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Abstract

Introduction: Improving the healthcare system is a major public health challenge. Col-

laborative learning health systems (CLHS) - network organizations that allow all

healthcare stakeholders to collaborate at scale - are a promising response. However,

we know little about CLHS mechanisms of actions, nor how to optimize CLHS perfor-

mance. Agent-based models (ABM) have been used to study a variety of complex

systems. We translate the conceptual underpinnings of a CLHS to a computational

model and demonstrate initial computational and face validity.

Methods: CLHSs are organized to allow stakeholders (patients and families, clinicians,

researchers) to collaborate, at scale, in the production and distribution of information,

knowledge, and know-how for improvement. We build up a CLHS ABM from a popu-

lation of patient- and doctor-agents, assign them characteristics, and set them into

interaction, resulting in engagement, information, and knowledge to facilitate optimal

treatment selection. To assess computational and face validity, we vary a single

parameter - the degree to which patients influence other patients - and trace its

effects on patient engagement, shared knowledge, and outcomes.

Results: The CLHS ABM, developed in Python and using the open-source modeling

framework Mesa, is delivered as a web application. The model is simulated on a cloud

server and the user interface is a web browser using Python and Plotly Dash. Holding

all other parameters steady, when patient influence increases, the overall patient

population activation increases, leading to an increase in shared knowledge, and

higher median patient outcomes.

Conclusions: We present the first theoretically-derived computational model of

CLHSs, demonstrating initial computational and face validity. These preliminary

results suggest that modeling CLHSs using an ABM is feasible and potentially valid. A

well-developed and validated computational model of the health system may have

profound effects on understanding mechanisms of action, potential intervention tar-

gets, and ultimately translation to improved outcomes.
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1 | INTRODUCTION

Improving the healthcare system is arguably one of the most pressing

public health challenges of our time. The current healthcare system is

unreliable,1,2 error-prone3-5 and costly.6,7 Improving it could save hun-

dreds of thousands of lives and billions of dollars. As a remedy, the

National Academies put forth the idea of a “Learning Healthcare

System,” (LHS)8 which could be broadened to a “Learning Health Sys-

tem” by including other determinants of health besides the healthcare

system.9 In an LHS, patients, clinicians, and researchers work together

to choose care based on best evidence, and to drive discovery and

learning as a natural outgrowth of every clinical encounter to ensure

innovation, quality and value at the point of care. Translating data to

knowledge, knowledge to performance, and performance to data is

sometimes referred to as The Learning Cycle.10 Until recently, how-

ever, such a model has remained mostly aspirational.

Collaborative learning health systems (CLHSs) - network organi-

zations that allow all healthcare stakeholders to collaborate at scale -

are a potential pathway to transforming the healthcare system toward

an LHS. CLHSs are enduring communities of patients/families, clini-

cians, researchers, and improvers aligned around a common goal and

organized in such a way as to facilitate multistakeholder collaboration

at scale. Several examples have shown remarkable outcomes improve-

ment across a diverse set of conditions; cutting serious safety events

by 50%,11 hypoplastic left heart syndrome mortality by 40%,12 elec-

tive preterm delivery by 75%,13 and increasing by 26% the proportion

of children with inflammatory bowel disease in remission.14 However,

there are major gaps in our knowledge: We know little about the

mechanisms by which CLHSs achieve these outcomes, the best strate-

gies for designing new CLHSs and optimizing CLHS performance, and

how widely and under what conditions CLHSs might thrive. There is a

critical need for a model learning health system to interrogate CLHS

mechanisms of action and drive theory-derived hypothesis genera-

tion. Without this, further improving CLHS effectiveness and scaling

to meaningfully change the healthcare system will be inefficient and

dependent entirely upon experimental learning.

Computational models have yielded useful insights into complex

human systems.15 Different methodologies are available for modeling

time-varying social systems, including system dynamics and agent-

based approaches.16 Agent-based models (ABMs) explicitly include

agents (individuals) that interact with one another according to rules

and relations in a defined environment, whereas system dynamics

models average over variable agent-agent interactions.17

In an ABM, the internal states of agents can be allowed to vary

over time in response to internal deliberations and external forces, all-

owing simulation of different social and learning phenomena. These

features combine to enable the study of emergent collective behavior.

ABMs are therefore well suited to simulate CLHSs by defining agents

(eg, patients, healthcare providers) and allowing them to interact with

and learn from one another according to rules based on their respec-

tive goals (eg, achieve remission, improve quality of life) and con-

straints are given by the environment (eg, policies and technologies

regarding information sharing).

The particular advantages of ABM18 vs other modeling

approaches derive from its flexibility and ability to handle the chal-

lenges of heterogeneity (eg, differences in patient illness severity, cli-

nician attitudes, or agent experience), spatial structure (eg, practice

panels in which multiple patients are cared for in a single practice,

social networks, or access to care), and adaptation (eg, how interac-

tions between and among patients and physicians can influence sub-

sequent attitudes, behaviors, treatment choices, and symptoms).

Further, ABMs can model these across multiple levels of scale. Agents

can be modeled at different levels of scale, for example, “patient” or

“hospital” agents, and mechanisms can be considered at different

levels (an individual's health outcome may be modeled as a function

of their own behavior, the behavior of clinicians, and/or the behavior

of practice or network of practices).

Theory- and data-driven computational models of human and

complex systems have yielded useful insights into agency problems

(such as free-riding and shirking) in open innovation communities,19

the epidemiology of the infectious disease,20,21 and the spread of

human behavior such as smoking22 and cooperation.23 How potential

drivers of CLHS performance combine to produce observed results is

not completely understood. Nor is it known how to optimize CLHSs

to achieve the most desirable results in the shortest time possible. As

in other fields, simulating a “model” CLHS via computational models

may produce important insights into such questions. Here, we

describe the conceptual underpinnings of a CLHS ABM and how

these are translated into a model, and demonstrate initial computa-

tional and face validity.

2 | METHODS

2.1 | Conceptual model

CLHSs are effective in part because they are organized in such a way

as to allow stakeholders (patients and families, clinicians, researchers)

to collaborate, at scale, in the production and distribution of informa-

tion, knowledge, and know-how for improvement.7 An “actor-
oriented architecture” (AOA)7 describes organizational characteristics

that facilitate such collaboration, including having (a) sufficient num-

bers of actors with the values and skills to self-organize; (b) a com-

mons where actors create and share resources; and (c) processes,

protocols, and structures that make it easier to form functional teams.

The AOA has been used to explain collaborative communities across a

variety of industries and the military.7 It is thought that CLHSs

achieve collaboration at scale by implementing the AOA24 and we

have shown previously that one CLHS has executed interventions

consistent with the AOA.25

Predicated on the idea that outcomes for a given population are

maximized by matching each individual patient to the best treatment

(s),26,27 we assert that well-functioning CLHSs improve the patient-

treatment matching process and its implementation. Our ABM is

designed to investigate this matching process at the level of the clini-

cal encounter and how a CLHS can facilitate this matching process.
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The model is meant to be used for learning, not point prediction: It is

structured so that the parts of the model and their interactions are

apparent and modifiable, thereby supporting critical thinking and

hypothesis building regarding the operation of CLHSs. Stakeholders

can set parameters and starting conditions and compare model out-

puts under different conditions.

The model is built around a core module representing factors that

determine patient-treatment matching (both the initial match and its

iterative improvement). This module is informed by Wagner's Chronic

Care Model,28 which focuses on six areas (self-management support,

delivery system design, decision support, clinical information systems,

organization of health care, and community) in order to foster produc-

tive interactions between informed, activated patients and prepared,

proactive clinical teams. It is also informed by Fjeldstad's Actor-

Oriented Architecture (AOA), which describes an organization design

that facilitates large-scale multiparty collaboration. Both theories fore-

ground the importance of people's active engagement, as well as the

social nature of healthcare. These theories are instantiated in CLHSs

as change concepts and represented in the preliminary conceptual

model as parameters (Table 1). Condition-specific modules (in this

study, the condition is IBD) represent the impact of patient-treatment

matching on patient-level outcomes. Output from the core module is

represented as “knowledge” for matching patients to treatments,

which serves as an input into the condition-specific module. Using this

modular approach, general lessons about the functioning of CLHSs

can be translated into condition-specific outcome curves.

Wagner's conceptual model of chronic care suggests that best

outcomes arise from shared decision making within productive

interactions between prepared, proactive clinical teams and informed,

activated patients; in other words, interactions characterized by

co-production of good care.29 Accordingly, our model is built up from

iterative interactions between patient and clinician agents. In the

model, patient and clinician agents meet and, based on available data

(patient, clinician, and treatment attributes), determine an initial

patient-treatment match. Patient agents are described based on their

clinical phenotype and their state of being informed and activated.

Hartley et al, for example, have developed a measurement architecture

to characterize “engagement” within CLHSs including how engagement

varies over time.30 Clinician agents are described based on the degree

to which they are prepared and proactive. Patient agents are linked

many-to-one with clinician agents to simulate a clinical practice;

patients and clinicians may also interact with others through social net-

work connections. Patient and clinician agents interact repeatedly,

bringing information to the clinical encounter. The productivity of the

clinical encounter is based on the agents' states and the match

between their states (eg, an active patient and encouraging clinician

create more information, whereas an active agent and reluctant clini-

cian may not). Higher levels of knowledge correspond to a higher prob-

ability of matching the patient (based on phenotype and previous

response to treatments) to appropriate treatments. The goodness of

this match is not, a priori, known; the agents have to interact again and

evaluate treatment impact. We define information as observation of

the degree to which a given treatment(s) improves outcomes for a

given patient (eg, phenotype X combined with treatment Y yields out-

come Z). Based on this information, agents can decide whether to con-

tinue with the current treatment or change to another.

TABLE 1 Theoretical elements of CLHSs, CLHS change concepts, and representations of change concepts in the preliminary model

Theoretical elements CLHS change concept Representation in preliminary model

Chronic Care Model Implement all six aspects of the Chronic

Care Model

Amount of data brought to clinical encounter, rules about

how much information is produced, periodicity of

encounters, implementation of treatment package

AOA - Sufficient numbers of actors with

the values and skills to self-organize

Leadership to align all participants around a

shared goal and to build a culture of

generosity and collaboration

Rules for agent state changes (eg, becomes more active at x

time-steps, patient becomes less active if interacting with

less active clinician). Rate of shared information brought

to clinical encounter. Spread of activation via social

network

AOA - A commons where actors create

and share resources

Platforms for creating and sharing common

resources

Rate of information created that is shareable

Rate of shareable information that is shared

AOA - Processes, protocols and

structures that make it easier to form

functional teams

Network governance policies that facilitate

sharing,

Information spread via clinician social network

AOA - Processes, protocols and

structures that make it easier to form

functional teams

Quality Improvement as a common

framework and method used by all for

learning and improving

Rate at which information is implemented into treatment

AOA - Processes, protocols and

structures that make it easier to form

functional teams

Data registries that support clinical care,

improvement, and research

Amount of shareable data available

Note: Theoretical elements include the Chronic care model and the actor-oriented architecture. CLHS change concepts have been shown to be common

across existing CLHSs.4 The representation of these in the preliminary model can be manipulated by stakeholders, and outcomes across different initial

settings can be compared.

SEID ET AL. 3 of 11



Information (about what works, for whom) can continue to reside

only with the patient-clinician dyad, or it could spread. Simulating

spread, based on our experience with CLHSs, is done by allowing

some of the knowledge generated at each clinical encounter to be

shared with the rest of the network, where it is accessed by other

agents who in turn may opt to act on that knowledge. We define the

level of knowledge as the prevalence of information in a population

(eg, patients, clinicians, patient/clinician dyads). In the model, the

degree to which information becomes knowledge depends on the

functioning of the network. Per the Actor-Oriented Architecture, net-

work functioning depends on the presence of sufficient actors with

the will and capability to self-organize, a “commons” where actors can

create and share resources, and ways to facilitate multi-actor collabo-

ration. In the model, parameters for actors include the number of each

type of actor, initial characteristics (eg, patient phenotype, the degree

to which patients are informed and activated and clinicians are pre-

pared and proactive), the rules under which these characteristics

change (eg, patients become more active when exposed to an in-

person or online peer network31-33 or when interacting with a pre-

pared, proactive clinician; similarly, clinicians can become more pre-

pared and proactive when exposed to peers through, for example

peer-to-peer34-36 collaboration), and the initial network structure

among and between clinicians and patients (eg, patients are linked

many-to-one to clinicians to simulate a patient panel). Parameters for

the commons include how much information is available, the rate at

which information generated at the point of care is captured, and the

rate at which captured information is sharable. Parameters for facili-

tating collaboration include those governing how often patients and

clinicians interact, the rules for determining how and how much infor-

mation is produced at each clinical interaction (eg, an active patient

and encouraging clinician create more information, whereas an active

patient and reluctant clinician may not), the rate at which information

is spread across patient-patient and clinician-clinician networks, and

the rate at which information is reliably implemented into the chosen

patient-treatment match. Translation of knowledge into outcomes is

tailored to specific conditions and populations, based on published

evidence of treatment effects, as well as the heterogeneity of the

effects, and on consultation with clinical and patient subject-matter

experts. The stochastic model, for each combination of the generic

core parameters, is run multiple times to generate an “outcomes

curve” an with associated confidence interval.

2.2 | Model structure and relationships

Developing a simulation model is best performed as an iterative pro-

cess.37-39 The modeler creates a structural diagram of the model ele-

ments and their relationships, how they are hypothesized to interact.

The diagram is an abstraction of the intended model, with many

details not shown. The model elements and interactions are then

encoded in a simulation language, making explicit those elided

details. The process of encoding in a simulation language is itself a

learning process, typically resulting in changes to the abstract dia-

gram, as mistakes in the initial diagram become clear. Once

corrected, the model is simulated, and the results are examined. The

simulation also results in learning, typically with further corrections

both to the model and to the structural diagram. Often there are

many such iterations, until the desired structure and behavior are

captured. Figure 1 illustrates the learning cycles of iterative simula-

tion model construction.

The structural diagram is a useful artifact of the modeling process,

useful for communicating about the model. The structural diagram is

employed to communicate between the modeler and subject matter

experts who may not know the arcane details of the simulation lan-

guage in which the model is encoded. They can reason about the

model and its behavior solely at the level of the structural diagram.

The structural diagram is also used to communicate with other people

interested in the model elements and how it works.

Figure 2 is the structural diagram for our CLHS model, showing

model elements: agents, variables, relationships, stocks, and parame-

ters. Figure 2 can be read by tracing through the diagram, model ele-

ment by model element, and understanding how each model elements

is influenced by other model elements, as follows (terms introduced

in bold):

Agents in the model include patients and physicians. Each patient

has an Outcome variable, a measure of the patient's medical condition

that varies over time, on a scale between 0.0 (worst health) and 1.0

(good health). (Median outcome—across all patients in a CLHS—is

shown in Figure 4). When simulated, Outcome for each patient varies

a bit randomly from week to week, sometimes dropping, for example,

by 0.02, sometimes climbing, for example, by 0.01, per the Random

Variation variable for each patient. The outcome for a patient is also

subject to occasional relapse (Relapse), in which Outcome suddenly

declines dramatically, for example, by 0.5.

F IGURE 1 The process of developing
a simulation model
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Outcome is affected by Effectiveness of Treatment Package

Selected, another variable for each patient. For a particular patient

and a particular treatment package, the effectiveness may be positive

to some degree (a good match between patient needs and resources

provided)—improving Outcome each week (all things being equal)—or

it may be negative to some degree (a poor match)—making Outcome

worse each week. Periodically, the patient's clinician will examine her

perception of Outcome (for that patient) and if Outcome does not

appear to be sufficiently improving, may change the patient to a dif-

ferent treatment package (Change in Treatment), one she thinks will

be more effective for the patient. Of course she may be mistaken, and

the newly selected treatment package may also lead to a decline in

Outcome.

Each patient has a phenotype, which determines Effectiveness of

Treatment Package Selected. All patients with the same phenotype

who are treated with the same package have the same effectiveness,

a simplifying assumption. Each treatment package has a Potential

Effectiveness of Treatment Package, a statistical distribution across

the phenotypes.

For each patient and treatment package, there is a probability of

the patient's clinician selecting that treatment package: Probability of

Selecting Treatment Package. The probability depends on the effec-

tiveness of the treatment package for that patient's phenotype, and

also depends on the clinician's ability to select an effective treatment

for that patient: her Selection Efficiency. A clinician with high Selec-

tion Efficiency (for a particular patient) is likely to select an effective

treatment package for that patient. A clinician with lower Selection

Efficiency is less likely to select an effective treatment. With a low

enough Selection Efficiency, the clinician is no better than random in

her selection (Note that even random selection may ultimately

improve a patient's outcome, either because a selection was lucky or

because an unlucky selection results in reduced outcomes that are

ultimately noticed by the clinician, and she tries another treatment

package.).

Selection Efficiency of a particular clinician for a particular patient

is determined by Praxis, her knowledge, and skill for that patient.

Praxis is affected by two independent influences: her knowledge of

how different phenotypes respond to different treatments (Pheno-

type Response Information) and her knowledge of how that particular

patient is responding to his current treatment (Patient Response

Information [PRI]).

PRI (for a particular patient) changes week to week, increasing

when PRI Increase is greater than PRI Decay, decreasing when PRI

Decay is greater than PRI Increase. PRI Decay occurs each week as

the information ages, and is forgotten or no longer relevant. PRI

Increase is affected by Patient Engagement in the CLHS; for example,

an engaged patient may carefully record his daily response to the

treatment in a journal, and share that journal with his clinician. PRI

Patient engagement

Shared
knowledge

+

Knowledge  accumulation
Knowledge decay

Selection efficiency

Clinician engagement

+ +

Praxis

+

Patient
response info

PRI increase

+

PRI decay
+

+

+

+

Phenotype response info

+

+

+

+

Potential effectiveness
of treatment package

Probability of selecting
treatment package

Effectiveness of treatment
package selected

+

+

Outcome

+

Random variation

Relapse

praxis improves
selection efficiency

random walk

treatment package

encounter aware

activate

dispirit

Change in treatment

-

patient response info
affects praxis

phenotype response info
affects praxis

patient contributes
shared knowledge

clinician contributes
shared knowledge

relapse

shared knowledge decays

shared knowledge affects
patient response info

F IGURE 2 CLHS ABM representation of the entire set of agents, relationships, stocks, and parameters
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Increase is affected by Clinician Engagement in the CLHS, for exam-

ple, a disengaged clinician may not be interested in examining her

patient's carefully collected journal. PRI Increase is also affected by

Shared Knowledge (Figure 4), the amount of knowledge about the

medical condition shared among all participants in the CLHS. For

example, a patient may learn how to record his daily response to his

treatment from a video created by another patient.

Like Patient Response Information for a particular patient, Shared

Knowledge for the whole CLHS also changes week to week, increas-

ing when Knowledge Accumulation is greater than Knowledge

Decay, decreasing when Knowledge Decay is greater than Knowledge

Accumulation. Knowledge Decay occurs gradually each week, as

knowledge loses relevance, is lost or misplaced, and becomes difficult

to access due to changes in the access technology. Knowledge Accu-

mulation is affected by Patient Engagement. For example, an engaged

patient may create a video about how he measures and records his

treatment responses in a journal, and share that video with other

patients in the CLHS. Clinician Engagement also affects Knowledge

Accumulation, for example, a clinician may share her experiences of a

particular treatment package with other clinicians in the CLHS.

Phenotype Response Information—a clinician's knowledge of how

various patient phenotypes responds to different treatments—is

affected by Clinician Engagement, her engagement in the CLHS to

learn from her experiences. It is affected by Patient Engagement: the

clinician is more likely to learn about the effect of a treatment from an

engaged patient. Phenotype Response Information is also affected by

Shared Knowledge; for example, the clinician may learn about how a

treatment affects phenotypes from the knowledge shared by other

clinicians.

Both Clinician Engagement and Patient Engagement change over

time, as a participant becomes more or less engaged in the CLHS (see

Figure 4). Furthermore, the engagement level of a clinician can affect

that of her patients: for example, if a patient sees that his clinician is

not engaged with the CLHS, he may become less engaged.

Thus, the model has many parameters that can be manipulated,

but the model itself can be investigated systematically by focusing on

one or a small number of parameters, performing multiple runs of the

model, aggregating the results as necessary, and tracing the influence

of these parameters on the outputs of interest.

2.3 | Model implementation

The ABM model is developed in Python and utilizes the open source

agent-based modeling framework Mesa.40 Patients and clinicians are

modeled as individual agents, with behaviors relevant for their roles.

For example, each patient has a phenotype defined by response

potential to various treatment packages, and a time-varying outcome.

The ABM is delivered as a web application, with the model simulated

on a cloud server, and the model user interface presented in a web

browser. As a web application, the ABM is accessible to anyone any-

where, as long as they have the right security credentials. The user

F IGURE 3 Selected screen shots of CLHS ABM user interface
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interface is developed in Python, using the open source web applica-

tion framework Plotly Dash.41

Figure 3 is a screenshot of part of the user interface for the ABM.

Each question listed in Figure 3A has several parameters. For example,

“Patients influence other patients?” has a set of parameters, shown in

Figure 3B, including the number of patients other patients influence and

the annual probability of influence. Similarly, “Patients contribute to shared

knowledge?” and “Clinicians contribute to shared knowledge?” have

parameters associated with the periodicity and amount of knowledge con-

tributed by patients at difference levels of engagement (Figure 3C).

Figure 4 is a screenshot of selected outputs for an individual run. In

this case, a count of patient states over time (top), shared knowledge

over time (middle), and median patient outcome over time (bottom).

The model currently features a spartan user interface, sufficient

to support experimentation by the modeling team, but without the

features or the user experience design needed for use by other CLHS

practitioners. We plan to create a feature-rich, easy-to-use user

interface for the model, and host it such that CLHS leaders outside

our organization can use it.

2.4 | Approach

Recall that part of our theory suggests that patients may influence

other patients to be more engaged (“Patient Population Activation”)
and, similarly, that clinicians may influence other clinicians to be more

engaged. Increased engagement is thought to increase shared knowl-

edge, leading to better matching between phenotype and treatment

and, thus, better outcomes. In the case of patients, this can be sum-

marized in the logical statement (S1):

S1: Patient Influence à Patient Population Activation à Knowl-

edge à Outcomes.

Note that a similar logical statement could be made for clinician

influence, clinician population activation, and knowledge and

F IGURE 4 Screenshots of selected CLHS
ABM output
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outcomes. As a first step toward assessing model validity, we varied a

single parameter - “patient influence,” that is, how many other

patients each patient can influence to a higher level of engagement

per year. Outputs of interest include patient population activation

(the overall level of patient engagement in the CLHS), Shared Knowl-

edge and median patient outcome (range: 0-1).

As shown in Figure 3B, the default setting for patient influence is

4 (Each patient has a 1 in 10 probability of influencing four patients

per year to a higher level of engagement). To test the effect of patient

influence, we divided this default setting by whole numbers 1 through

10 (orange dots) and multiplied it by whole numbers 2 through

22 (blue dots), running the model at each setting and recording

Patient Population Activation, Shared Knowledge, and Outcome for

each run. In order to achieve reproducible results, we fixed the ran-

dom number seed and set the cohort of patients (n = 200) to be

closed (all patients enter the simulation at once and none leave due to

aging out or getting better) during the course of the simulation.

Figures 5 to 7 below show the intermediate results for each run for

each step in logical statement S1 above.

3 | RESULTS

Patient Influence à Patient Population Activation: Figure 5 shows

the effect of patient influence on patient population activation. As the

number of patients influenced per patient per year increases (hold-

ing all other parameters steady) in each model run, the overall

patient population activation increases. It plateaus at about 7 (each

patient influences 28 other patients per year) because all patient

agents are maximally engaged. This association between patient

influence and patient population activation, as well as a saturation

effect of influence, is consistent with the theory and implementation

of the model, thus supporting validity for the link between patient

influence and patient population activation (the first link) in logical

statement, S1.

Patient Population Activation à Knowledge: Figure 6 shows the

follow-on effect of patient population activation on shared knowl-

edge. As the patient population is increasingly engaged, the amount

of shared knowledge increases. This shows that changing patient

influence affects not only patient population activation, but also

knowledge. Again, this is consistent with the theory and implementa-

tion of the model, thus supporting validity for the second link in logical

statement, S1.

Knowledge à Outcomes: Figure 7 shows median patient out-

comes as a function of shared knowledge. As can be seen, there is a

cluster of orange dots (patient influence default divided) and blue dots

(patient influence default multiplied). Figure 8 shows these two

groups of runs in a box and whisker plot - decreasing patient influ-

ence, compared to increasing patient influence, is associated with

lower median patient outcomes in the model. Figure 7 provides vali-

dation of the last link in the logical statement, and Figure 8 summa-

rizes the effect of changing patient influence on the outcome.

Varying clinician influence in the same manner leads to substan-

tively equivalent results on clinician population activation, knowledge,

and outcomes (results not shown).

F IGURE 5 Patient population activation as a function of patient
influence

F IGURE 6 Shared knowledge as a function of patient population

activation

F IGURE 7 Median patient outcome as a function of shared
knowledge
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4 | DISCUSSION

We have developed a CLHS agent-based model from evidence-based

theories and have demonstrated its initial computational and face

validity. To develop the CLHS ABM, we translated the theory of

CLHSs into a computer-coded set of artificial agents and programmed

them to interact based on a specified set of rules. We demonstrated

initial computational and face validity by tracing the effect of changes

in a single parameter, in this case, how many other patients each

patient influences to become more engaged, on subsequent parame-

ters, in this case patient population activation, shared knowledge, and

median patient outcome.

We structured the ABM so that individual parameters, or sets of

parameters, could be systematically varied, thus enabling structured

exploration of various possible CLHS future states. This is important

because prospective trials of specific CLHS interventions (eg, facilitate

information sharing, increase the number of active patients) on CLHS

outcomes are unwieldy, time-consuming, and costly. Much like a

“mouse model” in basic clinical research is used to explore potential

mechanisms of action and likely therapeutic targets for individual clini-

cal conditions, so too can a computational model be used to under-

stand how CLHSs work and how we might increase their

effectiveness and efficiency. Moreover, the process of modeling is an

exercise in clarifying one's theory. It forces researchers to think mech-

anistically about how various actors interact with one another, how to

measure concepts such as “information” or “sharing,” and how

changes in one part of the system might affect others. As Nobel Lau-

reate Sir Ronald Ross wrote more than 100 years ago in the context

of infectious disease epidemiology, “the mathematical method of

treatment is really nothing but the application of careful reasoning to

the problems at issue.”42 Prochaska and DiClemente's transtheoretical

model43 and Damschroder's consolidated framework for implementa-

tion research (CFIR)44 are both robust theories for change at individ-

ual and organizational levels. A model such as this could supplement

and further explore theories such as these by simulating changes

suggested by such models.

From a practical perspective, a CLHS ABM could, for example,

provide insights to guide annual strategic planning. CLHSs typically

undergo annual strategic planning to decide on high priority areas for

improvement. Many use a network maturity grid45 to self-assess the

maturity of processes that undergird CLHS change concepts. By

reviewing these ratings holistically, CLHS leaders can identify particu-

lar processes and targets for those processes (eg, “Within the Quality

Improvement domain, we intend to advance process maturity in

‘Quality Improvement Reports’ from our current state of ‘QI reports

generated manually’ to ‘QI reports are produced automatically’” or

“Within the Governance and Management domain, we intend to

advance process maturity in ‘Accessibility to knowledge and tools’
from ‘A commons is available, but with no active curation, limited

sharing’ to ‘Commons is accessible, with some curation, and some

sharing’”). Without a computational model, estimates of the impact of

this, or any, improvement is based on experience or intuition. A CLHS

ABM could simulate the potential effects of these changes and lead

to more effective planning and execution.

Traditional or typical models of learning emphasizes pedagogy

and didacticism, but a modeling activity suggests a different way of

learning. Moreover, the notion of coproduction29 that is the center

of this model suggests implications for both clinician and patient

education, including developing different skills, expectations, and

habits.

This is, to our knowledge, the first theoretically based causal

modeling investigation into the functional basis and operation of

CLHSs. However, it, like all models, is a simplification of reality and

so has weaknesses. The degree to which the model is acceptable

and face valid to a broad range of stakeholders is not known. It

almost certainly does not incorporate important parameters, nor

does it represent phenomena with sufficient detail. Iteration with

scientific and subject matter experts (including patients, families,

and clinicians) to further refine the model would help to establish

acceptability and face validity and ensure important parameters are

represented in sufficient detail. Empirical calibration (the extent to

which the inputs match the real world) is required, and empirical val-

idation (comparison of the model and real world outputs) is

unknown. In addition, it will be necessary to establish the model's

construct validity by, for example, running virtual experiments to

formally compare output when important parameters are varied and

determining whether the results accord with theory-based predic-

tions. Finally, evaluation of the degree to which the model is, in fact,

useful in strategic planning or design, as above, will be essential.

Nevertheless, a CLHS computational model is a key theory-building

and hypothesis-generating tool, allowing much greater insight into

the possible mechanisms of action for CLHSs. With further develop-

ment and validation, it can become a valuable resource for the wider

scientific community to pursue previously infeasible studies to

improve and scale CLHSs.
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