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ABSTRACT

By leveraging existing GWAS and eQTL resources,
transcriptome-wide association studies (TWAS) have
achieved many successes in identifying trait-
associations of genetically regulated expression
(GREX) levels. TWAS analysis relies on the shared
GREX variation across GWAS and the reference
eQTL data, which depends on the cellular conditions
of the eQTL data. Considering the increasing avail-
ability of eQTL data from different conditions and
the often unknown trait-relevant cell/tissue-types,
we propose a method and tool, IGREX, for precisely
quantifying the proportion of phenotypic variation at-
tributed to the GREX component. IGREX takes as in-
put a reference eQTL panel and individual-level or
summary-level GWAS data. Using eQTL data of 48 tis-
sue types from the GTEx project as a reference panel,
we evaluated the tissue-specific IGREX impact on a
wide spectrum of phenotypes. We observed strong
GREX effects on immune-related protein biomarkers.
By incorporating trans-eQTLs and analyzing geneti-
cally regulated alternative splicing events, we evalu-
ated new potential directions for TWAS analysis.

INTRODUCTION

Genome-wide association studies (GWAS) have success-
fully identified tens of thousands of unique associations
between single-nucleotide polymorphisms (SNPs) and a
wide range of complex traits/diseases (http://www.ebi.ac.
uk/gwas/). More than 90% of identified risk variants are
located in non-coding regions (1), making it challenging
to understand their functional mechanisms. Increasing ev-
idence (2–8) has suggested that many of those risk vari-
ants may affect traits/diseases via the modulation of their
cis gene expression levels. For example, a study of 18 com-
plex traits revealed an enrichment for expression quantita-
tive trait loci (eQTLs) in 11% of 729 tissue-trait pairs (9).

There is great interest in precisely characterizing the spe-
cific role of genetically regulated gene expression (GREX)
in human traits and diseases.

It is well known that the effects of genetic variation
on gene expressions depend on cellular contexts (10). The
rapidly increasing availability of eQTL data from different
tissue types, cell types, populations and other conditions
provides an unprecedented opportunity to study and eval-
uate GREX effects in a variety of conditions. For example,
the V7 release of the Genotype-Tissue Expression (GTEx)
project (https://gtexportal.org/home/) has collected gene ex-
pression samples from 53 non-diseased tissues across 714
individuals (10). Multiple blood eQTL resources compris-
ing thousands of individuals are made publicly available
(11,12); and other ongoing projects such as Genetics of
DNA Methylation Consortium (GoDMC) and eQTLGen
consortium are collecting expression data with sample sizes
larger than 10 000 (13). Those data serve as rich eQTL re-
sources for a comprehensive evaluation of GREX effects.

The vast amount of publicly available eQTL and
GWAS data resources enables an integrative framework,
transcriptome-wide association studies (TWAS), for map-
ping gene-level trait associations and evaluating GREX ef-
fects on human traits and diseases. Using a reference eQTL
panel (e.g. GTEx), gene-specific expression prediction mod-
els can be built based on cis-acting genetic factors. Then the
gene expression levels of a GWAS cohort can be predicted
based on individual genetic profiles, and the genetically reg-
ulated and predicted expression levels are further associ-
ated with the phenotype of interest in the GWAS study
to map gene-level trait-associations (14–20). Existing meth-
ods have been proposed (8,21), including PrediXcan (14),
TWAS (15), FOCUS (17), S-PrediXcan (18), UTMOST
(22) and CoMM (19). Through applications to a wide vari-
ety of phenotypes, these methods have successfully identi-
fied specific gene-trait associations, whereas a comprehen-
sive and precise evaluation of the impact of GREX varia-
tion on various traits and the trait-relevant cellular context
is still needed (23).
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TWAS-types of integrative analysis rely on a key assump-
tion: there exists a steady-state GREX variation shared
across reference eQTL data and GWAS data, and the
steady-state GREX variation can further induce pheno-
typic variation. The multi-tissue eQTL data from the GTEx
project is commonly used as the reference eQTL panel
(14,18,22). The GTEx project has collected data from post-
mortem donors and has provided a source of largely non-
diseased tissues for general purposes. The GTEx reference
may or may not have considerable shared GREX variation
with GWAS data of specific phenotypes in specific popula-
tions. Given the often unknown disease/trait-relevant tissue
types and the increasing availability of eQTL data resources
from different conditions, there is a need for new methods
and tools that can be used to assess the proportion of the
shared GREX variation in the phenotypic variation from a
global perspective, and guide the selection of eQTL refer-
ence data and tissue-types for specific phenotypes and pop-
ulations.

The heritability measure has been widely used to quantify
the impact of genetic variation on phenotypic variation, and
has served as a preliminary yet insightful assessment of the
potential of genetic studies on various phenotypes (24,25).
Analogous to the heritability measure, the estimation of
proportion of GREX on phenotypic variation can also be
used to evaluate the impact of the genetic regulatory effects
on phenotypes mediated by expression levels, and inform
trait-relevant tissue types or conditions in specific popula-
tions. To the best of our knowledge, there are two methods
that have been proposed for this purpose (20). The RhoGE
method (20) estimates the proportion of phenotypic varia-
tion explained by GREX based on linkage-disequilibrium
(LD) score regression (LDSC) (26). Since it ignores the
uncertainty in predicting gene expression levels, the pro-
portion of variance explained by GREX could be sub-
stantially under-estimated by RhoGE. The other method,
known as the gene expression co-score regression (GECS) ,
requires the analyzed SNPs not being in LD to ensure un-
biasedness, which greatly limits its applicability in real data
analysis.

In this work, we propose a unified framework, named
IGREX, for quantifying the impact of genetically regu-
lated expression, while accounting for uncertainty in pre-
dicted gene expression levels in the presence of moderate
to weak eQTL effects. IGREX requires only summary-level
GWAS data as input, greatly enhancing the applicability
of the method. We evaluated the performance of IGREX
with comprehensive simulation studies, highlighting the im-
portance of accounting for expression estimation uncer-
tainty. Using 48 tissue types from the GTEx project as the
reference panel, we applied IGREX to both individual-
level and summary-level GWAS datasets, and evaluated
the tissue-specific IGREX impact on a wide spectrum of
cellular and organismal phenotypes. Our results provide
new biological insights into the role of gene expression in
the genetic architecture of complex traits. We also demon-
strate the reproducibility of results. By incorporating trans-
eQTLs and analyzing genetically regulated alternative splic-
ing events, we evaluated new potential directions for TWAS
analysis.

MATERIALS AND METHODS

Datasets and data preprocessing

GTEx eQTL dataset. We used the gene expression
data from the V7 release of GTEx Consortium (https://
gtexportal.org/home/datasets) as our reference dataset. We
analyzed the 48 tissues with number of genotyped samples
≥70, which are collected from 620 donors with total sam-
ple size 10 294. The sample size of each tissue ranges from
80 to 491 (details provided in Supplementary Table S4). We
set the mappability cutoff at 0.9 to filter gene expression
measures with lower quality, leaving 16 333–27 378 genes
to be included in our analysis. Based on the third phase
of the International HapMap project phase 3 (HapMap3),
1 189 556 SNPs were included from the GTEx genotyped
data for analysis. For each gene, we included only the SNPs
within 500 kb of the transcription start and end of each
protein coding genes. In real data analysis, we used the co-
variates provided by the GTEx consortium, including geno-
type principal components (PCs), Probabilistic Estimation
of Expression Residuals (PEER) factors, genotyping plat-
form and sex (as described in https://gtexportal.org/home/
documentationPage).

Individual level GWAS datasets. We obtained the
individual-level genotype and phenotype data of the
Northern Finland Birth Cohorts program 1966 (NFBC)
(27) from the database of Genotypes and Phenotypes (db-
GaP) with accession number phs000424.v7.p2. This dataset
is comprised of 5402 individuals with 10 continuous pheno-
types related to cardiovascular disease including Glucose,
body mass index (BMI), C-reactive protein (CRP), insulin,
high-density lipoprotein cholesterol (HDL), low-density
lipoprotein cholesterol (LDL), triglycerides (TG), total
cholesterol (TC), diastolic blood pressure (DiaBP) and sys-
tolic blood pressure (SysBP). There are 364 590 genotyped
SNPs in this dataset. We first excluded the individuals
whose reported sex differed from their sex determined
from the X chromosome. We then excluded the SNPs with
minor allele frequency less than 1%, with missing values in
more than 1% of the individuals or with Hardy-Weinberg
equilibrium (HWE) P-value below 0.0001. This quality
control process following (28) yields 5123 individuals with
319 147 SNPs for our analysis. We evaluated the genetic
relatedness matrix (GRM) using the processed genotype
data and selected the top 20 PCs as covariates in the study.

Another individual-level GWAS dataset is from the Well-
come Trust Case Control Consortium (WTCCC, https:
//www.wtccc.org.uk/) (29). The WTCCC dataset contains
seven disease phenotypes including bipolar disorder (BD),
coronary artery disease (CAD), Crohn’s disease (CD), hy-
pertension (HT), rheumatoid arthritis (RA), type 1 dia-
betes (T1D) and type 2 diabetes (T2D). It includes ∼2000
cases per phenotype and 3004 controls with 490 032 geno-
typed SNPs. Following the QC process of (30,31), we first
removed the individuals with genotyping rate <5%. Then
we excluded the SNPs satisfying at least one of the follow-
ing: minor allele frequency <5%; genotypes missing in more
than 1% samples; HWE P-value is below 0.001. We also
removed the individuals with estimated genetic correlation
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larger than 2.5%. After quality control, around 4700 indi-
viduals with 300 000 SNPs were retained for our analysis
(See Supplementary Table S1). Based on the obtained data,
we calculated the GRM and extracted top 20 PCs as covari-
ates to be included in our analysis.

GWAS summary statistics. Besides the individual-level
GWAS data, we analyzed 10 summary level GWAS
datasets: human plasma protein quantitative trait loci
(pQTL) dataset (32), circulating metabolite data (33), four
schizophrenia datasets (34–37), two independent height
datasets (38) and BMI datasets from European ancestry
with age under 50 separated by men and women (39). The
SNPs with missing information (i.e. chromosome, minor
allele, allele frequency) were first removed. Following the
practice of LDSC (26), we checked the � 2 statistic of each
SNP and excluded those with extreme values (� 2 > 80) to
prevent the outliers that may unduly affect the results. The
detailed information and download links are provided in
Supplementary Table S2. After pre-processing, the remain-
ing SNPs were further matched with reference data and this
step is automatically conducted in our IGREX software.

The trans-eQTLGen summary data. In the analysis in-
volving the trans-eQTLs, we used the SNPs identified in
blood tissue provided by the eQTLGen Consortium (http://
www.eqtlgen.org). The trans-eQTL analysis were restricted
to known complex trait-associated SNPs. The significant
trans-eQTLs were identified by controlling the FDR at 0.05.
There were 59 786 gene-SNP pairs composed of 6298 genes
and 3853 SNPs. The remaining pairs after matching with
both reference and GWAS datasets are summarized in Sup-
plementary Table S5.

IGREX framework for quantifying the GREX component

IGREX is a two-stage method for quantifying the pro-
portion of phenotypic variation that can be attributed to
GREX variation. The method can be applied to both
individual-level (IGREX-i) and summary-level (IGREX-s)
GWAS data. It first evaluates the posterior distribution of
GREX effects based on an eQTL reference panel and then
estimates the proportion of variance explained by GREX
using the ‘predicted’ gene expression in the GWAS data.
The details of both IGREX-i and IGREX-s are described
as follows.

The IGREX-i for individual-level GWAS data. Consider a
reference eQTL dataset Dr and an individual-level GWAS
dataset Di . The eQTL data Dr = {Y, Xr } is comprised of an
nr × G gene expression matrix, Y, and an nr × M genotype
matrix, Xr , where G is the number of genes, M is the number
of SNPs and nr is the sample size. The GWAS data Di =
{t, X} contains a phenotype vector t ∈ R

n and a genotype
matrix X ∈ R

n×M, where n is the sample size of the GWAS
data. Let yg and Xr,g be the vector of expression levels of
the g-th gene and the genotype matrix corresponding to its
local (cis) SNPs from the reference panel, respectively. We
first relate yg to Xr,g with a linear model:

yg = Xr,gβg + er,g, g = 1, . . . , G, (1)

where βg ∈ R
Mg is the vector of genetic effects of Mg cis

SNPs on the expression levels of the g-th gene, and er,g ∼
N (0, σ 2

r,gInr ) is the error term. Since we are interested in the
steady-state component of gene expression levels regulated
by genetic variants, βg is assumed to be the same for individ-
uals in both datasets, Dr and Di . Consequently, the GREX
component of individuals in the GWAS data can be eval-
uated by Xgβg, where Xg denotes the columns of X corre-
sponding to the cis-SNPs of the g-th gene. Meanwhile, we
assume that the genetic effects on the phenotype of interest
t can be decomposed into two parts, i.e. the effects mediated
via GREX and the effects through alternative pathways not
mediated by gene expression levels:

t =
G∑

g=1

αgXgβg + Xγ + ε, (2)

where scalar �g is the effect size of Xgβg on t, γ ∈ R
M is the

vector of alternative genetic effects, and ε ∼ N (0, σ 2
ε In) is

the error term. In this model,
∑G

g=1 αgXgβg and Xγ corre-
spond to the overall impact of the GREX component and
the alternative genetic effects on t, respectively. Thus, the
impact of GREX on the phenotype can be quantified by the
proportion of phenotypic variance explained by the GREX
component:

PVEGREX = Var(
∑G

g=1 αgxT
g βg)

Var(t)
. (3)

To estimate PVEGREX, we introduce the following prob-
abilistic structure for the effects in model (1) and (2):

βg ∼ N (0, σ 2
βg

IMg ), αg ∼ N (0, σ 2
α ), γ ∼ N (0, σ 2

γ IM), (4)

which is motivated by a recent theoretical justification (40)
for heritability estimation on a mis-specified linear mixed
model (LMM). This prior specification in (4) provides a
great computational advantage as well as a stable per-
formance for IGREX under model mis-specification, as
demonstrated in the simulation studies.

The proposed method for individual-level GWAS data,
IGREX-i, provides a two-stage framework for estimating
PVEGREX. In the first stage, we estimate the parameters σ 2

βg

and σ 2
r,g in model (1) via a fast expectation-maximization

(EM)-type algorithm, the parameter-expanded EM (PX-
EM) algorithm (41). Based on the estimates, denoted as σ̂ 2

βg

and σ̂ 2
r,g, the posterior distribution of βg is given by

βg|yg, Xr,g ∼ N (μg,�g), (5)

where �g =
(

1
σ̂ 2

r,g
XT

r,gXr,g + 1
σ̂ 2

βg
IMg

)−1

and μg =
�g

1
σ̂ 2

r,g
XT

r,gyg.

In the second stage, we estimate PVEGREX by treat-
ing the posterior distribution (5) as the prior distri-
bution of βg in model (2). To evaluate the covari-
ance of t, we first note that E(t|α) = ∑G

g=1 αgXgμg and

Cov(t|α) = ∑G
g=1 α2

gXg�gXT
g + σ 2

γ XXT + σ 2
ε In; then, using

the law of total expectation and total variance, we obtain
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E(t) = E(E(t|α)) = 0 and

Cov(t) = Cov(E(t|α)) + E(Cov(t|α))

=
G∑

g=1

σ 2
α Xg(μgμ

T
g + �g)XT

g + σ 2
γ XXT + σ 2

ε In,

(6)

respectively. By observing the form of covariance ma-
trix (6), it is clear that the i-th diagonal element of∑G

g=1 σ 2
α Xg(μgμ

T
g + �g)XT

g and σ 2
γ XXT represents the vari-

ance explained by GREX and alternative genetic effects, re-
spectively. Therefore, the PVEGREX defined in (3) can be es-
timated by

P̂VEGREX = tr(
∑G

g=1 σ̂ 2
α Xg(μgμT

g + �g)XT
g )

tr(
∑G

g=1 σ̂ 2
α Xg(μgμT

g + �g)XT
g + σ̂ 2

γ XXT + σ̂ 2
ε In)

, (7)

where σ̂ 2
α , σ̂ 2

γ and σ̂ 2
ε are the estimated values of σ 2

α , σ 2
γ

and σ 2
ε , respectively. In this estimation, the substitution of

posterior βg|yg, Xr,g accounts for the posterior variance �g
and naturally results in the adjustment of estimation uncer-
tainty associated with βg. This is important because in the
GWAS data, the gene expression levels are not directly mea-
sured, but rather are predicted or imputed based on genetic
variants. It is known that the prediction accuracy and un-
certainty vary substantially among genes. For most of the
genes in the genome, the genetically regulated expression
variation accounts for only a small to moderate proportion
of total expression variation. Thus, the prediction may not
be accurate and could be subject to high uncertainty. In con-
trast, our model accounts for the estimation uncertainty by
�g and can yield unbiased estimation for P̂VEGREX.

IGREX-i provides two methods for estimating the pa-
rameters and P̂VEGREX in the second stage. Let ψ =[
σ 2

α , σ 2
γ , σ 2

ε

]T
be the vector of parameters to be estimated,

Kα = ∑G
g=1 Xg(μgμ

T
g + �g)XT

g and Kγ = XXT. The first
method is based on MoM, which minimizes the distance
between the second moment of t at the population level and
that at the sample level f (ψ) = ||ttT − (σ 2

α Kα + σ 2
γ Kγ +

σ 2
ε In)||2. By setting ∂ f (ψ)

∂σ 2
α

= ∂ f (ψ)
∂σ 2

γ

= ∂ f (ψ)
∂σ 2

ε

= 0, we obtain the

estimating equation

Sψ = q, with S =
⎡⎣ tr(K2

α) tr(KαKγ ) tr(Kα)
tr(KαKγ ) tr(K2

γ ) tr(Kγ )
tr(Kα) tr(Kγ ) n

⎤⎦, (8)

ψ =
⎡⎣σ 2

α

σ 2
γ

σ 2
ε

⎤⎦, q =
⎡⎣tTKαt

tTKγ t
tTt

⎤⎦.

The solution of normal equation (8) is given by ψ̂ =
S−1q. And the variance-covariance matrix of ψ̂ is given by
Cov(ψ̂) = S−1Cov(q)S−1 using the sandwich estimator. The
second method applies the restricted maximum likelihood
(REML) by further assuming the normal distribution of t:
t ∼ N (0, σ 2

α Kα + σ 2
γ Kγ + σ 2

ε In). The variance components
are estimated by the Minorization-Maximization (MM) al-
gorithm (42), and their standard errors are estimated by the

inverse of Fisher information matrix. In both MoM and
REML, the standard error of P̂VEGREX can be obtained by
the delta method (see Supplementary Note).

In additional to the point estimate P̂VEGREX, the IGREX
framework can be also used to test H0: PVEGREX = 0 for the
phenotype of interest in specific populations given an eQTL
reference with a specific tissue type or cellular context. Be-
cause this is a test of the boundary point, the test statis-
tic follows a mixture of � 2 distribution. Usually, the Davies
method can be used to produce well-calibrated P-values at
a cost of computational inefficiency when the sample size
n is large (43). As an approximation of the Davies method,
IGREX adopts a normal test using the point estimate of
PVEGREX and its standard error. Using simulated data, we
showed that the normal test provides satisfactory approxi-
mation to the exact test (See Supplementary Section 2.4 and
Figure S7).

The IGREX-s for summary-level GWAS data. In real ap-
plications, individual-level GWAS data Di may not be ac-
cessible. We have further developed IGREX-s which re-
quires only summary-level GWAS data as input. Based on
MoM, IGREX-s can approximate IGREX-i while requir-
ing only SNP-level z-scores from GWAS and a reference
genotype matrix X̃ ∈ R

m×M of a similar LD pattern to X,
where m is the number of samples in the reference panel.

Suppose we only have the z-scores from summary-level
GWAS data {z j }M

j=1 generated from Di . The definition of

the z-score is z j = (xT
j x j )−1xT

j t√
σ̂ 2

j (xT
j x j )−1

, where x j is the j-th column

of X and σ̂ 2
j is the estimate of residual variance by regress-

ing x j on t. Because z-scores are invariant with respect to
the scales of both X and t, we can assume that the z-scores
are calculated from a standardized genotype matrix X with-
out loss of generality. Hence, we have xT

j x j = n. Besides, the
polygenicity assumption implies that σ̂ 2

j ≈ σ̂ 2
t , where σ̂ 2

t is
the estimate of Var(t). Hence, we have

z j ≈ xT
j t√

nσ̂ 2
t

, (9)

then PVEGREX defined in (3) can be estimated by

P̂VEGREX =
1
n tr(

∑G
g=1 σ̂ 2

α Xg(μgμ
T
g + �g)XT

g )

σ̂ 2
t

≈ σ̂ 2
α

σ̂ 2
t

tr(
G∑

g=1

(μgμ
T
g + �g)R̂g), (10)

where R̂g = X̃T
g X̃g/(m − 1) is the estimated LD matrix as-

sociated with the g-th gene and X̃g is the corresponding
columns of a reference genotype matrix X̃. In practice, X̃
can be the eQTL reference genotype Xr (e.g. the genotype
matrix from the GTEx Project), a subset of X or from the
1000 Genomes Project. Using simulations, we showed that
with a few hundreds of samples in the eQTL reference data,
the estimation of IGREX-s with summary statistics well ap-
proximates IGREX-i using individual level data. Now, we
consider MoM in the estimating equation (8) to obtain σ̂ 2

α

σ̂ 2
t

.
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By eliminating σ 2
ε and dividing both sides by n2, we have⎡⎣ tr(K2
α )− tr2(Kα )

n
n2

tr(KαKγ )− tr(Kα )tr(Kγ )
n

n2

tr(KαKγ )− tr(Kα )tr(Kγ )
n

n2

tr(K2
γ )− tr2(Kγ )

n

n2

⎤⎦[
σ 2

α

σ 2
γ

]

=
[

1
n2 tTKαt − tr(Kα)

n3 tTt
1
n2 tTKγ t − tr(Kγ )

n3 tTt

]
. (11)

The terms on the left hand side do not involve t and
thus can be approximated using X̃ (44). For exam-

ple, tr(K2
α )− tr2(Kα )

n
n2 can be well approximated by tr(K̃2

α )− tr2(K̃α )
m

m2 ,
where K̃α = ∑G

g=1 X̃g(μgμ
T
g + �g)X̃T

g . Other terms on
the left hand side can be approximated in the same
way. For the right hand side, each term can be ap-
proximated using R̂g and z-scores from approxima-
tion (9): tTKαt ≈ nσ̂ 2

t

∑
g zT

g (μgμ
T
g + �g)zg, where zg ∈

R
Mg is the vector of z-scores corresponding to the g-

th gene; tr(Kα )
n tTt ≈ nσ̂ 2

t tr(
∑

g(μgμ
T
g + �g)R̂g); tTKγ t ≈

nσ̂ 2
t

∑M
j=1 z2

j ; and tr(Kγ )
n tTt ≈ nσ̂ 2

t . With these approxima-
tions, Equation (11) becomes⎡⎣ tr(K̃2

α)− tr2(K̃α )
m

m2

tr(K̃αK̃γ )− tr(K̃α )tr(K̃γ )
m

m2

tr(K̃αK̃γ )− tr(K̃α )tr(K̃γ )
m

m2

tr(K̃2
γ )− tr2(K̃γ )

m

m2

⎤⎦⎡⎣ σ̂ 2
α

σ̂ 2
t

σ̂ 2
γ

σ̂ 2
t

⎤⎦
=

[∑
g zT

g (μgμ
T
g +�g)zg−tr(

∑
g(μgμ

T
g +�g)R̂g)

n∑M
j=1

z2
j −1
n

]
.

Then, σ̂ 2
α

σ̂ 2
t

can be obtained by solving this equation. Plug-

ging this estimate into Equation (10) gives the P̂VEGREX.
The standard errors of P̂VEGREX can be estimated by the
block jackknife method (45). Given the P̂VEGREX and its
standard error, we can test the tissue-wise hypothesis H0:
PVEGREX = 0 (details described in the Supplementary Note
Section 2.3).

IGREX also allows for the adjustment of covariates in-
cluding sex, age and genotype principal components (See
details in Supplementary Note Section 2.1–2.3).

RESULTS

Simulation studies

We conducted extensive simulation studies to evaluate the
performance of IGREX using the genotypes from the
NFBC dataset. First, we extracted genotypes X from the
first chromosome of the NFBC dataset, which is com-
prised of M = 23 718 SNPs. Among the 5123 samples, we
randomly subsampled n = 3000 as the GWAS individu-
als and treated a subset of the rest samples as eQTL ref-
erence. The total phenotypic heritability was set as h2

t =
Var(

∑G
g=1 αgxT

g βg+xTβg)
Var(t) = 0.5, where PVEGREX = 0.2 and the

proportion explained by the alternative genetic effects,

PVEAlternative = Var(xT
g γ )

Var(t) = 0.3. Given the genotype matrices,
βg and �g, the gene expression yg and phenotype t were sim-

ulated following models (1) and (2). We will discuss the de-
tails for generating βg and �g later. To assess IGREX-s, we
calculated the z-score of each SNP and randomly subset-
ted m = 500 samples from X for estimating LD matrix R̂g
(results for other settings of m are shown in Supplementary
Figure S5).

We first evaluated the estimation performance of IGREX
for different settings of eQTL reference data. Specifically, we
considered nr varying at {200, 400, 800}. Note that the set-
ting nr = 200 mimics the situation in GTEx study, whose av-
erage sample size is 214. We further considered larger nr’s as
the sample size of eQTL studies would increase in the future.
We also varied PVEy = Var(xTβg)

Var(yg) at {0.1, 0.2, 0.3}, where
PVEy quantifies the gene expression heritability explained
by its local SNPs. To mimic the scenario in which the ex-
pression estimation uncertainty was incorrectly ignored, we
obtained the posterior mean of βg in the first stage, and
replaced the true effect size βg by its posterior mean μg
while specifying the posterior variance to be �g = 0 in the
second stage, and then conducted REML and MoM as
before. We denote these methods as REML0 and MoM0.
The simulation results summarized in Figure 1A show that
both PVEGREX and PVEAlternative are accurately estimated
using IGREX-i in most settings. IGREX slightly underes-
timates PVEGREX when both nr and PVEy are small (i.e. nr
= 200, PVEy = 0.1), while the accuracy steadily increases
as PVEy increases. Additionally, IGREX-s well approxi-
mated MoM, producing nearly identical estimation results.
In contrast, both REML0 and MoM0 does not account
for estimation uncertainty in the expression prediction, and
they show poor estimation performance even when sample
size is large and PVEy value is high. Additionally, we var-
ied the number of cis-SNPs pg at {20, 50, 100} to investi-
gate its influence. As shown in Figure 1B, the REML-based
IGREX-i produces accurate estimates under all scenarios.
The MoM-based IGREX-i and IGREX-s slightly underes-
timate PVEGREX when pg is large and nr is small, but they
achieves identical performance as REML as nr increases.

Next we conducted simulations to evaluate the situa-
tion that the IGREX model was mis-specified based on the
NFBC genotypes. Here we considered the situation where
genetic effects βg and α were sparse while we assumed dense
effect sizes in the IGREX model. This was designed to
mimic the real data situation that the architecture of eQTL
signals is often sparse (46). Let �� and �� be the sparsity of
α and βg, i.e. πα = (# Nonzero entries in α)/G and πβ =
(# Nonzero entries in βg)/Mg, respectively. To evaluate the
influence of different sparsity patterns on our method, we
varied �� and �� at {0.2, 0.5, 0.8}. The nonzero entries in
α and βg were simulated form a normal distribution. As
shown in Figure 1C and D, all three methods of IGREX
produced accurate estimates in the presence of sparse ge-
netic effects, implying the robustness of IGREX to model
mis-specification. Moreover, the estimation performance
was not influenced by the degree of sparsity. Next, we an-
alyzed the influence of LD patterns by varying the auto-
correlation between SNPs � ∈ {0.1, 0.3, 0.5, 0.8} and gen-
erating X based on the � ’s. The simulation details are de-
scribed in Supplementary Note Section 2.5. From Figure1
E, we observed that IGREX produced accurate estimation



6 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

�

�

�

�

�

�

�

�

� ��

�

�

�

�

�

�

�

�
�

� �

�
�

��
� �

�
�

�
�

�

� �

�

�
� �

�

� �

nr=200 nr=400 nr=800

P
V

E
y =

0.1
P

V
E

y =
0.2

P
V

E
y =

0.3

Alternative GREX Alternative GREX Alternative GREX

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

component

P
V

E

method
REML0
MoM0

REML
MoM
IGREX−s

A

�

�

�

�

�

�

�

�

�

�

�

��

� �

�

�

�
�

�

�

�

�
�

�

�

�

�

��

pg=20 pg=50 pg=100

n
r =

200
n

r =
400

n
r =

800

Alternative GREX Alternative GREX Alternative GREX

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

component
P

V
E

method
REML
MoM
IGREX−s

B

� �

�

�

�

�

�
�

� �

�

πβ=0.2 πβ=0.5 πβ=0.8

Alternative GREX Alternative GREX Alternative GREX

0.1

0.2

0.3

0.4

component

P
V

E

method
REML
MoM
IGREX−s

C

� �

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

πα=0.2 πα=0.5 πα=0.8

Alternative GREX Alternative GREX Alternative GREX

0.1

0.2

0.3

0.4

component

P
V

E

method
REML
MoM
IGREX−s

D

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�
�

� �

��

�� ��

ρ=0.1 ρ=0.3 ρ=0.5 ρ=0.8

Alternative GREX Alternative GREX Alternative GREX Alternative GREX
0.1

0.2

0.3

0.4

component

P
V

E

method
REML0
MoM0

REML
MoM
IGREX−s

E

Figure 1. Simulation studies to compare estimation accuracies of IGREX with other methods. REML and MoM in the legend are abbreviations of the
IGREX-i estimation methods. The blue and red dashed lines represent the true values of PVEGREX and PVEAlternative, respectively. We averaged the results
over 30 replications and generated box plots for evaluating the estimation performance of: (A) the three models of IGREX ,REML0 and MoM0 when nr
was varied at {200, 400, 800} and PVEy was varied at{0.1, 0.2, 0.3}; (B) the three models of IGREX when nr was varied at {200, 400, 800} and pg were
varied at {20, 50, 100}; (C) the three models of IGREX when �� = 0.2 and �� was varied at {0.2, 0.5, 0.8}; (D) the three models of IGREX when �� =
0.2 and �� were varied at {0.2, 0.5, 0.8}; (E) the three models of IGREX, REML0 and MoM0 when � was varied at {0.1, 0.3, 0.5, 0.8}.

in various setting of LD. In contrast, REML0 and MoM0
consistently underestimated PVEGREX as a result of ignor-
ing estimation uncertainty.

We also compared IGREX with an existing method in
the literature, RhoGE (20). RhoGE is an LDSC-based
approach for estimating PVEGREX. However, this method
does not adjust for estimation uncertainty. The results are
shown in Supplementary Figure S6. As expected, IGREX

yielded unbiased estimation while RhoGE substantially un-
derestimated PVEGREX in most settings. It achieved simi-
lar accuracy as IGREX only when the genetically regulated
expression accounted for most of the expression variation,
PVEy ≥ 0.9. In other words, RhoGE only works well when
the genetically predicted expression levels are very close to
the true underlying expression levels for most of the genes,
which may not be realistic for real data analysis.
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Real data applications with individual-level GWAS data

With eQTL data of 48 human tissues from the GTEx project
as reference, we applied IGREX to two individual-level
GWAS datasets, the Northern Finland Birth Cohorts pro-
gram 1966 (NFBC) (27) and the Wellcome Trust Case Con-
trol Consortium (WTCCC) (29).

In analyzing the NFBC data, we focused on six quanti-
tative traits with statistically significant heritability, based
on 5123 individuals and 309 245 genotyped SNPs. Those
six traits are Glucose (h2

t = 14.2% ± 5.3%), high-density
lipoprotein cholesterol (HDL, h2

t = 32.9% ± 5.6%), low-
density lipoprotein cholesterol (LDL, h2

t = 29.0% ± 5.5%),
triglycerides (TG, h2

t = 13.6% ± 5.3%), total cholesterol
(TC, h2

t = 20.1% ± 5.4%) and systolic blood pressure
(SysBP, h2

t = 17.1% ± 5.4%). Figure 2A and B shows the
tissue-specific P̂VEGREX estimates of the six traits. The
REML and MoM methods yielded similar estimates in
most of the tissues. Besides, we visualized the relationship
between the point estimates of PVEGREX and the eQTL
effect sizes for the NFBC dataset in Supplementary Fig-
ures S10 and 12. On the one hand, we can observe that the
P̂VEGREX does not increase as eQTL sample size increases.
On the other hand, as shown in Supplementary Figures S11
and 13, there is a decreasing trend of the standard error as
the eQTL sample size becomes larger. These results suggest
that the eQTL sample size only influence the standard er-
rors of P̂VEGREX. This conclusion is confirmed by the later
analysis in pQTL dataset (Supplementary Figures S18 and
19).

IGREX can also be used to inform trait-relevant tissue
types. By testing H0: PVEGREX = 0 in each tissue type, we
observed significant GREX components in liver for both
LDL and TC. As shown in Figure 2A, P̂VEGREX for LDL
in liver is as high as 14.3% (with standard error 2.6%), cap-
turing 52.6% of total heritability defined as PVEGREX/h2

t ;
and TC also has P̂VEGREX = 13.7% (with standard error
2.5%) in liver, which captures 79.4% of total heritability (see
Supplementary Figure S9). It is known that LDL synthe-
sized in liver is an important lipoprotein particle for trans-
porting cholesterol in the blood (47,48). Our findings sug-
gest that genetic variants affect LDL through regulating
their corresponding gene targets and liver is the most rel-
evant tissue involved in gene regulation. Next, we analyzed
the impact of ignoring the estimation uncertainty (with the
complete results given in the Supplementary Figure S8). As
shown in Figure 2C and D, the P̂VEGREX declined sub-
stantially as a result of ignoring expression estimation un-
certainty. In Figure 2E, we compared the estimates based
on individual level data using IGREX-i versus those based
on IGREX-s with summary statistics, where 500 samples
from the NFBC dataset were used as X̃ in IGREX-s. For
all six of the traits, the IGREX-s estimates well approxi-
mated the estimates using the individual level data, which
is consistent with our simulation results. We additionally
compared the IGREX-s results obtained by using the GTEx
reference panel with those obtained by using subsamples
from the NFBC dataset. As shown in Supplementary Fig-
ure S15, the GTEx reference panel can also produce satis-
factory IGREX-s approximation in practice.

Next we investigated the role of GREX in complex hu-
man traits and diseases, using the WTCCC dataset (29). We
applied IGREX to estimate the tissue-specific PVEGREX of
seven diseases including bipolar disorder (BD), coronary
artery disease (CAD), Crohn’s disease (CD), hypertension
(HT), rheumatoid arthritis (RA), type 1 diabetes (T1D) and
type 2 diabetes (T2D). The estimates of PVEGREX/h2

t ob-
tained by REML and MoM are shown in Supplementary
Figures S16 and 17, respectively. The top GREX compo-
nents measured by PVEGREX/h2

t are 12.8% for BD in amyg-
dala, 21.2% for CAD in spinal cord, 18.4% for CD in amyg-
dala, 16.7% for HT in spleen and 17.9% for T2D in ante-
rior cingulate cortex. The average estimates of PVEGREX/h2

t
across 48 tissues for RA and T1D are as high as 34.1% and
71.2%, respectively. Both RA and T1D are autoimmune dis-
eases, with well-established strong associations in the ma-
jor histocompatibility complex (MHC) region (29,49). Af-
ter removing the MHC region, we observed a substantial re-
duction in the PVEGREX/h2

t estimates: the mean P̂VEGREX
dropped from 34.1% to 7.6% for RA and from 71.2% to
11.7% for T1D, as shown in Figure 3A. Additionally, the
tissue-specific comparisons presented in Figure 3B showed
an extensive reduction of PVEGREX in all tissue types for
T1D and RA, while such changes were not observed for
other traits. This finding suggests the heavy involvement
of GREX variation in the immune functions related to the
MHC region for both RA and T1D. Here we illustrate that
IGREX can be used to inform disease/trait-relevant tissue
types or cellular contexts.

Analysis of a wide spectrum of phenotypes using IGREX-s
with summary-level GWAS data

The vast amount of publicly available summary-level
GWAS data and their easy accessibility allow us to conduct
a comprehensive evaluation of the impact of GREX on a
wide spectrum of phenotypes using IGREX-s, from molec-
ular traits such as proteins and metabolites to various com-
plex phenotypes including schizophrenia, height, and body
mass index (BMI). In the following analysis, we used the
genotypes of the 635 GTEx samples as the LD reference X̃
in the IGREX-s estimation.

First, we estimated PVEGREX in 249 proteins (244 of
which were identified with unique UniProt IDs, see Supple-
mentary Table S3) with significantly non-zero heritabilities
using summary statistics from a plasma protein quantitative
trait loci (pQTL) study (32), as summarized in Figure 4A. In
Supplementary Figure S20, the heritabilities estimated by
IGREX-s (ĥ2

t = P̂VEGREX + P̂VEAlternative) are shown to be
highly consistent with those estimates obtained using MoM
(44). From this perspective, heritability can be attributed to
two components: the GREX component and its alternative
effects. Then, we grouped 48 tissue types into 16 groups by
their functions and tested the significance of tissue-specific
GREX effects on the 249 proteins. We observed a signifi-
cant GREX contribution in many tissue-protein pairs (Fig-
ure 4B and Supplementary Figures S21–23). In particular,
9 out of the 249 proteins had significant GREX compo-
nents in at least one tissue type at 0.05 level after Bon-
ferroni correction. As shown in Figure 4C and D, some
proteins, including CD96, DEFB119, MICB and PDE4D,
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Figure 2. Tissue-specific P̂VEGREX of the six traits from NFBC dataset. (A and B) P̂VEGREX obtained by REML and MoM. Tissues are colored according
to their categories. The number of asterisks represents the significance level: P-value < 0.05 is annotated by *; P-value < 0.05/48 is annotated by **. (C
and D) All pairs of estimates generated by REML and MoM against their counterparts without accounting for uncertainty. A regression line is fitted and
the estimated coefficients are given in the plot. (E) Each panel is a plot of P̂VEGREX generated by IGREX-s against those generated by MoM for all 48
tissues in one of the six traits.
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Figure 3. Percentage of heritability explained by GREX (PVEGREX/h2
t ) of the seven traits from WTCCC data. (A) The distributions of estimated

PVEGREX/h2
t across 48 GTEx tissues. (B) Tissue-specific comparisons of PVEGREX/h2

t estimated by whole genome with those estimated by excluding the
MHC region.

exhibit cross-tissue GREX impacts; meanwhile other pro-
teins, namely CFB, CXCL11, EVI2B, IDUA and LRPAP1,
have tissue-specific GREX effect patterns. We found these
tissue-specific patterns to be consistent with protein func-
tions. For example, the CFB protein, which is implicated
in the growth of preactivated B-lymphocytes, is found to
be most associated with GREX in EBV-transformed lym-
phocytes (P̂VEGREX = 22.7%). As another example, the
CXCL11 protein has the highest P̂VEGREX = 20.0% in pan-
creas, and the CXCL11 gene is often over-expressed in pan-
creas tissue (50). We also noted that six out of the nine
proteins were immune-related, echoing our previous impli-
cations of the important role of GREX in immune pro-
cesses. Using the pQTL dataset, we have conducted sensi-
tivity analyses for IGREX (with details given in the Sup-
plementary Note Section 2.6), illustrating the robustness of
IGREX in various practical scenarios. In addition to the
proteins, metabolic traits are also important intermediate
traits for complex biological processes. We applied IGREX-
s to a summary level dataset of circulating metabolites (33),
and studied the impact of GREX on metabolic traits. The
results are presented in Supplementary Figure S30 and dis-
cussed in the Supplementary Note Section 2.7.

Then we applied IGREX-s to the summary data of
complex human traits. Here we analyzed three traits:
schizophrenia (SCZ), height, and BMI. We considered
four datasets of schizophrenia with increasing and overlap-
ping samples: SCZ subset (34), SCZ1 (35), SCZ1+Sweden
(SCZ1Swe) (36) and SCZ2 (37). We found that the esti-
mated PVEGREX/h2

t in all four SCZ datasets have higher
values in the brain tissues than in other tissue types (Figure
5B and Supplementary Figure S28). As expected, the sta-
tistical power increases with sample size of GWAS (Figure
5A). Additionally, we also analyzed the human height and
BMI phenotypes using pairs of independent GWAS data
for replication purposes. The obtained estimates, P̂VEGREX,
from pairs of independent GWAS data are highly consis-
tent. Although the analysis results are reproducible in sev-

eral different datasets, we noted the estimated percentages
of heritability explained by GREX for all three complex
traits are <10% (8.7% for schizophrenia, 8.7% for height
and 3.7% for BMI in the most expressed tissue types. See
Figure 5C and Supplementary Figure S29).

The relatively low GREX contribution to complex traits
other than lipid or molecular traits can be attributed to
multiple reasons. First, it is known that trans-acting ge-
netic effects can explain a substantial proportion of expres-
sion variation (8,11). However, trans-eQTL effects are of-
ten tissue-specific and can be harder to detect and replicate
across studies (51). In TWAS-types of analysis, generally
the prediction of gene expression is based on only cis ge-
netic variants of each gene. As such, the PVEGREX values
reported here, also based on only cis genetic variants, may
be underestimated. In the next section, we will further ex-
plore the contribution of trans-eQTLs. Second, the genetic
effects on gene expression may not be steady across the ref-
erence GTEx data with largely non-diseased tissues for gen-
eral purposes and the GWAS data with diseased individuals
from specific populations (52). From this perspective, before
analyzing specific complex traits and diseases via TWAS, it
would be helpful to first estimate the impact of GREX and
select the most informative available eQTL reference data.

Additional insights on GREX considering trans-eQTLs and
genetically regulated alternative splicing events

The cis-acting genetic effects on local gene expression levels
are often shared across tissue types and are often replica-
ble across studies (10). It is also reported that a substan-
tial proportion (up to 70%) of gene expression heritability
can be attributed to trans-acting genetic effects which act
predominantly in a tissue-specific manner and have a lower
rate of replication across studies (53,54). More recently, the
eQTLGen consortium has conducted a blood-eQTL meta-
analysis and has reported 6,298 (31%) trans-eQTL genes for
10 317 trait-associated SNPs using 31 684 blood samples
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Figure 4. Analysis of plasma pQTL summary statistics. (A) The distribution of estimated heritabilities of 3283 proteins estimated using (44). The whole
study is colored in gray, while the 249 proteins with significant heritabilities are colored in yellow. Dashed lines represent the means of corresponding
distributions. (B) QQ-plot of PVEGREX P-values of tissue-protein pairs. GTEx tissues are categorized into 16 types and colored accordingly. (C) P̂VEGREX
in the nine proteins whose P̂VEGREX are significant in at leat one tissue at 0.05 level using Bonferrni correction. (D) P̂VEGREX obtained by IGREX-s.
Tissues are colored according to their categories. The number of asterisks represents the significance level: P-value < 0.05/48 is annotated by *; P-value<
0.05/(48*9) is annotated by **.

from 37 datasets. The results suggest that trans-eQTLs are
prevalent in the genome, while it is still underpowered to de-
tect them for tissues other than whole blood given the often
tissue-specific nature of trans-genetic effects and the limited
sample sizes for most tissue types.

Although it is still unrealistic to account for all trans-
eQTLs in the estimation of PVEGREX due to the limitation
of sample sizes, it is possible to explore the potential by in-

corporating the blood-based trans-eQTLs reported by the
eQTLGen consortium and re-estimating PVEGREX/h2

t . We
first analyzed 13 datasets comprised of 12 phenotypes that
have significant PVEGREX/h2

t estimates in the whole blood,
including seven proteins, one lipid trait and four complex
diseases (with two SCZ datasets). We observed an increas-
ing trend of PVEGREX/h2

t in the blood for all 13 datasets
(Figure 6A), by accounting for only ∼1700 unique trans-
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Figure 5. Analyses of complex traits: schizophrenia and height. (A) Number of significant GREX components revealed under different significance levels
for the four schizophrenia datasets. (B) Estimated percentages of heritability for schizophrenia explained by GREX in brain tissues and in other tissues.
(C) P̂VEGREX and P̂VEAlternative of height estimated using height2014 and UKB datasets, respectively.

eQTLs that are not cis-eQTLs. As a comparison, we ap-
plied the same procedure to 13 GTEx brain tissues of the
two largest SCZ datasets, and did not observe an increase
in PVEGREX/h2

t (Figure 6B). This is not surprising because
the trans-eQTLs incorporated above were detected and re-
ported based on whole blood samples and may not be trans-
eQTLs in the brain tissues. Our results suggest that the esti-
mation of GREX impacts on traits can be further boosted
by incorporating robust trans-eQTLs from the same tissue
types.

In addition to the gene expression level, we also evaluated
the effects of alternative splicing on complex trait heritabil-
ity. We applied IGREX to quantify the impact of geneti-
cally regulated alternative splicing on multiple phenotypes.
Alternative splicing is an important gene regulatory process
that results in multiple transcripts from a single multi-exon
gene. It is commonly observed in humans and plays an es-
sential role in cellular differentiation (55,56). Differential
variations in splicing may also result in phenotypic varia-
tion and contribute to the development of complex diseases
including cancer (57–59). In a recent work, by extending
the TWAS framework to analyze splicing events and asso-
ciating 40 complex traits with genetically predicted splic-
ing quantification, novel putative disease-associated genes
were detected (60). Here, using multi-tissue splicing quan-
tification data from GTEX as reference, we applied IGREX
to study the impact of genetically regulated splicing events
on four trait-tissue pairs that were found to have a high
PVEGREX/h2

t . We estimated the proportion of phenotypic
variation explained by genetically regulated splicing to be
12.5%, 13.5%, 1.0% and 1.1% for LDL in liver, TC in liver,
SCZ in amygdala and SCZ in cerebellar hemisphere, respec-

tively. Unlike eQTLs that are often found to be near tran-
scription starting sites, most of the sQTLs were found to be
enriched within gene bodies, in particular within the introns
they regulate, and have little to no effects on cis gene expres-
sion levels (60,61). In other words, sQTLs are often inde-
pendent of eQTLs. Therefore, integrating genetically regu-
lated splicing quantification may partially explain the phe-
notypic variation attributed to alternative genetic factors,
PVEAlternative. We argue that with the proper multi-omics
reference data, similar analyses can be conducted to quan-
tify the impact of genetically regulated methylation, protein,
and other multi-omics variation on phenotype (56).

DISCUSSION

In this work, we proposed a method, IGREX, for inte-
grating GWAS and eQTL reference data to quantify the
GREX impact on phenotype. IGREX can be applied to
both individual-level and summary-level GWAS data, and
was shown to achieve estimation accuracy even when the
eQTL effects are weak. IGREX can be used in many ways:
it can inform the role of GREX variation in various phe-
notypes and/or the role of GREX in known pathways; it
can guide the selection of eQTL reference data and suggest
trait-relevant tissues/cell-types/contexts; and it is generally
applicable to the integration of GWAS with other omics
data types to examine the role of genetically regulated multi-
omics traits.

IGREX is closely related to several existing methods and
here we briefly discuss the connections and distinctions.
By also integrating an eQTL reference and GWAS data,
methods including TWAS (15), PrediXcan (14) and the
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t estimates with cis+trans SNPs against those estimated with only cis-SNPs. (A) Percentage in-

crease of 13 datasets in blood. All these datasets have significant PVEGREX/h2
t in blood at 0.05 nominal level using only local SNPs. (B) Percentage

increase/decrease of two largest SCZ datasets in 13 GTEx brain tissues. All these tissues have significant PVEGREX/h2
t at 0.05 nominal level in both

datasets using only local SNPs.

more general MetaXcan (18) aim to identify specific trait-
associated genes. In contrast, IGREX estimates the impact
of genetically regulated expression from a global perspec-
tive by quantifying the phenotypic variation that can be at-
tributed to the GREX component. Since both the TWAS-
type of analyses and IGREX rely on the shared GREX vari-
ation across eQTL and GWAS data, we argue that with the
increasing availability of eQTL resources in different pop-
ulations, conditions and contexts, the proper selection of
eQTL reference panels via IGREX will greatly promote the
chances of successes in the subsequent TWAS-type of anal-
yses.

There are also existing methods, such as RhoGE, de-
signed for identifying and estimating correlations between
gene expression and complex traits. RhoGe provides an
LDSC-based approach for estimating PVEGREX. Unlike
IGREX, this method does not adjust for estimation un-
certainty. Consequently, it significantly underestimates the
PVEGREX when the eQTL effects on expression levels are
weak or moderate. In fact, RhoGE estimated the PVEGREX
for the majority of 1350 tissue-trait pairs to be almost neg-
ligible, with the first quantile, the median, and the third
quantile being 0.00125%, 0.162% and 0.616%, respectively
(20). In contrast, as demonstrated via simulation studies,
IGREX can accurately estimate PVEGREX in various sce-
narios by accounting for the estimation uncertainty.

Based on estimating PVEGREX for a wide-array of tissue-
trait pairs, we observed a stronger impact of GREX
on molecular intermediate traits and lipid traits in trait-
relevant tissue types. We also observed a relatively low
PVEGREX for complex traits in general. The big picture sug-
gests the attenuated impact on downstream phenotypes (e.g

height and SCZ), which is consistent with the result from a
pioneer study (62). However, we noted that the PVEGREX
estimates could be improved. A substantial amount of ex-
pression heritability is explained by trans-acting genetic fac-
tors while current TWAS and IGREX analyses are mainly
using only cis-eQTLs. We explored the potential of incor-
porating trans-eQTLs in TWAS analysis by re-estimating
PVEGREX for selected traits in blood tissues with significant
trans-eQTLs independently derived from the blood-based
eQTLGen Consortium. We observed consistent increases in
PVEGREX for blood-related traits. In contrast, such an in-
crease was not observed in the PVEGREX estimates for other
tissue types, again illustrating the importance of consider-
ing trait-relevant tissue types/conditions in the TWAS-type
of analyses. Additionally, we extended the IGREX analy-
sis to quantify the impact of genetically regulated alterna-
tive splicing events on selected traits. Our results suggested
the potential for extending TWAS-type of analysis to inte-
grate reference multi-omics QTL data with GWAS in map-
ping novel disease/trait-associated genes with mechanisms
via other omics traits (such as splicing, methylation, pro-
tein, etc.).

IGREX is widely applicable for various GWAS pheno-
types because it can handle the GWAS summary statistics.
Given the increasing resources in eQTL study, it may be also
desirable for developing methods that can handle the eQTL
summary statistics, which can potentially boost the power
of identifying the GREX component when the weaker dis-
tal eQTL effects are considered. One of the possible solu-
tion is to first derive the posterior distributions of βg from
the summary statistics of eQTL study using existing meth-
ods, and then plug the obtained distribution to the second
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stage of IGREX. The RSS method (63) turns out to be a
possible candidate for retrieving the posterior distribution
of βg from eQTL summary statistics. While this is a possi-
ble extension to IGREX, there will be some computational
issues for practical applications and we leave it for further
investigation in the future.

A key assumption in applying IGREX or TWAS methods
with a general-purpose eQTL data as reference is the exis-
tence of steady-sate component in GREX, i.e. the genetic
effects on gene expression βg are shared across the eQTL
reference and GWAS data. However, there are many situa-
tions in which this assumption is violated. For example, it
has been observed that CAD-risk SNPs have a larger over-
lap with cis-eQTLs isolated from disease-relevant tissues
than those from GTEx tissues (52), implying the existence
of a dynamic component. In the presence of this dynamic
component, the accuracy of P̂VEGREX based on GTEx is
reduced. In those cases, we suggest exploring other trait-
relevant or condition-specific eQTL reference panels using
IGREX for a better understanding of the role of GREX
and before conducting TWAS analysis.
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