being

trained by the same training cohort, a similar random forest-based model was generated using the

CpGs identified by Shi et al. However, compared with our 5-CpG signature, their 6-CpG signature does

not perform so satisfactorily in test cohorts (AUC = 0.813, sensitivity = 100.0%, and specificity = 50.0% in

test cohort 1; and AUC = 0.451, sensitivity = 100.0%, and specificity = 17.6% in test cohort 2) (Table S3),

indicating the robustness of our model in different datasets.

A B

C

Figure 3. Construction of a CpG-based diagnostic model for LUSC

(A) Venn diagrams of overlapped hypermethylated CpGs (upper) and hypomethylated CpGs (down) obtained after

feature selection for the full training set, Stage I set, and Stage II-IV training set, respectively.

(B) Average cross-validation errors for models built with different numbers of CpGs.

(C) The ROC curves of the resulting model consist of 5 CpGs from 5-fold cross-validation in the training set.
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A

B

C

D

Figure 4. Model validation and the diagnostic performance of the constructed model in the training set (left), test cohort 1 (medium), and test

cohort 2 (right)

(A) Heatmaps showing methylation levels of 5 CpGs in the model.

(B) Boxplots reflecting methylation differences of the 5 CpGs. Data were presented as mean G SEM. Student’s t test was used. ****, p < 0.0001.

(C) ROC curves illustrating the diagnostic performance of the model.

(D) Confusion matrices presenting model-specific prediction results, sensitivity, and specificity.
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Further analyses revealed the aberrant DNA methylations of these CpGs developed early and were found

in lung progressive carcinoma in situ (CIS) lesions. Interestingly, compared to regressive CIS samples, the

progressive ones showed significantly more severe dysregulated methylation, suggesting the potential of

these biomarkers in discriminating between benign and malignant lesions. In addition, although not

statistically significant in all comparisons, the results showed incremental trends in the levels of abnormal

methylations of the 5 CpGs from normal samples to regressive CIS samples and from regressive to progres-

sive CIS samples (Figure S4A), indicating their progression-specificmethylation changes in these patholog-

ical processes. However, the methylation statuses of the CpGs in LUAD samples showed consistent trends

with those in LUSC samples (Figure S4B).

In addition, the methylation levels of the adjacent CpGs of the candidate CpGs in promoter regions were

analyzed. Results exhibited these CpGs had universally the same methylation statuses as corresponding

candidate CpGs (Figure 5). Interestingly, cg11838898 of ARHGEF4 presented significant hypomethylation

statuses in LUSC samples among all datasets, revealing a diametrically opposed DNA methylation trend

compared to other CpGs from the ARHGEF4 promoter region.

Validation of methylation signatures in LUSC

The information of patients participating in this study was listed in Table S4. To further identify methylation

markers for LUSC diagnosis, 10 pairs of LUSC tissues and normal lung samples were utilized for pyrose-

quencing for the validation of selected CpG sites. Four CpG sites (cg14823851, cg02772121,

cg10424681, and cg12910906) all revealed the same trends in methylation levels as these public databases

along with extremely significant differences (p values equal to 1.51e-04, 1.10e-05, 5.86e-04, and 2.76e-04,

respectively; Figure 6A). Simultaneously, the pyrosequencing revealed the methylation levels of other two

CpGs after cg14823851, four CpGs around cg10424681, and two CpGs surrounding cg12910906, all pre-

senting corresponding results (p < 0.001, each; Figures 6B–6D). As for cg20181079, however, the primer

specificity score was too low to complete the PCR amplification, so we did not verify its methylation by

experiments here. Shortly, the pyrosequencing results illustrated the perfect diagnostic effect of our

methylation model.

Expression status of associated genes

Considering the central dogma of molecular biology,22 we conducted qRT-PCR and IHC experiments to

explore the expression genes corresponding to candidate CpGs at the mRNA and protein levels. What

should be mentioned is, after the removal of surgical specimens for clinicopathologic diagnosis, the

remaining samples for our study were occasionally too small to extract both DNA and RNA. Totally, we

gathered RNA of LUSC tissues and paired normal lung tissues from 30 patients, in which 7 pairs of speci-

mens were also involved in DNA pyrosequencing (Table S4). Compared with normal lung tissues, the

mRNA expression of TBX4 is obviously lower in LUSC tissues (p = 1.90e-04), and so is the level of

C6orf201 (p = 1.98e-02), while the mRNA levels of TRIM15 and ARHGEF4 presented no significant differ-

ence between the normal tissues and LUSC tissues (p > 0.05, both), which may also be reflected by their

relatively minor differences in TCGA-LUSC data (Figure S5). Otherwise, the complexity and heterogeneity

of clinically derived mRNA samples should also be considered; therefore, 30 pairs of data may still not be

enough to understand the trends of some genes.23 Accordingly, we successfully measured the low expres-

sion of TBX4 and C6orf201mRNAs in LUSC tissues, matching with the hypermethylation of mappedmethyl-

ation sites in the diagnostic model.

Thanks to the acquisition and reuse of pathological specimens, we detected the protein levels of TBX4,

TRIM15, C6orf201, and ARHGEF4 by IHC with the same patients involved in DNA methylation validation

(Figures 7A–7D). Quantitative analysis according to mean integrated optical density (IOD) showed that

the expression of TBX4, C6orf201, and ARHGEF4 in LUSC was lower compared to the paired adjacent

normal lung specimens (p values equal to 2.22e-04, 1.39e-04, and 4.01e-04, respectively), suggesting the

possible gene silencing function of DNAmethylation in LUSC. Besides, the protein of TRIM15 was over-ex-

pressed in LUSC tissues (p = 2.52e-04), mapped to the hypomethylation of cg02772121 as previously

identified (Figure 7E). The mRNA and protein expression patterns of 4 genes in our surgically resectable

LUSC patients (mostly in the I-II stage) were consistent with their methylation profiles, which confirmed

that these CpG sites—corresponded with mapped genes—are novel promising early-diagnosis bio-

markers for human LUSC.

ll
OPEN ACCESS

8 iScience 26, 107013, July 21, 2023

iScience
Article



DISCUSSION

The present study demonstrates a promising diagnostic CpG biomarker panel for LUSC patients and un-

veils the existence of underlying methylation-based gene regulation in tumor development. As far as we

A

B

C

D

E

Figure 5. The methylation of all CpGs in the promoter regions of five genes

(A–E) Promoter region methylation of TBX4 (A), TRIM15 (B), C6orf201 (C), ARHGEF4 (D), and OR4D11 (E) in the training set (left), test cohort 1 (medium), and

test cohort 2 (right). Data were presented as mean G SEM. Student’s t test was used. ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****,

p < 0.0001.
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searched, this article is the first one to explore the DNAmethylation-based biomarkers for the diagnosis of

LUSC. Recent technological advances in high-throughput genome-wide detection and a large improve-

ment in computational tools have provided the perspective for DNA methylation analysis.24 A lot of scien-

tific papers have focused on the clinical value of DNA methylation and illustrated nice models for the early

detection of cancers such as esophageal adenocarcinoma25 and hepatocellular carcinoma.26 This study

provides outstanding predictive biomarkers with the following advantages. Firstly, the methylation data

all came from Illumina Infinium HumanMethylation450 BeadChips rather than Illumina Infinium

HumanMethylation27 BeadChips, providing a much wider selection scope for candidate CpGs.16 Sec-

ondly, in the establishment process, we took full consideration of the methylation alteration in early or

advanced LUSC and combined several machine learning algorithms, which aimed to get a reliable and

feasible prediction classifier. Thirdly, most of the similar studies only focused on the hypermethylated

CpGs,20,27 perhaps because the importance of decreases in DNA methylation associated with carcinogen-

esis was overshadowed by the emphasis on cancer-linked hypermethylation of tumor-suppressor

genes. However, hypomethylation of DNA sequences is often observed during the early stages of

tumorigenesis,28 and our study also valued this neglected methylation alternation. Last but not least, to

confirm the reliability of the CpGs, we performed integrated analyses from internal cross-validation of

training cohort to external validation of multiple test cohorts and pyrosequencing validation of clinical

specimens.

Here, we further analyzed the expression changes of the corresponding genes in the mRNA and protein

levels along the central dogma of molecular biology, demonstrating their feasibility as diagnostic markers

for LUSC. Previous studies based on proteomics and transcriptomics have reported higher stability of pro-

teins than mRNA in cancer tissues such as prostate cancer29 and breast cancer.30 It is also illustrated that

DNAmethylation status possessed a stronger connection with protein than mRNA level in curable prostate

cancer.31 Moreover, the source of mRNAwe detected was not so consistent with the other two data groups.

Statistically, although the mRNA levels of TRIM15 and ARHGEF4 did not show significant changes in qRT-

PCR, the trends of TBX4 and C6orf201 were negatively related to the methylated degree in LUSC. Mean-

while, the protein expression of four genes, when compared with DNA methylation status one to one,

presented a significant negative correlation. The results obtained basically conform to the law of methyl-

ation-regulated gene expression, suggesting potential biomarkers at different levels.

A B

C D

Figure 6. The pyrosequencing results of 10 pairs of normal and LUSC tissues

(A) Verification of four CpG sites in the diagnostic model. (cg14823851 from TBX4 matched P1 Pos. 1, cg02772121 from

TRIM15 matched P2, cg10424681 from C6orf201 matched P3 Pos. 3, and cg12910906 from ARHGEF4 matched P4 Pos. 2).

(B–D) The methylation levels of two CpGs after cg14823851 (B), four CpGs around cg10424681 (C), and two CpGs

surrounding cg12910906 (D). Results are expressed as mean G SEM. N, normal (in blue); C, cancer (in red); P1, primer 1;

Pos. 1, position 1. Data were presented as mean G SEM. Student’s t test was used. **, p < 0.01; ***, p < 0.001;

****, p < 0.0001.
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TBX4 is a member of the evolutionarily conserved T-box family, whose main function is to act as a transcrip-

tion factor to regulate gene expression patterns during embryonic development.32 Mutations or deletions

in the TBX4 gene could result in developmental organ disorders like pulmonary hypertension.33,34 It has

been well demonstrated that TBX4 works as a methylationmarker to differentiate normal and osteoarthritic

cartilage,35 identify the stage of bladder cancers,36 predict the survival for some pancreatic ductal

adenocarcinoma patients,37 and even distinguish LUAD from normal lung tissues—mapped to

cg14823851—which is consistent with our results.27 A mechanistic study suggested TBX4 inhibits the

migration and invasiveness in two kinds of LUAD cell lines,38 and we further verified its importance for

LUSC. TRIM15 is a focal adhesion protein regulating focal adhesion disassembly, which could promote

cell migration by reducing adhesion between cells.39 Han X et al. analyzed TCGA and GEO databases

and IHC verification results, finding that NSCLC patients with high expression of TRIM15 have a significantly

poorer prognosis.40 Recent studies defined the ubiquitin ligase function of TRIM15 in the development of

melanomas41 and illustrated its pivotal roles to promote NSCLC progression by promoting Keap1

A B

C D

E

Figure 7. The protein levels of TBX4, TRIM15, C6orf201, and ARHGEF4 in LUSC

(A–D) Representative images of human normal adjacent lung tissues and LUSC tissues stained with TBX4 (A), TRIM15 (B),

C6orf201 (C), or ARHGEF4 (D) antibodies as indicated. Scale bar, 20 mm.

(E) Immunohistochemical (IHC) staining of 4 antibodies in 10 pairs of normal and LUSC tissues was quantified by mean

IOD. N, normal; C, cancer. Scale bar, 20 mm. Data were presented as mean G SEM. Paired Student’s t test was used. ***,

p < 0.001.
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ubiquitination and degradation in the Keap1-Nrf2 signaling pathway.42 We found that its expression level

increased in LUSC through the detection of mRNA and protein levels matching with hypomethylation in the

promoter region, which provided certain evidence for further research on the role of TRIM15 in tumorigen-

esis and development. ARHGEF4 is a Rho guanine nucleotide exchange factor, which can stimulate ERK1/2

and GSK-3a/b and predict an unsatisfied prognosis for pancreatic cancer patients.43 However, Qin Y et al.

have found that ARHGEF4 is an extremely sensitive hypermethylated marker for esophageal cancer

through the methylation analysis of a large number of blood and tissue samples.44 Consistent with that,

our study presented most CpGs of ARHGEF4 in the promoter region are hypermethylated and further

tested the lower expression of its protein in LUSC tissues, suggesting latent methylation regulation. We

also found that C6orf201 has significant changes in methylation as well as gene expression in LUSC. There

remains a blank for research about it. What role C6orf201 played in cells and tumors is still needed to be

studied, and understanding what impact C6orf201 has on the biological functions of LUSC has also become

a center of our further research.

In summary, our study integrated genome-wide DNA methylation and relevant transcriptome data and

identified five methylation markers including cg14823851 (TBX4), cg02772121 (TRIM15), cg10424681

(C6orf201), cg12910906 (ARHGEF4), and cg20181079 (OR4D11) for early diagnosis of LUSC. These markers

showed robust classification performance in distinguishing between LUSC and normal samples with

extremely high sensitivity and specificity. Corresponding changes in gene expression levels were also

confirmed in LUSC tissues. Methylation biomarkers identified in this study may act as an important basis

for further investigations regarding early LUSC.

Limitations of the study

Although the diagnostic model presented high accuracy and was verified well in our patients, some limi-

tations of our study still exist and should be mentioned. First, besides verification in lung tissues, we

have not validated our model via patient blood or sputum. Previous studies have illustrated the compara-

bility of hypermethylation in tumor tissues and blood, as well as discussed the significance of circulating

tumor DNA (ctDNA) methylation analysis working as an early, noninvasive detection method for lung can-

cer.16,45 It would reflect a much stronger clinical value if our diagnostic methylation sites got confirmed by

blood samples. Next, our verification cohort is a little small. More validation sets could offer more reliable

results and may provide information on some clinicopathologic subgroups. At last, notwithstanding that

we explored the connection of our methylation model with related genes and discussed with other studies,

themechanism by which these methylation sites regulate tumor progression still needs to be expounded in

future studies, and methods like the usage of DNA-demethylating agents, such as 5-azacytidine and

5-azadeoxycytidine, in preclinical models46,47 are potential to guide the clinical treatment effect.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Xiang Wang (wangxiang@csu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table. Data reported in this paper from in-house cohorts will be shared by the lead

contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human subjects were involved in this study. The study conformed to the ethical guidelines of the 1975

Declaration of Helsinki and was approved by the Ethics Committees of Second Xiangya Hospital of Central

South University (2020-609). All patients involved signed informed consent before participating in this

study. During February 2020 and September 2021, 33 primary lung cancer patients (including 9 females

and 24 males, among 32 to 68 years old, details in Table S4) who intended for surgical removal at our

department and were demonstrated to be LUSC pathologically were included. Fresh LUSC tissues and

paired normal lung specimens were preserved by liquid nitrogen and then subjected to the analysis of

genomic DNA or total RNA.

METHOD DETAILS

Data collection and processing

The schematic of this study is presented in Figure 1A. LUSC and LUAD DNA methylation data from The

Cancer Genome Atlas (TCGA) was downloaded from The UCSC Xena database (https://xenabrowser.

net/datapages/).58 Relevant transcriptomic data, clinical data, and somatic mutation data (processed using

the VarScan2 software) were extracted from the TCGA data portal (https://portal.gdc.cancer.gov/). To be

noted, themethylation at each CpG site was represented with a b value ranging from 0 (nomethylation) to 1

(100% methylation). Besides, four independent methylation datasets—GSE121849 (10 LUSC samples, 7

normal lung samples), GSE39279 (122 LUSC samples), GSE52401 (244 nontumor lung samples), and

GSE108124 (36 progressive carcinoma in situ (CIS) samples, 18 regressive CIS samples, 33 normal lung sam-

ples)—were collected from the Gene Expression Omnibus (GEO) database. For diagnostic model devel-

opment and validation, we assigned the TCGA-LUSC dataset, GSE121849 dataset, or the dataset merged

by GSE39279 and GSE52401 as the training cohort, test cohort 1, or test cohort 2, respectively. All these

methylation datasets were detected by the Illumina Human Methylation 450 platform.

The ChAMP software package was used for the data preprocessing. Probes that met the following criteria

were excluded from our study group: (1) non-CpG probes; (2) multi-hit probes; (3) probes have single nucle-

otide polymorphism (SNP); (4) probes located in sex chromosomes; (5) have available methylation data in

less than 90% of samples. Samples without information on American Joint Committee on Cancer (AJCC)

were also excluded. The remaining missing data were imputed using the k-nearest neighbors imputation

method.

Identification of DMPs, functional enrichment analysis, and exploration of CIMP

DMPs were identified by the ChAMP package based on b values of LUSC and adjacent samples in the

training cohort, with the criteria of false discovery rate (FDR) < 0.05 and |Db| > 0.2. To investigate the func-

tions of DMPs, we used the Cytoscape (http://www.cytoscape.org/) plug-in ClueGO (http://apps.

cytoscape.org/apps/cluego) to perform functional enrichment analysis. KEGG and Reactome databases
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were selected. Mapped genes corresponding to the hypermethylated DMPs and hypomethylated DMPs

with top 1000 |Db| were imported to the analysis, respectively.

Then, we chose the CpGs which located in the promoter region, had a large standard deviation (SD) in tu-

mor tissues (SD > 0.2), and were hypomethylated in para-cancerous tissues (average b value < 0.05) to find

the CIMP of LUSC. To identify CIMP, data dimensionality reduction and clustering methods according to a

previous study were utilized.20 Removing samples lacking sex, age, smoking history, somatic mutation, sur-

vival status, or over survival, CpGs which were located in the promoter region, had a large SD in tumor tis-

sues (SD > 0.2), and were hypomethylated in para-cancerous tissues (average b value <0.05) were chosen

for further analysis. Kmeans consensus clustering was performed on these CpGs. Principal Component

Analysis (PCA) was utilized to re-verify the classification effect of clustering. Analysis of variance (ANOVA)

was used to analyze the difference among clusters. The Kaplan Meier method and Log Rank test were per-

formed to evaluate the OS of clusters. Fisher’s exact test was used to compare clinical characteristics. To

explore biological mechanisms behind each cluster, gene set enrichment analysis (GSEA) for correspond-

ing TCGA transcriptomic data was performed usingGSEA software (v4.3.2) with 1,000 permutations against

C2.CP.KEGG, C2.CP.REACTOME, and C5.GO.BP genesets.

Model construction and evaluation in public databases

Since methylation of promoter regions significantly influences gene expression, CpG loci located 200 and

200–1500 bp upstream of the transcription start sites (TSS200 and TSS1500, respectively) were involved in

subsequent feature selection. In order to identify CpGs of which aberrant methylation occurred in both the

beginning occurrence phase and later phases of LUSC, we divided LUSC samples in the training cohort into

the stage I subgroup and stage II-IV subgroup. All normal samples were added to both subgroups. In addi-

tion, to circumvent the problem caused by severely imbalanced data (normal samples << LUSC samples),

normal samples were oversampled using the ROSE R package and the augmented subgroups with

balanced class distribution were generated. Feature selection was carried out by the Boruta algorithm, a

random-forest-based algorithm targeting the so-called ‘‘all-relevant problem’’.59 Subsequently, CpGs

selected by the algorithm were imported to nested five-fold cross-validation based on the random forest

model, where the modeling process was performed five times for each selected CpG.60 This process

sequentially increased the number of CpGs (ranked by variable importances calculated by the Boruta algo-

rithm) and it repeated five rounds. Themean cross-validation error was calculated and the classifier with the

minimum error rate was chosen.

Test cohort 1 and test cohort 2 were used to verify the methylation levels of candidate CpGs and evaluate

the performance of the random-forest-based classification model in LUSC. The sensitivity, specificity, and

ROC curves were used to evaluate its classification performance. Subsequently, we analyzed the methyl-

ation differences of the identified CpGs among regressive CIS samples, progressive CIS samples, and

normal samples using the GSE108124 dataset. TCGA-LUAD methylation data were also analyzed to eval-

uate their methylation statuses in LUAD samples.

DNA pyrosequencing assay

Bisulfite pyrosequencing provides an average methylated proportion of two alleles with great precision,

which is one of the most reliable methods for DNA methylation validation, especially for shorter

regions.61,62 Here, we aimed to verify the methylation-based diagnostic model with our patients through

pyrosequencing. First, genomic DNA was obtained from 10 paired LUSC tissues and adjacent nontumor

tissues via the TIANamp Genomic DNA Kit (DP304-03, TIANGEN, Beijing, China). Then, DNA integrity

was checked by the agarose gel electrophoresis technique. Bisulphite conversions were performed by uti-

lizing the EpiTect Fast DNA Bisulfite Kit (DP304-0359826, Qiagen, Hilden, Germany) and polymerase chain

reaction (PCR) was conducted through PyroMark PCR Kit (Qiagen, Hilden, Germany) according to the man-

ufacturer’s protocols, where specific primers for PCR amplification (see Table S1) were designed and

synthesized by Ouyi Biotech (Shanghai, China). Agarose gel electrophoresis was performed again to verify

the quality of the PCR product and exclude the formation of primer dimers. A pyrosequencing assay

was used to measure the methylation levels of selected methylated sites on the PyroMark Gold

Q96 system (Qiagen, Hilden, Germany). CpG site quantification was analyzed with the PyroMark CpG Soft-

ware 1.0.11.
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Quantitative real-time PCR (qRT-PCR)

Total RNA was isolated from lung tissue samples by Trizol reagent (Invitrogen) and gotten concentration or

quality checked on a NanoDrop UV-Vis Spectrophotometer (Thermo Scientific), then reversely transcribed

into cDNA via the SuperScript First Strand cDNA system (Invitrogen). Primers applied are listed in Table S1.

The qPCR amplifications were performed with an SYBR Green PCR Master Mix (Roche) in an Applied

Biosystems Stepone Plus System (Applied Biosystems). The Delta Delta Ct (DDCt) method was utilized

for relative quantification and paired T-test was performed to obtain p values between two groups. The

expression data of selected genes in TCGA were collected and analyzed by unpaired T-test to expound

and prove the qRT-PCR results. GraphPad Prism 8.0 software (La Jolla, CA, USA) was utilized in plotting.

Protein immunohistochemistry (IHC) analysis

For the same patient involved in the DNA pyrosequencing assay, their paired LUSC samples and adjacent

nontumor samples were obtained from the Department of Pathology of the Second Xiangya Hospital and

validated by two pathologists. Paraffin sections from LUSC patient samples were firstly dewaxed and hy-

drated by xylene and ethanol. Then antigen retrieval was conducted in citrate buffer using a microwave

for 10 min. After cooling to room temperature, the sections were incubated with normal goat serum block-

ing solution for 20 min, and subsequently stained with anti-TBX4 antibody (#sc-515196; Santa Cruz Biotech-

nology, Shanghai, China) at a dilution of 1/10, anti-TRIM15 antibody (#13623-1-AP; ProteinTech, Wuhan,

China) at a dilution of 1/200, anti-C6orf201 antibody (#sc-514971; Santa Cruz Biotechnology, Shanghai,

China) at a dilution of 1/500, and anti-ARHGEF4 antibody (#55213-1-AP; ProteinTech, Wuhan, China) at

a dilution of 1/50. One hour later, the slides were thoroughly washed three times with PBS solution for

2 min each and then incubated for 15 min with the corresponding MaxVision kit (#KIT-5001 or #KIT-5004;

Maixin Biol, Fuzhou, China) at room temperature. Next, the slides were thoroughly washed with PBS and

dehydrated with ethanol of gradient concentrations. Finally, the whole slides were controlled with xylene

and coverslipped. The images were surveyed and captured through a CX41microscope (OLYMPUS, Tokyo,

Japan) with the Microscope Digital Camera System DP-72 (OLYMPUS, Tokyo, Japan). Protein expression

levels were presented by the mean integrated optical density (IOD/area).63

QUANTIFICATION AND STATISTICAL ANALYSIS

Graphs were created and analyzed using R software or GraphPad Prism software. Unless otherwise

mentioned, statistical difference was determined by Student’s t test and data were presented as

mean G standard error of mean (SEM). The p value <0.05 is considered significant.
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