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ABSTRACT

Objective: Endobronchial ultrasound elastography produces a color map of
mediastinal lymph nodes, with the color blue (level 60) indicating stiffness. Our pilot
study demonstrated that predominantly blue lymph nodes, with a stiffness area
ratio greater than 0.496, are likely malignant. This large-scale study aims to validate
this stiffness area ratio compared with pathology.

Methods: This is a single-center prospective clinical trial where B-mode ultrasound
and endobronchial ultrasound elastography lymph node images were collected
from patients undergoing endobronchial ultrasound transbronchial needle
aspiration for suspected or diagnosed non–small cell lung cancer. Images were
fed to a trained deep neural network algorithm (NeuralSeg), which segmented
the lymph nodes, identified the percent of lymph node area above the color blue
threshold of level 60, and assigned a malignant label to lymph nodes with a stiffness
area ratio above 0.496. Diagnostic statistics and receiver operating characteristic
analyses were conducted. NeuralSeg predictions were compared with pathology.

Results: B-mode ultrasound and endobronchial ultrasound elastography lymph
node images (n¼ 210) were collected from 124 enrolled patients. Only lymph nodes
with conclusive pathology results (n ¼ 187) were analyzed. NeuralSeg was able to
predict 98 of 143 true negatives and 34 of 44 true positives, resulting in an overall
accuracy of 70.59% (95% CI, 63.50-77.01), sensitivity of 43.04% (95% CI, 31.94-
54.67), specificity of 90.74% (95% CI, 83.63-95.47), positive predictive value of
77.27% (95% CI, 64.13-86.60), negative predictive value of 68.53% (95% CI,
64.05-72.70), and area under the curve of 0.820 (95% CI, 0.758-0.883).

Conclusions: NeuralSeg was able to predict nodal malignancy based on endobron-
chial ultrasound elastography lymph node images with high area under the receiver
operating characteristic curve and specificity. This technology should be refined
further by testing its validity and applicability through a larger dataset in a multicenter
trial. (JTCVS Techniques 2024;27:158-66)
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Static B-mode ultrasound image (left) and EBUS
elastography image (right) of an LN.
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CENTRAL MESSAGE

NeuralSeg, an AI algorithm, was
able to predict nodal malignancy
directly from EBUS elastography
LN images with high area under
the ROC curve and high
specificity.
PERSPECTIVE
NeuralSeg, an AI algorithm, was able to predict
nodal malignancy directly from EBUS elastogra-
phy LN images based on a predefined SAR cutoff
of 0.496 above a color blue stiffness threshold of
level 60 with high area under the ROC curve and
specificity. This study is a step forward in the
applicability of AI in detecting mediastinal LN
malignancy.
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Abbreviations and Acronyms
AI ¼ artificial intelligence
AUC ¼ area under the curve
CLNS ¼ Canada Lymph Node Score
EBUS-TBNA ¼ endobronchial ultrasound

transbronchial needle aspiration
IQR ¼ interquartile range
LN ¼ lymph node
NPV ¼ negative predictive value
PPV ¼ positive predictive value
ROC ¼ receiver operating characteristic
ROI ¼ region of interest
SAR ¼ stiffness area ratio
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The staging of mediastinal lymph nodes (LNs) is a crucial
step in the lung cancer diagnostic pathway.1,2 The current
guideline for mediastinal nodal staging for non–small cell
lung cancer is endobronchial ultrasound transbronchial nee-
dle aspiration (EBUS-TBNA).3,4 Despite advances in stag-
ing procedures, recent studies show that approximately
40% to 74% of mediastinal metastases are diagnosed
correctly via EBUS,5-7 diagnostic yield is 64%,8 sample ad-
equacy with EBUS is approximately 70%,9 and as high as
40% of biopsies result in inconclusive pathology,10 and this
is because EBUS-TBNA is highly operator dependent and
factors such as the skill of the endoscopist and cytologists
impact the accuracy of EBUS-TBNA.11 This high rate of
inconclusive results may lead to repeated or additional in-
vestigations and perhaps delay definitive treatment. It is
possible that the complexity of EBUS-TBNA, coupled
with a high rate of inconclusive results, is a contributing fac-
tor towhy some studies show that as little as 22% to 27% of
patients at risk for nodal disease on imaging receive preop-
erative nodal staging in the United States.12-15 Therefore, an
adjunct to EBUS-TBNA for mediastinal LN staging is
warranted.

Elastography is a novel technology that can produce vi-
sual color maps representative of tissue stiffness, where
red represents soft tissue, and blue represents stiff tissue.16

Elastography can be applied to mediastinal LN staging
because malignant tissue tends to be stiffer in nature
because there are more cells per area compared with
benign.17 A systematic review and meta-analysis by Wu
and colleagues18 in 2022 evaluated EBUS elastography in
differentiating benign and malignant mediastinal and hilar
LNs. This study included 2307 LNs from 17 studies and ob-
tained a pooled sensitivity of 0.90 (95% CI, 0.84-0.94),
pooled specificity of 0.78 (95% CI, 0.74-0.81), and area un-
der the curve (AUC) of 0.86 (95% CI, 0.82-0.88).18

Different qualitative and quantitative methods were used
in the included studies to analyze the elastography color
maps.18 Qualitative methods include 3- or 5-type classifica-
tion methods to observe and categorize images19,20; howev-
er, these methods are often subjective and dependent on the
interpreter. Quantitative methods include strain ratio, stiff-
ness area ratio (SAR), and strain histogram, which tend to
be far more reproducible than qualitative methods.16,21,22

Of these methods, the most intuitive is the SAR, because
it is calculated based on the number of blue pixels compared
with all the color pixels in the region of interest (ROI), the
LN.16 However, this method has yet to become standardized
because both the stiffness threshold of the color blue and the
SAR cutoffs have not been defined.
In our previous pilot study, we used a trained deep neural

network artificial intelligence (AI) algorithm (NeuralSeg)
to segment 31 EBUS elastography LN images to define
the color blue stiffness threshold required to calculate the
SAR and determine the optimal SAR to distinguish between
benign and malignant LNs.23 Nine predefined color blue
stiffness thresholds were tested, and a color blue stiffness
threshold of level 60 from the 0-255 color scale was found
to have the highest AUC of 0.891.23 An optimal SAR cutoff
of 0.496 was also determined for predicting LNmalignancy,
with an overall accuracy of 83.30%, sensitivity of 92.30%,
and specificity of 76.50%.23 However, this SAR remains
difficult to determine with the human eye. On a complex
EBUS elastography color map of an LN, it is practically
impossible for the endoscopist to determine the SAR by vi-
sual inspection alone. We believe that the incorporation of
AI into the ultrasound system may allow real-time determi-
nation of the SAR and prediction of LN malignancy. As a
first step, we hypothesized that NeuralSeg could predict
LN malignancy from EBUS elastography images of medi-
astinal LNs based on the SAR cutoff of 0.496 above a color
blue stiffness threshold of level 60. The results were
compared with the gold standard of final pathology results
from surgical specimens (in patients who underwent resec-
tion) or diagnostic nodal biopsies (in patients who did not
undergo surgery) to determine the diagnostic capability of
AI-augmented EBUS elastography.
MATERIALS AND METHODS
Study Design

This is a single-center, prospective clinical trial where B-mode ultra-

sound and EBUS elastography LN images were collected at the time of

the EBUS-TBNA procedures.

Research Ethics Approval and Trial Registration
This study was reviewed and approved on August 4, 2021, by the Ham-

ilton Integrated Research Ethics Board, Project #12644. This trial was

registered on ClinicalTrials.gov (#NCT04816981).

Study Subjects
Patients undergoing EBUS-TBNA for mediastinal LN staging for

confirmed or suspected non–small cell lung cancer between August 2021
JTCVS Techniques c Volume 27, Number C 159
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and May 2022 at St Joseph’s Healthcare Hamilton, Hamilton, Ontario,

Canada, were eligible for this study. No exclusion criteria were applied. Pa-

tients provided consent before the EBUS-TBNA procedure, and enrollment

in the study did not intervene with the standard of care practices. Patients

were enrolled in a consecutive sample, and patient involvement concluded

when the procedure ended. No follow-up was required after the procedure.

Endobronchial Ultrasound Transbronchial Needle
Aspiration Procedure

An Olympus convex probe ultrasound bronchoscope (BF-UC180F;

Olympus) and the EU-ME2 plus transducer (Olympus) were used to

perform EBUS-TBNA under conscious sedation with midazolam and fen-

tanyl. An expert endosonographer assigned a Canada Lymph Node Score

(CLNS), a 4-point score that can be used during EBUS-TBNA to help iden-

tify LN malignancy, to each mediastinal LN based on the 4 ultrasono-

graphic nodal features that are predictive of LN malignancy: short-axis

diameter 10 mm or greater, presence of well-defined margins, absence of

the central hilar structure, and presence of central necrosis24 before con-

ducting the biopsy by TBNA using a 22-gauge needle (NA-201SX-4022,

Olympus). Specimen adequacy was confirmed by rapid onsite cytology.

Endobronchial Ultrasound Elastography
Before LN biopsy, EBUS elastographywas performed. The ROIwas the

LN, and a 1:1 ratio with the surrounding mediastinal tissue was ensured.

The strain graph was used to confirm stable pressurization by ensuring

the wave was between �0.6 and þ0.6 (Figure 1, A). The B-mode and

EBUS elastography images of the LN were displayed side-by-side, and a

suitable static image (Figure 1, B and C) was captured and stored on an

external hard drive as Red Green Blue Joint Photographic Experts Group

images.

Data Collection
Patient demographics, including age, gender, and smoking status, were

collected. LN characteristics, including LN station, short- and long-axis

measurements from computed tomography scans, standardized uptake

values from positron emission tomography scans, the CLNS, and final pa-

thology results via the immunohistochemistry technique, were also

obtained.
C
B

A

FIGURE 1. A, The strain graph from an EBUS elastography image, which is us

andþ0.6. B, Static B-mode ultrasound image of LN and C, static EBUS elastogr

side by side. D, Diagnostic statistics based on the SAR cutoff of 49.59% above t

NPV, negative predictive value.

160 JTCVS Techniques c October 2024
Unit of Analysis
The unit of analysis for this study was the LN rather than the patient,

because the primary outcome is whether NeuralSeg could predict LN ma-

lignancy directly from the EBUS elastography image of a mediastinal LN

based on the SAR cutoff of 0.496 above a color blue stiffness threshold of

level 60.23

Sample Size
Elastography for LN imaging is associated with a sensitivity of 92.30%

for SAR based on our pilot study.23 Assuming this diagnostic value, and a

prevalence of 18%malignancy in the lung cancer population at our center,

to reach 80% power, an alpha of 0.05, and a marginal error of 0.085 with a

95% CI for sensitivity, a sample size of 210 LNs was needed.25

Outcomes
The primary outcome was to test whether NeuralSeg, a deep learning-

based neural network AI algorithm, can predict LN malignancy directly

from the EBUS elastography image of a mediastinal LN based on the

SAR cutoff of 0.496 above a color blue stiffness threshold of level 60 to

validate the findings from our pilot study.23 The gold standard for compar-

isonwas the final pathology results from surgical specimen (in patients who

underwent resection) or diagnostic nodal biopsies (in patients who did not

undergo surgery) to determine the diagnostic capability of AI-augmented

EBUS elastography.

Endobronchial Ultrasound Elastography Lymph
Node Image Analysis

NeuralSeg, an AI deep neural network, was used to analyze the EBUS

elastography LN images. NeuralSeg was previously trained and validated

to segment LNs and extract the 4 ultrasonographic LN features predictive

of malignancy (short-axis diameter �10 mm, well-defined margins,

absence of hilar structure, and presence of central necrosis), based on the

CLNS.26 NeuralSeg was also previously trained in our pilot study to

segment the LN from the B-mode image using the LN features listed above,

overlay the segmentation onto the EBUS elastography image, identify the

percent of LN area above the color blue stiffness threshold of level 60, and

automatically assign a malignant or benign label based on the SAR cutoff

of 0.496.23
Accuracy
(95% CI)

D 70.59%
(63.50% to 77.01%)

43.04%
(31.94% to 54.67%)

90.74%
(83.63% to 95.47%)

77.27%
(64.13% to 86.60%)

68.53%
(64.05% to 72.70%)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

ed to confirm standard pressurization by ensuring thewave is between�0.6

aphy image of a LN captured during an EBUS-TBNA procedure, displayed

he color blue stiffness threshold of level 60. PPV, Positive predictive value;
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In this study, static images of the B-mode and EBUS elastography im-

ages of the LNs were fed to NeuralSeg. The EBUS elastography images

were separated from the B-mode images to isolate the color map and to

minimize the effects of the B-mode image on the SAR analysis. The com-

puter programmer training NeuralSeg was blinded to all data, including pa-

tient demographics, LN characteristics, and LN pathology. NeuralSeg

automatically segmented the LN from the surrounding tissue on the B-

mode side of the image using the LN features listed above and then overlaid

the segmentation onto the EBUS elastography side of the image. NeuralSeg

automatically identified the percent of LN area above the previously

defined color blue stiffness threshold of level 60 and assigned a malignant

or benign label based on the previously defined SAR cutoff of 0.496.23 By

using a 5-fold cross-validation technique derived from a previous study, 5

SARs were obtained for the color blue stiffness threshold of level 60. The

mean of these 5 predictions was used as the final SAR. This was done to

improve the robustness of the results.

Statistical Analyses
Descriptive statistics are provided for patient demographics and LN

characteristics, categorical variables were reported as counts (percentages),

and continuous variables as means [SDs] if they were normally distributed

or as medians (interquartile range [IQR]) if they were not normally distrib-

uted. Descriptive statistics for SARwere compared between the benign and

malignant LNs, continuous parametric variables were compared using the

Student t test, and nonparametric variables were compared using Mann–

Whitney U test. Diagnostic ability of AI-augmented EBUS elastography

was assessed by obtaining diagnostic accuracy, sensitivity, specificity, pos-

itive predictive value (PPV), negative predictive value (NPV), and AUC.

Receiver operating characteristic (ROC) curve analysis was used to deter-

mine optimal cutoff values to distinguish malignant and benign LNs. Back-

ward stepwise logistic regression was performed to determine predictors of

malignant LNs using short- and long-axis measurements, CLNS, and SAR.

All statistical tests used 2-sided hypotheses. All statistical analyses were

done using the 2020 version of Statistical Package for the Social Sciences

(SPSS Inc).27
187 EBUS-Elastog

210 Lymph Nod

Final Diagnosis:
EBUS-TBNA Positive: n = 34
EBUS-TBNA Negative: n = 10

EBUS-TBNA
(Reference Standard)

n = 44

Positive Elastography
(SAR > 0.496)

n = 44

FIGURE 2. Flow chart of NeuralSeg’s predictions directly from EBUS elastog

stiffness threshold of level 60, compared with final pathology. EBUS, Endobro

aspiration.
RESULTS
Patients and Lymph Nodes
BetweenAugust 2021 andMay 2022, a total of 124 patients

were enrolled, and a total of 210 B-mode ultrasound and
EBUS elastography images ofmediastinal LNswere collected
(Figure 2). Patient demographics and LN characteristics are
shown in Table 1. The mean (SD) age of the patients was
69.83 � 9.95 years, 51.61% (64/124) were male, and mean
(SD) body mass index was 26.69 � 6.14 kg/m2. In terms of
smoking status, 35.48% (44/124) were current smokers,
43.55% (54/124)were former smokers, 8.06% (10/124) of pa-
tients had never smoked, and for 12.90% (16/124), the smok-
ing status was unknown. Common comorbidities among the
patients included hypertension (41.13%; 51/124), chronic
obstructive pulmonary disease (24.19%; 30/124), diabetes
(20.97%; 26/124), atrial fibrillation (9.68%; 12/124), and
gastroesophageal reflux disease (8.06%; 10/124). Approxi-
mately half (51.43% [108/210]) of the LNs analyzed were
benign, 37.62% (79/210) were malignant, 8.10% (17/210)
had inconclusive results on pathology, and the pathology could
not be obtained for 2.86% (6/210). Themajority, 37.62% (79/
210) of the LNs were obtained from station 7, 32.86% (69/
210) were from station 4R, and 15.71% (33/210) were from
station 4L. The mean (SD) LN short- and long-axis measure-
ments were 11.00 � 5.76 mm and 15.70 � 6.00 mm, respec-
tively. The overall CLNSwas 0 for 36.67% (77/210) of LNs, 1
for 18.10% (38/210) of LNs, 2 for 11.90% (25/210) of LNs, 3
for 21.90% (46/210) of LNs, 4 for 10.48% (22/210) of LNs,
and 0.95% (2/210) of LNs were missing a CLNS.
raphy LN Images

Inconclusive Pathology: n = 17
No Pathology: n = 6

e (LN) Images

Negative Elastography
(SAR ��0.496)

n = 143

EBUS-TBNA
(Reference Standard)

n = 143

Final Diagnosis:
EBUS-TBNA Positive: n = 45
EBUS-TBNA Negative: n = 98

raphy images of LNs based on the SAR cutoff of 0.496 above a color blue

nchial ultrasound; SAR, stiffness area ratio; TBNA, transbronchial needle
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TABLE 1. Patient demographics and lymph node characteristics

Variable Patients (n ¼ 124)

Age, y, mean � SD 69.83 � 9.95

Males, n (%) 64 (51.61)

Smoking status, n (%)

Smoker 44 (35.48)

Former smoker 54 (43.55)

Never smoked 10 (8.06)

Unknown 16 (12.90)

BMI, kg/m2, mean � SD 26.69 � 6.14

Comorbidities, n (%)

Hypertension 51 (41.13)

Chronic obstructive pulmonary disease 30 (24.19)

Diabetes 26 (20.97)

Atrial fibrillation 12 (9.68)

Gastroesophageal reflux disease 10 (8.06)

Past cancer, n (%)

Yes 29 (23.39)

No 90 (72.58)

Unknown 5 (4.03)

Variable LNs (n ¼ 210)

LN pathology, n (%)

Benign 108 (51.43)

Malignant 79 (37.62)

Inconclusive 17 (8.10)

No pathology 6 (2.86)

LN station, n (%)

7 79 (37.62)

4R 69 (32.86)

4L 33 (15.71)

8 7 (3.33)

10 2 (0.95)

11 3 (1.43)

Other 17 (8.10)

Short-axis measurement, mm, mean � SD 11.00 � 5.76

Long-axis measurement, mm, mean � SD 15.70 � 6.00

Ultrasound malignancy features

based on CLNS, n (%)

Short-axis diameter (�10 mm) 98 (46.67)

Well-defined margins 102 (48.57)

Central hilar structure (absent) 71 (33.81)

Central necrosis (present) 44 (20.95)

CLNS, n (%)

0 77 (36.67)

1 38 (18.10)

2 25 (11.90)

3 46 (21.90)

4 22 (10.48)

Unknown 2 (0.95)

BMI, Body mass index; LN, lymph node; CLNS, Canada Lymph Node Score.
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The characteristics of the benign and malignant LNs are
shown in Table 2. There were no significant differences in
LN station between the benign and malignant LNs; howev-
er, the short- and long-axis measurements, ultrasound ma-
lignancy features based on the CLNS (short-axis diameter
10 mm or greater, well-defined margins, the absence of cen-
tral hilar structure, and the presence of central necrosis), and
the CLNS were significantly different between the benign
and malignant LNs.
Validation of the Stiffness Area Ratio Cutoff
NeuralSeg was fed only the benign and malignant images

(n ¼ 187), and images with inconclusive or no pathology
were removed from the dataset, because otherwise, no
ground truth data would be available (Figure 2). Based on
the SAR cutoff of 0.496 above the color blue stiffness
threshold of level 60, NeuralSeg automatically assigned
those LNs with a SAR greater than 0.496 a malignant label
and those with a SAR equal to or below 0.496 a benign label.
These results were compared with the biopsy or surgical pa-
thology results. NeuralSeg was able to predict 68.53% (98/
143) of true negatives and 77.27% (34/44) of true positives.
This resulted in an overall diagnostic accuracy of 70.59%
(95% CI, 63.50-77.01), sensitivity of 43.04% (95% CI,
31.94-54.67), specificity of 90.74% (95% CI, 83.63-
95.47), PPV of 77.27% (95% CI, 64.13-86.60), and NPV
of 68.53% (95% CI, 64.05-72.70) (Figure 1, D). The ROC
curve for the color blue stiffness threshold of level 60 is
shown in Figure 3, showing an AUC of 0.820 (95% CI,
0.758-0.883). When compared with final pathology results,
the mean (SD) and median (IQR) SARs above the color
blue stiffness threshold of level 60 were significantly
different between the benign (0.25 � 0.17; 0.21 [IQR,
0.14-0.32]) and malignant LNs (0.45 � 0.15; 0.46 [IQR,
0.33-0.54]; P<.001). The results are shown in Table 3 and
Figure 4. Backward stepwise logistic regression revealed
that the SAR (odds ratio [OR], 51.69, 95% CI, 4.06-
657.52; P ¼ .002) and CLNS (OR, 2.92, 95% CI, 2.06-
4.12; P<.001) were predictors of malignant LNs.
DISCUSSION
This study demonstrates that NeuralSeg, a deep neural

network AI algorithm, could predict LN malignancy from
EBUS elastography images of mediastinal LNs by success-
fully calculating SAR of the LNs above a color blue stiff-
ness threshold of level 60 and automatically assigning a
benign or malignant label based on the SAR cutoff of
0.496. It does so with high area under the ROC curve
(consistent with an excellent diagnostic test)28,29 and high



TABLE 2. Characteristics of benign and malignant lymph nodes

Characteristic Benign LNs (n ¼ 108) Malignant LNs (n ¼ 79) P value

LN station, n (%)

7 41 (37.96) 32 (40.51) .21

4R 38 (35.19) 21 (26.58)

4L 20 (18.52) 9 (11.39)

8 3 (2.78) 4 (5.06)

10 - 2 (2.53)

11 - 3 (3.80)

Other 6 (5.56) 8 (10.13)

Short-axis measurement, mm, mean � SD 8.88 � 4.21 14.71 � 6.13 <.001

Long-axis measurement, mm, mean � SD 14.09 � 4.51 19.03 � 6.74 <.001

Ultrasound malignancy features based on CLNS, n (%)

Short-axis diameter (�10 mm) 30 (28.30) 63 (80.77) <.001

Well-defined margins 33 (30.84) 63 (80.77) <.001

Central hilar structure (absent) 13 (12.15) 52 (66.67) <.001

Central necrosis (present) 7 (6.54) 34 (43.59) <.001

CLNS, n (%)

0 58 (53.70) 5 (6.33) <.001

1 27 (25.00) 7 (8.86)

2 12 (11.11) 11 (13.92)

3 8 (7.41) 38 (48.10)

4 2 (1.85) 17 (21.52)

Unknown 1 (0.93) 1 (1.27)

Bold shows statistically significant P values. CLNS, Canada Lymph Node Score; LN, lymph node.
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specificity, but with low sensitivity. When compared with
final pathology results, the mean SARs above the color
blue stiffness threshold of level 60 were significantly
different between benign (0.25) and malignant LNs (0.45;
P< .001). This demonstrates that the color blue stiffness
threshold of level 60 can accurately distinguish between
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FIGURE 3. The ROC curve for the optimal color blue stiffness threshold

of level 60. ROC, Receiver operating characteristic.
benign and malignant LNs, and is a promising step in stan-
dardizing the color blue stiffness threshold to compute the
SAR, thus improving the clinical utility of EBUS elastogra-
phy in diagnosing mediastinal LNs. This adjunct to ultra-
sound examination also may help guide the decisions
around whether repeat procedures are necessary in the in-
stances when biopsy at the time of EBUS-TBNA is not
feasible, such as when a patient is not tolerating the proced-
ure, the LN is too small, or multiple passes result in a non-
diagnostic specimen.
Five other studies looked at SAR in mediastinal LNs;

however, each used human input with the ImageJ image
analysis software (National Institutes of Health) or Photo-
shop (Adobe Systems Inc) to manually select the ROI and
calculate SAR.16,30-33 The results of these studies are as
follows: Wang and colleagues30 conducted a single-center
retrospective study in 2023 with 131 LNs from 83 patients
and determined a SAR cutoff of 0.60 with diagnostic accu-
racy of 84.4%, sensitivity of 83.3%, specificity of 86.0%,
PPV of 89.6%, NPV of 78.2%, and AUC of 0.875. Uchi-
mura and colleagues31 conducted a single-center retrospec-
tive study in 2020 with 149 LNs from 132 patients and
determined a SAR cutoff of 0.41 with a diagnostic accuracy
of 83.9%, sensitivity of 88.2%, specificity of 80.2%, PPV
of 78.9%, NPVof 89.0%, and AUC of 0.884. Fujiwara and
colleagues32 conducted a single-center retrospective study
in 2019 with 228 LNs from 122 patients and determined a
SAR cutoff of 0.31 with a diagnostic accuracy of 79.7%,
JTCVS Techniques c Volume 27, Number C 163



TABLE 3. Descriptive statistics for stiffness area ratio for benign and malignant lymph nodes

Pathology n Minimum Maximum Mean* SD Mediany IQR

Benign 108 0.016 0.81 0.25 0.17 0.21 0.14-0.32

Malignant 79 0.037 0.78 0.45 0.15 0.46 0.33-0.54

IQR, Interquartile range. *P<.001. P value obtained using the Mann–Whitney U test for continuous variable. yP<.001. P value obtained using the Wilcoxon rank-sum test.
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sensitivity of 72.1%, specificity of 84.0%, PPVof 72.1%,
and NPV of 84.0%. Ma and colleagues33 conducted a
single-center prospective study in 2018 with 79 LNs from
60 patients and determined a SAR cutoff of 0.367 with a
diagnostic accuracy of 78.5%, sensitivity of 92.3%, speci-
ficity of 67.5%, and AUC of 0.86. Nakajima and col-
leagues16 conducted a single-center retrospective study in
2015 with 49 LNs from 21 patients and determined a
SAR cutoff of 0.311 with a sensitivity of 81%, and speci-
ficity of 85%. Although the sensitivity of our AI algorithm
is lower than what is found in the existing literature, the
specificity of our AI algorithm is much higher, indicating
that our AI algorithm can effectively rule out nodal
metastases.

AI, specifically deep neural networks, is a technology
that is gaining popularity in medicine, especially for pre-
dicting and diagnosing diseases based on medical im-
ages.34,35 Recent research has shown that AI and deep
learning are being used to accurately interpret images
when compared with clinicians in radiology, pathology,
and cardiology.36 The more data these AI algorithms are
exposed to, the more they learn. Furthermore, using AI re-
duces the rater variability and increases the potential of this
becoming a reproducible method in detecting LN
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tiles (25th percentile and 75th percentile). The middle horizontal line rep-

resents the median. The lower and upper whiskers represent the minimum

and maximum values of nonoutliers. The extra dots represent outliers.

When compared with final pathology results, the median [IQR] SARs

above the color blue stiffness threshold of level 60 were significantly

different between the benign (0.21 [IQR, 0.14-0.32]) and malignant LNs

(0.46 [IQR, 0.33-0.54]; P<.001).
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malignancy. However, based on our study results, Neural-
Seg could be optimized with further training and more
data to improve its diagnostic capabilities. Nonetheless,
this study is valuable because it demonstrates the feasibility
of NeuralSeg, a deep neural network AI algorithm, and its
ability to automatically segment mediastinal LNs based
on ultrasonographic features and predict malignancy based
on the predetermined SAR cutoff.

Study Limitations
This study is not without limitations. First, this is the

experience from a single-site, single-endosonographer
study. Therefore, a multicenter, prospective trial with a
larger sample size is required to perform external validation
to further verify the results and confirm the reliability of the
AI algorithm. Also, there was a relatively low prevalence of
malignant LNs in this study. Additionally, only 4 ultrasono-
graphic features (LN small-axis diameter, central hilar
structure, central necrosis, and margin status) were used
to train the algorithm. Although these features are predic-
tive of malignancy, other ultrasonographic features may
contribute to NeuralSeg’s ability to predict malignancy.
Another limitation is that only 1 elastography parameter
was used, the SAR. Although SAR is an intuitive quantita-
tive method that has achieved good diagnostic results, elas-
tography is still a relatively new technology; therefore, all
quantitative and qualitative methods should be thoroughly
analyzed. Last, the quality of the static EBUS elastography
images is not consistent. Different factors, such as stable
pressurization and the amount of the ROI in the elastogra-
phy frame, could potentially impact the results. Therefore,
future studies should consider the strain wave and ROI to
improve the EBUS elastography image quality to obtain
the best possible EBUS elastography images.

CONCLUSIONS
In this study, NeuralSeg, a deep neural network AI algo-

rithm, was able to predict nodal malignancy directly from
EBUS elastography LN images based on a predefined
SAR cutoff of 0.496 above a color blue stiffness threshold
of level 60 with high area under the ROC curve and high
specificity (Figure 5). This study is a meaningful step for-
ward in the applicability of AI in detecting mediastinal
LN malignancy at bedside and in real-time. However,
more extensive multicenter studies must be conducted to
standardize this process and optimize the AI algorithm
(Figure 5).



Accuracy
(95% CI)

187 LN Images with Conclusive Pathology Results

Clinical Utility of Artificial Intelligence-Augmented Endobronchial Ultrasound-Elastography in Lymph Node Staging for
Lung Cancer

NeuralSeg:
• segmented the LNs,
• identified the percent of LN area above
the colour blue threshold of level 60,
• assigned a malignant label to LNs with a
SAR above 0.496

NeuralSeg was able to predict nodal malignancy based on EBUS-Elastography LN images with good accuracy and high specificity.
This technology should be refined further with more extensive multi-centre studies before being used as an adjunct to diagnostic tests

for mediastinal LN staging.

LN, Lymph node; SAR, Stiffness Area Ratio; Cl, Confidence interval; PPV, Positive Predictive Value; NPV, Negative Predictive Value;
EBUS, Endobronchial Ultrasound.
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FIGURE 5. Graphical Abstract. LN, Lymph node; SAR, stiffness area ratio; PPV, positive predictive value; NPV, negative predictive value; EBUS, endo-

bronchial ultrasound.
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