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Abstract

While memory T-cells represent a hallmark of adaptive immunity, little is known about the genetic 

mechanisms regulating the longevity of memory CD4 T cells. Here, we studied the dynamics of 

gene expression in antigen specific CD4 T cells during infection, memory differentiation, and 

long-term survival up to nearly a year in mice. We observed that differentiation into long lived 
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memory cells is associated with increased expression of genes inhibiting cell proliferation and 

apoptosis as well as genes promoting DNA repair response, lipid metabolism, and insulin 

resistance. We identified several transmembrane proteins in long-lived murine memory CD4 T 

cells, which co-localized exclusively within the responding antigen-specific memory CD4 T cells 

in human. The unique gene signatures of long-lived memory CD4 T cells, along with the new 

markers that we have defined, will enable a deeper understanding of memory CD4 T cell biology 

and allow for designing novel vaccines and therapeutics.

Keywords

Memory T cell; Gene; CD4 T cell; Memory cell markers; Cell longevity; Genetic programs

1. Introduction

Memory T cells are the linchpin of the adaptive immune response. Compared to naïve T 

cells, popular dogma characterizes memory T cells as present in higher numbers, with 

greater sensitivity for antigen recognition, and having faster responsiveness with little to no 

requirement for co-stimulation [48]. However, most of these “memory” characteristics have 

been determined by studying CD8 memory T cells, and much less is known about CD4 

memory T cells. This knowledge deficit is critical to address, as CD4 memory T cells 

activate dendritic cells, promote B cell antibody production, and help CD8 T cells become 

robust secondary effectors through cytokine production [7,33,59,61,63]. Some of the barriers 

to studying CD4 memory T cells are that, unlike specific CD8 memory T cells that have 

proven relatively straightforward to detect, antigen-specific CD4 memory T are less 

frequent, more heterogeneous, lack specific surface markers, and require onerous tetramer 

staining procedures [18]. While many of the findings from the CD8 memory field may 

inform CD4 memory cell biology, in vivo evidence shows that qualitatively and 

quantitatively, these responses differ. Memory CD4 T cells have been characterized as 

having a faster decay than CD8 memory T cells [28], which is in conflict with the 

observation that in humans CD4 memory T cells can persist for up to 75 years [21]. The 

maintenance of CD4 memory T cells has been linked to nonspecific tonal TCR signaling in 

some studies [13,34], and in other cases appears to be independent of cognate antigen [64].

We and others have explored the signals that induce such long-term gene expression changes 

that allow for memory cell survival, and found that B cells are required for induction of CD4 

memory T cells [11,12,40,58,69]. Moreover, we have established that differentiation from 

CD4 T effector to CD4 memory T states occurs upon the engagement of TCR by suboptimal 

doses of antigen during the contraction phase of infection [11,58]). When the level of 

antigen reaches low levels, B cells become the primary antigen presenting cells (APC) to 

capture and internalize the Ag via BCR-mediated endocytosis. B cells then present the low 

levels of peptide:MHC complexes (pMHC) to antigen experienced CD4 T cells, which 

induces differentiation into a state of dormancy by a CTLA-4 associated mechanism[12,45]. 

It is likely that presentation of low numbers of pMHC II by B cells to antigen experienced 

CD4 T cells may select the highest affinity memory CD4 precursors to be endowed with a 

gene expression program that promotes quiescence, and therefore, longevity. Dormant 
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memory T would avoid unnecessary cell division and cytokine production associated with 

shortening of chromosomes, or autoinflammatory conditions [19,70], while maintaining the 

capacity to respond polyfunctionally in secondary responses upon challenge with Ag plus 

TLR ligands [11,12,44,45,58].

To better understand the genetic programs that lead to the development of memory CD4 T 

cells and their long survival, we examined the gene expression profiles of antigen-specific 

CD4 T cells from naive state through activation and differentiation from early memory to 

long-term memory up to near a year in mice. Our data presented here reports specific genetic 

signatures that denote long-term antigen-specific memory CD4 T cell populations. In 

addition, the findings that several CD4 memory T cell-surface markers were shared between 

mice and humans, supports the welcomed notion that the underlying principles and markers 

found in murine systems may be translatable to the generation of long-term CD4 memory T 

cells induced by vaccines against the deadly SARS CoV-2 virus.

2. Methods and materials

2.1 Mice.

BALB/c and DO11.10 TCR Tg mice were obtained from Jackson Labs. DR1 (DRB1*0101) 

Tg mice [56]were backcrossed to MHC class II KO mice for 12–16 generations to eliminate 

their endogenous class II proteins (I-Af) and were inbred to homozygosity. All mice were 

housed in the Johns Hopkins University animal facilities under virus-free conditions in 

accordance with protocols approved by the Animal Care and Use Committee of the Johns 

Hopkins University School of Medicine.

2.2 Study Participants

Peripheral blood mononuclear cells (PBMCs) for human sort and phenotyping experiments 

were obtained either from HIV−/HCV− leukapheresis samples (Stem Cell) or whole blood 

(Johns Hopkins). All participants provided written consent.

2.3 Peptides, Proteins, H5N1 influenza vaccine and 2017–2018 attenuated flu vaccine.

Peptides OVA(323–339) (ISQAVHAAHAEIN-EAGR) (Global-Peptides] and H5N1-

HA(259–274) (SNGNFIAPEYAYK-IVK), (Elim Biopharmaceuticals Inc) were at > 90% 

purity. Chicken OVA protein (Grade VI) was from Sigma-Aldrich. Both Inactivated 

influenza vaccine, A/H5N1 Influenza Vaccine and 2017–2018 attenuated flu vaccine were 

obtained from BEI Resources (beiresources.org).

2.4 Antibodies.

Mouse FITC-CD4 and eFluor 605-CD44 [BD-Pharmingen]; KJ1.26 anti-TCR (Caltag 

Laboratories), Brilliant Violet 570-CD4 and Alexa Fluor 700-CD44 were from [Biolegend], 

FITC-Klotho,PE-Cy7-CD99, PE-Cy5-VDR, and PE-Cy7-CNR2 were from [Bioss]; APC-

CCR10 and APC-ITGA3 were from [R&D Systems]; Fixable viability dye eFluor 780 was 

from [eBioscience]. Antibodies for human PBMC staining were as follows: from Biolegend, 

CD99-FITC,CD69-BV421 and CD69-APC , CD45R0-APC and CD45R0-BV421, CD3-

AF700, CD4-Pe/Cy7, CD45RA-PE, Itga3 (CD49c)-PE, IL-7R-BV510, CD25-APC, HLA-
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DR-APC. From BD Biosciences, CCR10-APC and CCR10-PerCP Cy5.5. and viability dye 

eFluor 780 as above. Relevant mouse anti human isotype antibodies to IgG1k or IgG2ak 

were utilized for the following fluorophores: BV421, BV510, FITC, PE, and APC for both 

isotypes (Biolegend).

2.5 Adoptive transfer and cell isolation for cDNA microarray.

An estimated 6,000 Splenocytes of 8 weeks old female DO11.10 mice were transferred into 

age-matched BALB/c recipients i.v., and injected with 2.5 million pfu of Vaccinia-OVA 

virus in PBS (no adjuvant) i.p. 24 h later. Draining lymph nodes and spleens were extracted 

at times 0-, 9 days, 5 weeks, 6- and 10.5 months later. Cells were stained and CD44hi cells 

positive for CD4 and KJ1.26 Ab were sorted on a high-performance MoFlo sorter. Cells 

from sex and age-matched old naïve DO11.10 mice served as naive controls. Cells were 

lysed and sent for the microarray analysis (Miltenyi Biotec).

2.6 Microarray data collection and gene expression analysis.

mRNA was isolated from lysed cells by magnetic bead technology and corresponding cDNA 

was amplified by PCR. The cDNA was then examined by gel and electropherogram to 

ensure the integrity. The amplified cDNA was labeled with Cy3 fluorescent dye and 

hybridized overnight to Agilent Whole Mouse Genome Oligo Microarrays. The fluorescence 

signal was detected by Agilent’s Microarray Scanner System (Agilent Technologies). The 

microarray image files were then processed by Agilent Feature Extraction Software (FES) 

and Rosetta Resolver gene expression data analysis system (Rosetta Biosoftware). Quality 

assessment was then performed on the microarray data. Spatial images of the foreground and 

background signals were made for each microarray sample to check any potential image 

artifacts, using the R/bioconductor package mArray. The distribution of the data was 

checked with density and box plots. The microarray signal data were normalized with the 

quantile normalization method to reduce the obscuring variations between microarrays 

(Bolstad et al., 2003). Between-treatment and between-replicate variations were examined 

with the pair-wise MvA plots, in which the base 2 log ratios (M) between two samples are 

plotted against their averaged base 2 log signals (A). Principal Component analysis (PCA) 

was also performed to assess sample variability. The probes of incomplete functional 

annotation including “unknown”, “predicted gene”, “hypothetical protein” and “RIKEN 

cDNA” were filtered out in the downstream analysis. After the probe level data processing 

above, the differential gene expression between the different conditions was assessed by a 

statistical linear model analysis using the R/bioconductor package limma (Ritchie et al., 

2015), which results in more stable inference and improved power (Smyth, 2004). The lists 

of differentially expressed genes were obtained by the criteria of nominal p-value < 1% and 

fold change cutoff > 2 and visualized by volcano plots. The probe sequences of the selected 

genes were verified by mapping to UCSC genome browser mouse database. The final gene 

lists were submitted to DAVID Bioinformatics Resources software (https://

david.ncifcrf.gov/) for functional enrichment analysis. The gene lists from microarray were 

also normalized by log2 and uploaded to Expander software to cluster genes based on the 

dynamics of their expression patterns at different time points with CLICK algorithm. The 

cutoff homogeneity value for each gene cluster is 0.5 to ensure tight clustering. The data 

discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus [17] 
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and are accessible through GEO Series accession number GSE151583 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE151583)

2.7 Immunization of DR1 Tg mice for memory or activated H5N1 specific T-cells.

6–8 weeks old Tg DR1 mice were immunized with CpG + H5N1 vaccine (memory) or with 

H5N1 peptide (activated). Draining inguinal lymph nodes (activated), spleen (memory) from 

each of 5 immunized mice were harvested 10 months (memory) or 8 days (activated) after 

immunization.

2.8 Staining for MHC-II Tetramers.

PE-conjugated DR1/H5N1-HA(259–274) tetramers were produced in our laboratory. 

Biotinylated DR1 monomers, PE-conjugated CLIP tetramers, and the conjugation protocol 

were provided by the NIAID Tetramer Core Facility. Cells were first cultured for 6 days with 

or without Ag stimulation and stained with either DR1/H5N1-HA(259–274) or DR1/CLIP 

tetramers before staining with antibodies.

2.9 Selection of surface markers for memory CD4 T cells.

The 4 gene lists that were either up-regulated or down-regulated at 9 days, 5 weeks, 6 

months and 10.5 months compared to day 0 were submitted to online custom Venn diagram 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html) for comparison. The genes that were 

only shared between 6 months and 10.5 months but not in 9 days or 5 weeks were called 

“Late-memory specific” and chosen for further comparison with two other gene lists (genes 

that were differentially expressed between 10.5 months and age-matched old naïve mice, or 

genes that were differentially expressed between old naïve mice and day 0) (Supplemental 

Figure 8). Genes that were shared among up-regulated “Late-memory specific”, down-

regulated “Late-memory specific” and “10.5 months versus old naïve” but not in “old naïve 

versus young naïve” group were selected as “true Late-memory specific genes” 

(Supplemental Table I)

These “true Late-memory specific genes” were submitted into DAVID software to identify 

genes that are associated with gene ontology terms “plasma membrane” or “membrane”. 

The fold changes and the availability of fluorophore-conjugated commercial antibodies for 

these genes were used as criteria for selecting the final targets of flow cytometry. Although 

Cnr2 and Vdr were found only differentially expressed > 2-fold between 10.5 month post-

immunization and age-matched old naïve mice, they were still included for consideration 

because Cnr2 plays important roles in regulation of metabolism or cell survival and Vdr is 

important in regulation of metabolism/cell survival.

2.10 Sorting human PBMC.

Peripheral blood mononuclear cells (PBMCs) from HIV- and HCV- healthy donors were 

isolated via Ficoll-paque density centrifugation. CD4 T cells were then isolated by negative 

selection (Stem Cell, Easy Sep) and resting CD4 T cells were obtained from this population 

by depleting cells expressing HLA-DR, CD25 and CD69 (Miltenyi). Resting CD4 T cells 

were stained in bulk for 1) CD99-FITC (Biolegend), CCR10-APC (BD Biosciences), and 

Propridium Iodide to distinguish viable cells; 2) CD4-PeCy7 only (Biolegend); or 3) 
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CD45RA-PE (Biolegend) and CD45RO-APC (Biolegend). These three populations of cells 

were sorted independently on the MoFlo.

2.11 High-Dimensional Flow Analysis (ExCYT).

In order to perform a holistic analysis of the flow cytometry data, we utilized ExCYT, a 

software package for high-dimensional cytometry analysis to conduct dimensionality 

reduction via t-SNE, clustering via Gaussian Mixture Models, and visualization with the 

provided tools within the package [62]. Preprocessing of the data within the software 

included doing conventional lymphocyte and L/D gating followed by an optional CD4 + 

gate. At this point, 1000 cells were randomly sampled from each sample and were used for 

downstream analyses. First, a t-SNE analysis was conducted to reduce the data from its 

original high-dimensional space to two dimensions for visualization purposes. This allowed 

us to compare populations that may be differentially used by cohorts of our samples. We 

then applied a Gaussian mixture model (as implemented in ExCYT) to cluster our data. 

From these clusters, we used the software to identify clusters of data that were differentially 

utilized between cohorts. Finally, using the high-dimensional box plots that ExCYT 

produces, we could characterize these differentially utilized clusters via their high-

dimensional parameters.

2.12 In vitro recall of human cells with 2017–2018 flu vaccine.

From the CCR10/CD99 co-stained sample, all four populations were isolated 

(CD99hiCCR10+, CD99loCCR10+, CD99loCCR10−, CD99hiCCR10−), although for some 

donors the CCR10+CD99lo population was too limited for subsequent stimulation assays. 

Sorted cells were collected in RPMI containing 20% FBS, washed once with PBS, counted 

and then resuspended at 10e6 cells/ml. About 400–500,000 sorted CD4 T cells were plated 

at a 1:2 ratio with CD4-depleted autologous PBMCs, such that the CD4 T cells represented 

in the well solely derived from the sorted fraction. This combined culture was subject to 

stimulation with: media only, 1 ul of 2017–2018 strain of flu vaccine (BEI resources), or 10 

ug/ml HIV lysate (PepMix, JPT). After 17–19 hrs, cells were stained with CD69-BV421 

(Biolegend), CD3-AF700 (Biolegend), CD4-PeCy7 (Biolegend), and eBio780 Fixable 

Viability Dye (eBio), fixed with 4% formaldehyde, and run on an LSRII.

3. Results

3.1. Tracking gene expression changes of antigen specific CD4 T cells undergoing 
differentiation to long-lived memory.

To examine the distinct genetic programs utilized by antigen-specific CD4 T cells 

differentiating into long-lived memory cells, we monitored gene expression changes in CD4 

T cells undergoing various stages of differentiation post-immunization for up to 10.5 

months. DO11.10 transgenic (Tg) CD4 T cells specific for the OVA(323–339) epitope in 

complex with I-Ad were chosen for adoptive transfer experiments into naïve BALB/c 

recipient mice. Supplementary Fig. 1a depicts characterization of the naïve DO11.10 Tg T 

cells that were adoptively transferred to the recipient hosts. To ensure that the transferred 

DO11.10 cells were within physiological endogenous clonal frequencies, we transferred 

6000 DO11.10 Tg CD4 T cells into each BALB/c host. As the engraftment efficiency for 
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transferred cells is about 10–15%, it is expected that only 600–900 DO11.10 cells would 

survive in each recipient, which is considered to be within physiological ranges [25]). To 

evaluate memory cell development at different stages post immunization in an acute 

infection, a recombinant Vaccinia-OVA virus was used as the immunogen a day after cell 

transfer. Of note, this recombinant strain clears within 42 days post immunization in mice 

[9]. Clearance of the immunogen was an important aspect of the experimental design, as we 

sought to elucidate long-term gene expression changes that occurred upon acute rather than 

chronic infection, in order to avoid T cell exhaustion. Four groups of mice (15 per group, 

pooled into 3 biological replicates) were immunized on the same day, but were sacrificed at 

different time points after immunization; day 9, Week\ 5 (1.5 month), months 6 and 10.5 

(Fig. 1a), which were selected to represent activated, early memory, late memory, and long-

term memory stages’ respectively. Lymphocytes from these four groups of mice that stained 

positive for CD44, DO11.10, and CD4 were FACS-sorted as antigen-experienced CD4 T 

cells. Two additional control groups were also included for gene analyses: (1) young naïve 

mice sacrificed on day 0 and, (2) old naïve mice age-matched with mice immunized for 10.5 

months and sacrificed at the same time. The latter control group was included to distinguish 

the effects of genes involved in aging from those involved in memory T cell persistence in 

our analysis. CD44lo DO11.10 CD4 T cells were FACS sorted from these two groups (Fig. 

1a). The mRNA from the lysed DO11.10 CD4 T cells were isolated and amplified for 

microarray analysis. Because of the expected low numbers of CD4 memory T cells in 6 and 

10.5 months, we used the Miltenyi μMACS™ SuperAmp™ technology established for RNA 

amplification of rare cells [2,57]. We used the criteria of nominal p-value < 0.01 and fold 

change cutoff > 2 to obtain a list of differentially expressed genes from the microarray data. 

The probe sequences of the selected genes were verified by mapping to UCSC genome 

browser mouse database before further functional analyses.

Genes were analyzed using the Expander software [65], which grouped the genes into 16 

gene clusters based on the dynamics of their expression patterns across the five time points 

(Fig. 1b, and Methods). To find genes specific for the development and longevity of CD4 

memory T cells, we defined gene clusters as memory-specific if their expression patterns 

met one of the following three conditions: a) gene expression continuously went up after 5 

weeks, b) gene expression continuously went down after 5 weeks, or c) gene expression did 

not change from month 6 to month 10.5, but the gene expression in month 6 was either 

higher or lower than week 5. Separating differential gene expression using these criteria 

showed a remarkable pattern of memory-specific gene signatures at the 10.5-month time 

point, often appearing many months after the initial priming event. Per the above criteria, six 

gene clusters (1, 2, 3, 5, 7 and 8) were selected as being “memory-specific” and were 

submitted to the DAVID Bioinformatics Resources software for gene ontology (GO) 

Biological Process analysis. Five GO terms among the entire top enriched GO Biological 

Process terms were found: regulation of apoptosis, regulation of proliferation, response to 

DNA damage, lipid metabolism, and carbohydrate metabolism (Supplementary Fig. 1b).

To find out how the genes associated with these five GO terms might contribute to the 

longevity of CD4 memory T cells, we examined the dynamics of differentially expressed 

genes between day 0 and 10.5 months in each GO term category separately (Figs. 2, 3 & 

Supplementary Figs. 2-6). Interestingly, the heatmaps of global genetic changes revealed 
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that there were two major gene expression patterns. One set of genes maintained low 

expression levels at the activation phase but higher expression levels in the memory phase; 

while the other set of genes displayed higher expression levels in the activation phase but 

were downregulated during the memory phase. A PubMed literature search on every gene in 

these five GO term heatmaps provided some understanding for potential functions of these 

genes, linking their expression patterns to CD4 memory T cell development.

3.2. Genes regulating cell proliferation, DNA damage, and survival are enriched in long-
term CD4 memory T cells

Using this approach, we formulated pathways by which these genes differentially expressed 

at 10.5 months could help in supporting the longevity and survival of CD4 memory T cells. 

For example, we found most of the differentially-expressed genes in GO terms linked to cell 

proliferation and DNA repair response were associated with the tumor suppressor p53, 

which has been known for both negatively regulating cell proliferation and enhancing DNA 

repair response under oxidative stress [26,68]. Fig. 2a & 2b depict two representative sets of 

genes with proposed roles in the p53 pathway, or downstream in the DNA base excision 

repair pathway. Most of these representative p53 associated genes (e.g. Tial1, Msx1, Ing5, 

Vdr, Rxra, Ncoa6, Gadd45a, Alkbh2), when compared to young naïve mice, were found to 

be expressed at significantly higher levels at 6 months and 10.5 months post immunization 

(Fig. 2a & b), which highlights the importance of DNA repair response and reduced 

proliferation in long-lived memory cells. It is noteworthy that we also identified several 

genes that can limit access to DNA for replication and transcription. One such example is 

the histone gene Hist1h2ai, which encodes the nucleosome component histone H2A1. 

Because the nucleosome regulates access to certain regions during DNA replication in cell 

division, it can serve as a gene repressor [22,42]. Down-regulation of Hist1h2ai during CD4 

activation may, therefore, facilitate an increase in DNA replication and cell proliferation. 

The 7-fold up-regulation of Hist1h2ai at 6 months and 10.5-month compared to day 0 post 

immunization suggests that late-stage long-lived CD4 memory T cells may have restricted 

DNA replication or transcriptional capabilities. This is consistent with a state of quiescence 

important for the longevity of CD4 memory T that has been shown experimentally 

[11,12,37,44,45].

In addition to observing a tightly-regulated proliferation and DNA repair program, long-

lived CD4 memory T cells require the activity of pathways involved in prevention of cell 

apoptosis (Fig. 2c). Such programs have been found to be involved in maintaining long-lived 

CD8+ memory T cells [15,20]. Consistent with this notion, we observed that genes 

associated with the apoptosis GO term were mostly upregulated at 6 months and 10.5 

months (Fig. 2c). The PI3K/Akt and Ras-ERK pathways, which regulate responses to 

apoptosis are among those genes and are highlighted. In general, most upregulated genes at 

these later time points have a role in the activation of pro-survival/anti-apoptotic proteins 

and inhibition of pro-apoptotic proteins. An example is Pou4fi (also known as Brn-3a), 

which was upregulated 18–20 fold at both 6 month- and 10.5-month time points, activates 

pro-survival proteins Bcl-2 and Bcl-xL, and cooperates with p53 to induce cell cycle arrest 

[8,31]. Altogether, these dynamic gene expression changes suggest that during CD4 memory 
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differentiation, a combination of programs that limit proliferation, reduce DNA damage, and 

prevent apoptosis help to maintain long-term memory T cell longevity.

3.3. Long-lived CD4 memory T cells express a unique lipid metabolism gene signature

Recent studies have described that during the shift from effector to memory states, CD8 T 

cells undergo changes in their energy metabolism from glucose to lipid 

metabolism[3,53,66]. This shift in metabolism is thought to promote CD8 memory T cell 

longevity and function [53]. In light of these studies, we compared the expression levels of 

genes related to regulation of metabolism in naïve versus memory T cells over time. Fig. 3a 

& b and Supplemental Figs. 1, 5 & 6 show that a lipid metabolism program, rather than 

glucose metabolism, predominates in CD4 memory T cells.

A detailed assessment of this lipid metabolism program suggested that choline and ceramide 

metabolism as well as cholesterol synthesis and metabolism, were important for long-lived 

CD4 memory T cells. As shown in Fig 3a, a list of genes involved in regulating these 

metabolism pathways had increased expression levels at 6 and 10.5 months compared to 

young naive (Fig. 3a and Supplementary Fig. 5). Although the exact role of cholesterol in 

CD4 memory T cells remains unclear, the levels of cellular cholesterol could impact the 

rigidity of T cell membranes. Increased cholesterol in the membrane can influence T cell 

signaling by affecting TCR clustering and T cell proliferation, both of which have clear 

implications for CD4 memory T cell function [5].

In addition to cholesterol metabolism, ceramide metabolism plays a role in cellular 

persistence, as ceramide is associated with mediating apoptosis and antagonizing insulin-

stimulated glucose uptake [6]. Consistent with this, we observed an upregulation of the 

genes involved in reducing ceramide levels. For example, Sgms1 converts ceramide to 

sphingomyelin via the addition of phosphatidylcholine, reduces reactive oxygen species, and 

facilitates normal mitochondrial function. Ugcg, which encodes an enzyme catalyzing 

glycosylation of ceramide, has anti-apoptotic and pro-survival effects 

([14,24,32,36,41,46,60,71]). A central protective role of these genes may be in limiting the 

overall ceramide levels in long-lived CD4 memory T cells, which may be similar to a 

specific strategy often co-opted by various tumors to enhance cell longevity [47]. For 

example, we observed an upregulation of genes mediating synthesis of phosphatidylcholine 

in the CDP-choline pathway (Fig. 3a), which could facilitate the generation of sphingolipid 

from ceramide, or be converted to phosphatidic acid by Pld2 to activate mTOR and MAPK 

signaling pathway [29,55]. Taken together, this unique genetic program involving lipid 

metabolism helps to maintain the longevity of CD4 memory T, primarily by affecting 

cellular cholesterol and ceramide levels, and allowing for more efficient lipid oxidation to 

drive cellular metabolic needs.

In parallel to the finding of upregulated lipid metabolism, we observed a downregulation of 

glucose/carbohydrate metabolism in long-lived CD4 memory T cell, which was exemplified 

by the decreased expression of genes mediating glycolysis and increased expression levels of 

genes inhibiting the insulin signaling pathway in 10.5 months post immunization. A few 

representative genes in these two pathways were shown as examples in Fig. 3b. Among these 

genes, the expression of the Irs1 gene, was sharply downregulated > 6-fold in CD4 memory 
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T cells at 6 months and 10.5-months post immunization (Fig. 3b). This gene encodes for 

insulin receptor substrate 1, which can regulate insulin signaling [27]. Downregulation of 

this gene, together with other genes (e.g. Kl) involved in insulin signaling, indicates an 

increased level of insulin resistance in the CD4 memory T cells, which would potentially 

decrease the uptake of glucose into the cells and allow those cells to shift from using 

predominantly glycolysis to lipid oxidation for maintaining cellular energy requirements. 

This shift in cellular metabolism, which has been demonstrated to be a major hallmark of 

CD8 + memory T cell biology [49,52].

In summary, this specific genetic program mediating the upregulation of lipid metabolism 

and downregulation of glucose metabolism in long-lived CD4 memory T cells highlight a 

unique immunometabolic pathway of regulating ceramide metabolism that may be 

augmented therapeutically.

3.4. Verification of microarray-described gene expression provides novel markers of 
long-term CD4 memory T cells

Our microarray data was obtained from analyses of adoptively transferred DO11.10 Tg T 

cells into naïve recipient mice. To validate these results in a polyclonal context, we took 

advantage of the availability of HLA-DR1 Tg mice and an in-house prepared tetramer 

reagent against the immunodominant epitope of H5N1 influenza HA protein that we have 

previously identified [23,35]. HLA-DR1 Tg mice have a full T cell repertoire [56], therefore 

represent more physiological conditions for T memory formation. We immunized HLA-DR1 

Tg mice with an attenuated H5N1 influenza vaccine in CpG and examined the development 

and responsiveness of the CD4 memory T cell specific to the immunodominant epitope, 

H5N1-HA(259–274) peptide challenge. Specific CD4 memory T cells were tracked using 

HA(259–274)-specific MHC-II tetramers. To enrich HA(259–274) specific resting CD4 

memory T cells, and validate their quiescent phenotype, T cells from 10.5 month immunized 

mice were placed in culture for 7 days with or without antigen. By doing so, non-specific or 

irrelevant CD4 T cells die off during the lengthy in vitro culture, while quiescent memory T 

cells survive and are enriched. The results (Fig 4a) showed that these CD44hi HA(259–

274)/DR1 tetramer positive CD4 memory T cells did not proliferate upon in vitro challenge 

with either H5N1-HA1 protein or H5N1 vaccine, unlike the robust increase in the number of 

HA(259–274)-specific CD4 T cells from recently immunized effector CD4 T to the in vitro 
challenge with either H5N1-HA1 protein or attenuated vaccine (Supplementary Fig. 7). The 

finding that long-lived H5N1-HA(259–274) specific CD4 memory T cells developed in DR1 

Tg mice are quiescent, revealed generality of our findings and justified further evaluation of 

the microarray data.

We chose to examine the protein expression of a few selected genes encoding proteins 

expressed on cell membranes and expression increased during long-term CD4 memory T 

establishment (i.e. by 6- and 10.5-months post-immunization) (Fig. 4b, Supplemental Figure 

8, Supplemental table I and Methods). We reasoned that this strategy could also yield 

potential long-term memory markers that could easily be detected by fluorescence staining. 

Seven proteins were chosen including IL-7R, a well-established marker for CD8 and CD4 

memory T precursor cells (Fig. 4b).
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To evaluate the protein expression of the putative memory markers we used H5N1-HA(259–

274)/DR1 specific CD4 memory T cells ten months post immunization with H5N1 influenza 

vaccine in CpG. Similar to the setup described in Fig. 4a, H5N1-HA(259–274)/DR1 specific 

CD4 memory T cells were enriched by in vitro culture for 7 days in the absence of antigen 

stimulation to allow dying of nonspecific cells. Enriched cells were then co-stained with 

antibodies against CD4, CD44, and others listed in the Methods. For comparison, we also 

assessed these markers on “activated” H5N1-specific CD4 T cells from H5N1-HA(259–274) 

peptide immunized DR1 Tg mice. Lymphocytes from the draining lymph nodes harvested 9 

days post-immunization and cultured with the same peptide for 7 days in vitro served as 

positive controls. Supplementary Fig. 9 shows a high percentage of HA(259–274)/DR1 

tetramer+ effector CD4 cells (~9%) in recently immunized mice versus memory populations 

that expectedly were only ~ 1.6% tetramer+.

The results shown in Fig. 4c & d compared the expression levels of the seven selected 

proteins among memory, activated, or naïve CD4 T cells. Because the number of naïve 

antigen-specific CD4 T cells from unimmunized mice was too small after culturing for 7 

days, naïve CD4 T cells from mice immunized with H5N1 vaccine and gated from the CD4+ 

CD44lo population served as naïve controls. As shown, all selected genes were expressed 

robustly in CD4 memory T cells compared to naive and activated CD4 T cells, except for the 

expression of Itga3, which showed some overlap between memory and activated CD4 T 

cells.

Overall, these experiments validated our microarray data and revealed genetic signatures 

specific for long-term murine CD4 memory T cells. From these genetic programs, we 

observed specific cell-surface markers that were enriched on antigen-specific murine CD4 

memory T cells emerged that can now be used for identification of long-lived memory CD4 

T cells in mice. We wondered whether these cell-surface markers could not only denote 

murine CD4 T cell memory populations, but also human ones.

3.5. Evaluation and testing of long-term CD4 T cell memory markers in healthy human 
donors

We next attempted to examine memory CD4 T cells from healthy donors for expression of 

the new memory markers. CD45R0 is a commonly-used marker of memory cells in humans, 

and cells that express CD45RA isoform classically denote naïve or effector cells [43]. To 

that end, we measured surface expression levels of the selected markers defined in murine 

memory T cells in 12 healthy individuals by flow cytometry and correlated them with 

expression of CD45RA and CD45R0. We observed an enrichment in cells expressing CD99, 

CCR10 and Itga3 in the CD45R0 compartment at comparable levels to that observed with 

the canonical memory marker, IL-7R (Fig. 5a-c). Importantly, we included activation 

markers, CD25, CD69 and HLA-DR in our panel to exclude cells that may have been 

activated in vivo, and therefore would not resemble a quiescent, long-lived memory CD4 T 

cell phenotype (Supplementary Figure 10). Interestingly, we observed about a 3-fold 

increase in MFI of CD99 in resting CD4 CD45R0 versus CD45RA + cells, corresponding to 

a 1-log increase on the flow plots (Fig. 5c), which was twice as high as the expression levels 

of IL-7R. Furthermore, CCR10 and Itga3 appeared to mainly be expressed on CD45R0 cells 
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(Fig. 5c). Importantly, gating on any of these three markers is over 95% predictive of 

CD45R0, or “antigen experienced,” status (Fig. 5b), suggesting that while not all CD45R0 

cells have these markers, these markers are exclusively present on CD45R0 cells. Fig. 6

CD99 has been found to be related to optimal co-stimulation of T cells [50] and highly 

expressed on activated/memory T cells from lymph nodes of patients with gastric cancer or 

chronic peptic ulcer [51]. It has also recently been reported to be upregulated on human fetal 

CD4 T memory T cells [39], while CCR10 has been shown to mark memory CD4 T cells 

that home to the skin [30]. Itga3, or integrin subunit alpha, makes up half of the α3β1 

integrin and recently has been shown to be a critical regulator in Th17 cell differentiation 

[72]. However, none of these features (CD99hi, CCR10+, Itga+) have been used to stain 

human memory cells in the past, and represent novel markers for potentially long-lived 

subsets in the human. Of the markers, CD99 and CCR10 appeared to have the most 

distinguishable staining pattern for detecting memory populations, as Itga3 appears to be 

expressed at low levels (data not shown). We therefore followed up exclusively with these 

two markers for functional tests.

To measure whether cells expressing CD99 and CCR10, either as double, or single positive 

cells contained more antigen-specific CD4 T cells, we sorted these populations from the 

peripheral blood of healthy human donors who had been vaccinated with the 2017–2018 

attenuated flu vaccine and performed in vitro recall experiments. Resting CD4 T cells from 

the same human donors were challenged in vitro with the 2017–2018 flu vaccine or HIV 

lysate as a negative control (Fig 7a). Notably, CD4 T cells expressing one or both of these 

markers responded more robustly to the flu vaccine than bulk CD4 T cells, suggesting an 

enrichment of Ag-specific cells in these populations (Fig. 7b-c, Supplemental Fig. 11). 

CD99hi cells responded most robustly to rechallenge. Interestingly, CD99loCCR10− cells 

responded less well than bulk CD4 T cells, most prominently observed in donor D4282, 

suggesting that removing cells expressing CD99, CCR10, or both reduces the flu-specific 

memory CD4 T cell population. These observations are consistent with the fact that levels of 

CD99 and the percent of cells expressing CCR10 appear to segregate with CD45R0 + 

memory T cells (Fig. 7c).

4. Discussion

A major unanswered question in the field of CD4 T cell memory is understanding what 

specific genetic/phenotypic characteristics distinguish long-lived memory CD4 T cells from 

effector and short-lived antigen-specific CD4 T cells. Addressing this knowledge deficit 

would have profound implications for designing more durable vaccines aimed at inducing 

CD4 T cell responses that augment humoral and cytotoxic T cell immunity for the lifetime 

of an individual. Here, we have examined the dynamics of gene expression in antigen-

specific CD4 T cell differentiation in an acute infection from naïve to activated and memory 

states up to nearly a year post immunization using sensitive microarray technology.

Our approach improves on other studies in at least two distinct ways: 1) we have studied 

antigen-specific clonal populations under physiologically relevant conditions in mice with 

polyclonal TCR repertoires, and 2) we have studied the kinetics of memory development for 
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over 10.5 months. Following antigen-specific cells enabled us to identify true long-term 

memory CD4 T cells based on the parameter of time rather than previously-reported 

memory surface marker expression. Most existing studies often choose to define memory T 

cells 30 days post antigen stimulation and rely on the expression of certain memory markers 

(e.g. CD45R0 in human, CD44 in mice) to track “antigen experienced” cells. However, such 

memory markers may change based on the activation state of the cell, and what one believes 

to be a memory population may simply be a recently-activated T cell population that 

inaccurately represents a long-term memory phenotype.

Another particular strength of our study is that we have studied gene expression in two 

murine antigenic systems: DO11.10 CD4 Tg T-cells in BALB/c mice, H5N1-HA(259–274) 

specific CD4 T cells in polyclonal DR1 Tg mice, and importantly, in healthy human donors. 

Studying the dynamics of gene expression in CD4 T cells in an acute infection model from 

their naïve state to acute activation, contraction, early memory, and late memory transitions 

under physiological conditions, enabled a systemic evaluation of genes that are highly likely 

to contribute to establishment of long-lived memory phenotype. Memory CD4 T cells 

developed for a viral infection may be heterogeneous [67]. Our previous studies on cytokine 

production from Vaccinia-OVA specific memory CD4 T cells indicated that the long-lived 

memory CD4 T cells conformed to a Th1-differentiated phenotype [11]. This was also 

confirmed by our microarray data analysis, which shows that only Th1 signature genes, 

including T-bet, were differentially upregulated in the activation/memory stages (data not 

shown). Additionally, a comparison of our microarray data with recently published RNA-seq 

data from early memory CD4 T cells [10] found some shared genes despite the differences 

in the antigenic systems and gene detection technologies. Moreover, several of our murine 

long-lived memory CD4 T cell genes have similar expression patterns to that of human long-

lived CD8 memory T cells [1]. These findings highlight the idea that in long-lived memory 

T cells regardless of species, antigens, or T cell types certain expression patterns are shared.

Two highly significant conclusions can be drawn from our gene analyses. First, there is a 

gene expression program initiated from the first priming of a CD4 T cell that has long-

ranging effects at the memory stage, by reducing the cell’s proliferative capacity and 

immune activation, while increasing the cell’s ability to respond to DNA damage and 

prevent apoptosis. This signature is consistent with our prior observations that antigen-

experienced CD4 T cells become quiescent upon encounter with low avidity engagement of 

TCR during the resolution of infection. Importantly, the increased expression of a majority 

of these genes were first detected at the effector to memory differentiation phase, and 

continued through 6 months and for some genes through 10.5 months, strongly suggesting 

that memory T longevity requires genetic programs that continuously and actively work 

together. In addition, several metabolism-related genes were also dynamically regulated at 

the memory stage. Notably, we observed gene expression changes consistent with enhanced 

insulin resistance, which may play an important role in transitioning long-term CD4 memory 

T cells from a primarily glucose to lipid metabolism profile, similar to CD8+ memory T 

cells. Most strikingly, however, was the differential expression of genes involved in ceramide 

metabolism, presumably to limit levels of this biomolecule. Such a program may represent a 

unique mechanism by memory CD4 T cells to ensure persistence. Moreover, understanding 
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the molecular “switch” that promotes high levels of this pathway may guide efforts to induce 

enhanced, durable CD4 T cell memory responses.

While it is currently unclear how such a signature may be triggered in Ag-specific CD4 T 

cells at first priming, we have shown in the past that B cells are the predominant antigen 

presenting cell at the contraction phase of an immune response [12]. It is possible that B cell 

presentation of low numbers of pMHC-II complexes selects for high-affinity antigen-

experienced CD4 memory T cell precursors, and that the physical and signaling 

characteristics of this interaction initiates a genetic and epigenetic program that allows for 

cellular persistence. Further mechanistic studies on the molecular events involving memory 

CD4T cell fate determination would help to elucidate this critical transition.

To validate the microarray data, we assessed the protein expression of some of the genes 

whose protein products are known to be expressed on the cell membrane. Such markers 

should ideally serve as new CD4 T cell markers associated with different phases of memory 

development and longevity. Indeed, all selected genes were expressed strongly on long-lived 

(10.5 months) CD4 memory T cells, in contrast to either weak upregulation, or no change on 

activated CD4 T cells, and lower expression levels at early memory phase (six months). 

Remarkably, Cnr2 expression was only enhanced by 10.5 months, suggesting that memory 

longevity requires continuous upregulation of genes even at very late stages of memory CD4 

T cell life. The rest of the 5 selected genes showed a gradual increase in expression, reaching 

their maximum expression by 300 days post immunization, an observation that signifies the 

likely importance of those proteins to regulating the longevity of long term CD4 memory T 

cells. While a mechanistic link between expressions of these genes and their connection to 

CD4 T cell longevity remain to be established, some clues can be found from literature. For 

example, the Klotho protein has long been associated with anti-aging characteristics through 

a variety of mechanisms, such as anti-oxidation, anti-senescence, anti-autophagy, and 

modulation of many signaling pathways, including insulin-like growth factor and Wnt 

signaling [4,38]. High expression of Cnr2 in developing B cells has also been shown to 

associate with a stem-cell like characteristic, which has been associated with a memory CD4 

phenotype [54]. Therefore, it would be of great interest to explore the molecular roles of 

these proteins in long-lived memory CD4 T cells in future work.

The second important message from our studies is that the identified murine memory 

markers were applicable to human memory CD4 T cells. When resting CD4 T cells from the 

peripheral blood of healthy donors were tested for expression of these proteins, CD99, 

Ccr10 and Itga proteins were expressed on human memory cells exclusively with other 

conventional memory markers such as CD45R0. However, human memory cells varied in 

gene expression of Cnr2 and Kl, which might relate to the lack of information about the 

timing of prior exposure to the antigens in human samples. This difference may also reflect 

an evolutionarily divergent transcriptional landscape in long-lived memory cells between 

mice and humans, where the functions of Klotho and Cnr2 in mice are fulfilled by other 

protein products in the human. Alternatively, it is possible that human memory CD4T cells 

in lymphoid organs may express higher transcript and protein levels of these markers, but 

that those in peripheral blood – our source of PBMCs – may not. Overall, we observed more 

robust immune responses from sorted human CD4 T cells expressing CD99, and/or CCR10, 
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than bulk CD4 T cells to influenza vaccine challenge in vitro. These data suggest that CD99 

and CCR10 molecules on resting CD4 T cells, independent of any other “memory” marker, 

can designate memory CD4 T cells in humans.

In conclusion, our study has tackled the dynamics of gene expression in specific CD4 T cells 

generated in vivo under physiological conditions following CD4 T cells during the transition 

from naïve to activated, memory, and long-term memory stages. We have identified several 

genetic programs that together reduce cell proliferation and immune activation, protect cells 

from apoptosis, promote survival, and regulate metabolism in favor of maintaining the 

longevity of the memory CD4 T cells. These programs appear to be dynamically regulated 

in antigen-specific memory CD4 T cells at the initial priming event, often only materializing 

gradually or after 10.5 months (equivalent to > 32 years in the human) [16].

Apart from defining gene expression signatures critical to CD4 T memory persistence, we 

identified several cell-surface proteins specific to memory CD4 T cells. These markers can 

now serve as true markers of a long-lived memory CD4 T cell phenotype in mice and even 

in humans, as they are present on memory CD4 T cells that yield most robust responses to a 

vaccine challenge. Thus, our studies have important implications for preventative and 

therapeutic vaccine designs, as well as the study of infectious agents that persist long-term in 

CD4 T memory cells, including HIV-1 and sars-cov 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Dynamics of gene expression patterns in DO11.10 CD4 T cells.
a) Schematics of the experimental design. 6000 DO11.10 Tg cells, specific to the OVA 

(323–339) epitope in complex with H-2d, were adoptively transferred into 8-week old 

BALB/c recipient mice 24 h before immunization with Vaccinia-OVA virus. Dynamics of 

gene expression were studied in FACS-sorted CD4 KJ1.26+ CD44+ T cells from lymph 

nodes and spleens of the recipient mice at day 9, 5 weeks (35 days), 6 months (180 days) 

and 10.5 months (320 days) post immunization. FACS-sorted CD4 KJ1.26+ CD44− T cells 

from age-matched naïve mice served as age control for day 0 and 10.5 months in microarray 

experiments. For each time point, cell samples were pooled from 5 mice for each cage with 

3 cages in total, thus 3 biological replicates were used for statistics in microarray. b). 
Selection of gene clusters based on expression dynamics. The microarray data was 

submitted into Expander software, which grouped all the genes into 16 clusters based on 

their expression patterns on day 0, day 9, week 5, month 6, and month 10.5 post 

immunization. The y-axis shown in each cluster is the fold changes of the relative intensities 

of genes normalized by log2.
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Fig. 2. Expression dynamics and functions of genes in three gene ontology (GO) terms.
Genes that were differentially expressed between 10.5 months post immunization and day 0 

were submitted to DAVID database to identify those associated with the five GO terms 

enriched in “memory specific clusters” in Fig. 1b. Global expression heatmaps of genes 

associated with GO terms “cell proliferation” (a), “DNA repair” (b) or “apoptosis” (c) were 

created with a row Z-Score ranges from −4 to 4(left panel). A few representative genes from 

each GO term gene group were selected with fold changes in their expression levels at 

different time points comparing to day 0 (middle panel). The potential function and related 

pathways of these selected genes were depicted (right panel). Genes were differentially 

(fold change > 2, p-value < 0.05) upregulated (pink box), downregulated (blue box) or not 

differentially expressed (white box) in 10.5 months post immunization compared to day 0. 

Genes in red circle have been shown in literature to be able to form complexes. Arrows 

between genes/pathways indicate positive regulation and lines with blunt end between 

genes/pathways indicate negative regulation by literature references.
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Fig. 3. Expression dynamics and functions of genes in two gene ontology (GO) terms.
Genes that were differentially expressed between 10.5 months post immunization and day 0 

were submitted to DAVID database to identify those associated with the five GO terms 

enriched in “memory specific clusters” in Fig. 1b. Global expression heatmaps of genes 

associated with GO terms “lipid metabolism”(a) or “carbohydrate metabolism”(b) were 

created with a row Z-Score ranges from −4 to 4 (left panel). A few representative genes 

from each GO term gene group were selected with fold changes in their expression levels at 

different time points comparing to day 0 (middle panel). The potential function and related 

pathways of these selected genes were depicted (right panel). Genes were differentially 

(fold change > 2, p-value < 0.05) upregulated (pink box), downregulated (blue box) in 10.5 

months post immunization compared to day 0. Genes in dotted square are viewed as a whole 

mechanism impacting other pathways. Arrows between genes/pathways indicate positive 

regulation and lines with blunt end between genes/pathways indicate negative regulation by 

literature references.
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Fig. 4. Expression of selected membrane associated proteins in quiescent H5N1 specific memory 
CD4 T cells in DR1 mice
a) DR1 mice were injected with H5N1 vaccine and CpG i.p., and 4 months later, draining 

lymph nodes were extracted and cells incubated for 7 days without any stimulation, or 

stimulated by either H5N1 HA1 protein or H5N1 vaccine in the media. The cells were then 

stained with H5N1 (Left top panels) or CLIP tetramers (Left bottom panels), as well as 

CD44 and other antibodies for flow cytometry analysis. Dots show the CD44hi Tetramer+ 

lymphocytes after exclusion of macrophages, B cells and CD8+ T cells. The flow data from 

4 repeated experiments is summarized on the right panel, p = 0.88. b) Expression dynamics 

of several selected membrane associated genes during memory CD4 T cell development (c) 

Expression of different selected membrane/surface markers on CD4 CD44hi H5N1 tetramer+ 

memory cells in spleen (orange), CD4 CD44hi H5N1 tetramer+ activated cells (red) and 

CD4 CD44lo naïve cells (blue). The cells are from the CD4 CD44hi Tetramer+ population 

(for activated CD4 T cells and CD4 memory T cells) or CD4CD44lo population (for naïve 

CD4 T cells) shown in Supplemental figure 9. d) Summary of MFI levels in protein 

expression among memory CD4 T cells, activated CD4 T cells and naïve T cells from 3 

repeated experiments. Data are presented as mean ± standard deviation. Asterisks denote 

statistical significance: **** P < .0001, *** P < .001, ** P < .01, * P < .05, Student’s two-

tailed paired ratio T-test.
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Fig. 5. Several putative long-term memory markers from the murine microarray analysis 
exclusively co-localize with existing human memory marker CD45R0.
a) The percentage of CD99hi, CCR10+, Itga3+ and IL7R+ expression gated on resting CD4 T 

cells of 12 healthy donors. b) Resting CD4T cells that either expressed high levels of the 

putative memory markers from our microarray analysis – CD99 (CD99hi), CCR10, or Itga3 

– were assayed for the presence or absence of canonical memory marker CD45R0. Notably, 

nearly 100% of cells expressing these putative markers also expressed CD45R0 (CD45R0+). 

c) Cells that either express or lack CD45R0, indicated as CD45R0− in the figure (i.e. 

CD45RA+), were assayed for relative frequencies of CD99hi, CCR10+, Itga3+ and IL7R+. 

The percentages and MFI of CD99, CCR10 and Itga3 positive populations in either 

CD45R0+ or CD45R0− compartments reveal an enrichment of these markers in the 

CD45R0+ compartment, to a degree comparable to that of IL-7Rhi cells. Data are presented 

as mean or mean ± standard deviation. Asterisks denote statistical significance: **** P 

< .0001, *** P < .001, Student’s two-tailed paired ratio T-test, n = 12.

Song et al. Page 24

Cell Immunol. Author manuscript; available in PMC 2020 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. Expression of memory markers increase with aging in human cohorts.
a) The median expression levels of various protein markers for CD4 memory T cells stained 

by flow cytometry were summarized for comparison between two cohorts of individuals 

with different age ranges (> =35 years or < 35 years). Cluster 1 represents protein expression 

levels in cohorts of healthy donors (age < 35 years) while cluster 2 represents protein 

expression levels in cohorts of healthy donors (age > = 35 years). The protein expression 

levels used by ExCyt for t-SNE analysis were based on CD45RO expression from flow 

cytometry staining of CD4 T cells in two cohorts of healthy human individuals with varied 

age and gender (N = 12). b) CD99, CCR10, Itga3 and IL7R all have higher expression levels 

in healthy donors with age > =35 years, and notably all co-localize with cells expressing 

high levels of CD45R0.
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Fig. 7. CD4 T cells that have high expression levels of adhesion molecule CD99 exhibit enhanced 
responsiveness to in vitro flu vaccine challenge than the bulk CD4 T cell population, and 
depleting cells expressing high levels of this marker blunts the anti-flu recall response.
a) Four different CD4 T cell subsets (CD99lo CCR10−, CD99lo CCR10+, CD99hi CCR10−, 

CD99hi CCR10+) were sorted based on the expression of CD99 and CCR10 and cultured 

with media alone, HIV lysate or the 2017–2018 attenuated flu vaccine in vitro with CD4-

depleted autologous PBMCs for 17–19 h. The percentage of CD69+ cells was used as 

readout for activation. b) The percentages of CD69+ CD4 T cells from different sorted 

subsets in a representative healthy donor under three different in vitro stimulation conditions 

are shown. All healthy human donors were vaccinated with 2017–2018 flu vaccine a year 

ago before donating blood. The error bars represent mean ± SD. c) Summary of responses 

from stimulated four sorted subsets to 2017–2018 flu vaccine in three healthy donors. Error 

bars represent mean ± SD. ** P < .01, **** P < .0001. Student’s two-tailed paired ratio T-

test.
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