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Traditional screening of cervical cancer type classification majorly depends on the pathologist’s experience, which also has less
accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and
treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50
years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical
image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical
cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer
using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is
adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network
(CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are
estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for
VGGI19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate
classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores
of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19%
higher than the VGG19 (TL) model.
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1. Introduction

Cervical cancer is the second most deadly condition for women
in the medical world following breast cancer and later believed
that cervical cancer remains incurable in the later stages. Much
recent progress has been made to improve the disease detection
rate by using an image. Statistics by the World Health Organi-
zation (WHO) revealed that cervical cancer is the fourth most
prevalent cancer globally, with a reporting rate of 5,70,000 new
cases in 2018, accounting for 7.5% of all women cancer deaths
[1]. Over 3,11,000 cervical cancer deaths per year were reported
at around 85% in low- and intermediate-income countries, and
the early diagnosis of cervical cancer offers a way of saving a
life. Women with HIV are sixfold more likely to develop cervi-
cal cancer than women without HIV, and it is estimated that
5% of all cervical cancer cases are related to HIV. A variety of
considerations have redefined screening effectiveness, which
includes the access to equipment, consistency of screening tests,
adequate supervision, and detection and treatment of lesions
detected [2]. Despite severe medical and science advancements,
this disease is not completely curable, mainly if diagnosed in a
developing state. Prevention and screening services, therefore,
play a crucial role in the fight against cervical cancer. The
screening of cervical cancer follows a typical workflow: HPV
testing, cytology or PAP smear testing, colposcopy, and biopsy.
Several tools supported the workflow which have been created
to make it more effective, practical, and inexpensive. The PAP
smear image screening is mostly employed for the treatment of
cervical cancer, but it requires a greater number of microscopic
examinations to diagnosis of cancer and noncancer patients,
and also it is time consuming and requires trained profes-
sionals, but there is a chance of missing the positive cases by
using the conventional screening method. The PAP smear
and HPV testing are very costly treatment, and it also provides
lower sensitivity. On the other side, the colposcopy treatment is
widely used in the developing countries. To overcome the
shortcomings in PAP smear images and HPV testing, the
colposcopy screening is used. Both cervical and other cancers
are more likely to be treated in the early stage, but the lack of
signs and symptoms at this stage hinders the early diagnosis.
Cervical cancer deaths can be avoided by successful screening
schemes and can lead to lowered sickness and impermanence
[3]. In low- and middle-income nations, cervical cancer screen-
ing facilities are very sparse because of a shortage of qualified
and educated health care staff and insufficient healthcare fund-
ing to fund screening systems [4].

Colposcopy is a popular surgical procedure to prevent
cervical cancer. Timely identification and classification of this
type of cancer may significantly improve the patient’s eventual
clinical care. Several works have been taken various approaches
for collecting details from images in digital colposcopy. These
studies’ key aim is to provide health practitioners with tools
during colposcopy exams irrespective of their level of compe-
tence. Previous studies have been developed in diagnosis using
computer-aided systems for a range of tasks, including
improvement and evaluation of image quality, regional seg-
mentation, picture identification, identification of unstable
regions and patterns, transition zone type classification (TZ)
type, and cancer risk classification [5]. CAD instruments help
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improve the picture of cervical colposcopy and areas of concern
segments and identify certain anomalies. These methods help
clinicians to make diagnostic choices, but they should have
adequate experience and expertise to make an appropriate
diagnosis. The appearance of pathological regions may indicate
such neoplasms; so in a colposcopy analysis, the detection of
these lesions may be very critical. These abnormal areas include
acetowhite, abnormal vascularization, mosaic areas, and punc-
tures [6, 7]. Most literature surveys recommended a mecha-
nism to spot irregular areas in conventional colposcopy
images. Most works include inconsistent zone segmentation,
including exclusion from specular reflection, segmentation of
the cervix, acetowhite field segmentation [8], mosaic regions
recognition, vasculature and puncture, and classification [9].

Deep learning has made significant advances in different
applications such as computer vision, natural language pro-
cessing, forecasting, and battery health monitoring [10].
Medical image processing, including classification, identifica-
tion, segmentation, and registration, plays an essential role in
disease diagnosis. Medical images such as MRI, CT, and
ultrasound images and blood smear images [11], make up
the vast majority of the image data processed. Deep learning’s
multilayer neural network perception mechanism can learn
more abstract features in images and is expected to address
the issues that plague conventional medical CAD systems.
However, the deep learning techniques should be supported
with an extensive database, especially for positive cases. To
overcome this issue, many transfer learning and ensemble
learning approaches are discussed in the previous work.
The convolution neural network (CNN) is used to identify
MI signals in an efficient computer-aided diagnosis (CAD)
framework for urban healthcare in smart cities [12]. The
novel feature extraction protocol followed by the genetic
algorithm is proposed to detect arrhythmia to improve the
performance using several tiers [13]. The structure is as
follows: Section 2 discusses the related work connected with
cervical screening, Section 3 elaborates the proposed archi-
tecture of CYENET to cervical screening, Section 4 interprets
the results obtained out of the implementation, and Section 5
drawn the conclusion and future scope of this work.

2. Related Work

Several algorithms were utilized for machine learning, and
their segmentation refining was matched to a cervical cancer
classifier in which random forests showed the best output
[14]. Also, robust refinement methods have been used to man-
age, and unattended learning approaches to the different
image or superpixel patches from extracted objects methods
include Adaboost detectors [15], SVM supports [16], or
Gaussian mixture models [17]. A novel Markov random field
segmentation based on superpixels was proposed and imple-
mented for nonoverlapping cells [18]. The multifilter SVM is
executed, and the parameters were set for the identification
of cervical cells [19]. It was suggested that cervical cell classifi-
cation using artificial neural networks (ANN) was built and
tested with a precision of 78% [20]. Unbalanced medical
evidence for the variety of cervical cancer without any param-
eter change was addressed using an unsupervised approach
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[21]. The particle swarm optimization (PSO) with KNN mem-
bership values outperformed all other fundamental classifica-
tion models [22]. The cervical cancer cell is classified using
shape and texture characteristics of the segmentation and
classification method and Gabor characteristics. It was found
that a greater accuracy of 89% was obtained for both normal
and cancer cell classification [23]. The extracted features from
CNN were classified using the least square support vector
machine (LSSVM) and produced more remarkable results,
one of the suggested model’s reference components [24].
Radial basis function- (RBF-) SVM also obtained a strong out-
come and outperformed logistic regression and random forest
methods [25]. Based on the features, it was found that the
accuracies were ranged from 90 to 95%.

New deep architectures such as ResNet, Inception, and tree
models [26] have recently shown promising results in many
applications and detect cancer cells. As one of the deep learning
methods, the convolutional neural networks is the commonly
used technique to identify and recognize cervical cancer [27].
Early cervical cancer cell identification and classification
method based on CNN’s was developed to extract deep learned
features from the cervical images [28]. The extreme learning
machine (ELM) was used to categorize the input images. The
CNN paradigm was used for fine-tuning and transfer learning.
Alternatives to classifiers based on the ELM, the multilayered
perceptron (MLP), and the automotive encoder (AE) were also
studied. It was reported that the stacked soft-max autoencoder
reported a 97.25% precision on the cervical cancer dataset [29].
It was concluded that a tentative effort was made to tackle the
issue of patient risk prediction using the applications for
machine learning to grow cervical cancer. The machine learn-
ing software with cervical screening was used to tackle the
problem of predicting the patient’s risk [30]. They concentrated
on the transition of information between linear classifiers to
related activities to predict the patient’s risk. Since the related
risk factors in the population are highly sparsely influenced,
the techniques for reducing dimensionality can boost the
power of predictive machine learning models [31]. However,
several projects benefit from reducing dimensionality and clas-
sification by using suboptimal methods in which each part is
learned separately [32]. For the efficient collection and classifi-
cation of cell properties in cervical smeared images [33], a
quantum hybrid- (QH-) innovative approach was combined
with adaptive search capability of the quantum-behaved parti-
cle swarm optimization (QPSO) method with the intuitionist
reasonableness of the standard fuzzy k-nearest neighboring
(fuzzy k-NN) algorithm (known simply as Q-fuzzy approach).

A model was suggested for the cervical cancer prediction
model (CCPM) that produces an early prediction of cervical
cancer with input risk factors [34]. CCPM eliminates outliers
first by employing outlier identification methods such as
Density-Based Spatial Noise Cluster (DBSCAN) and isola-
tion Forest (iForest) by balancing the number of cases in
the dataset. This approach has shown greater accuracy in cer-
vical cancer forecasting. To design an integrated cervical cell
diagnostic and screening device, the authors have developed
a new Regionally Growing Extraction Function (RGBFE) to
extract diagnostic features from the images [35]. Data from
the cervical cell images with extracted features were supplied

into the intelligent diagnostic component. Precancerous
phases were forecasted using a new architecture called the
Hybrid Multilayered Perceptron (H2MLP) network using
an artificial neural network is created. The cells are classified
into normal, low-quality intraepithelesis (LSIL), and high-
quality intraepithelesis (HSIL). Improved screening systems
are also inaccessible in developing countries, owing to the
difficulty and time-consuming nature of manually screening
irregular cells from a cervical cytology specimen. This system
focused on transfer learning, and pretrained and densely
connected convolutional networks are used to suggest a
computer-aided diagnostic (CAD) method for automated
cervical image classification to assess CIN2 or higher level
lesions in the cervical imaging (ImageNet and Kaggle). The
effect of various training strategies on model results, includ-
ing scratch random initialization (RI), pretrained model
(FT) tuning, different size of training data, and K-fold cross
validation, was evaluated. Experimental findings demon-
strated accuracy of 73.08% for 600 test images [36]. The
summary of the literature related to the screening of cervical
cancer is provided in Table 1. Owing to the millions of cells
that a pathologist must examine, Pap smear screening takes
longer days for analyses. Deep learning models were used
to identify all cells and other materials present in the Pap
smear image screening. The system is often difficult to
classify since two cells overlap. To address the need for this
problem, meticulously annotated data is required; developing
this form of the medical field dataset is very difficult. Consid-
ering the challenges mentioned above, a novel deep learning
model for cervical cancer screening via colposcopy is pro-
posed. The significant aspects of using colposcopy images
for cervical cancer screening are that it provides more focus
to the patients because it is a simple and noninvasive proce-
dure (no need to introduce instruments into the body).
When compared to the other tests, the colposcopy dataset
array is sparse. The automated classification of cervical can-
cer from colposcopy images helps mass screening for medical
professionals to quickly determine whether further diagnos-
tic checks are necessary. This paper presents the computer-
ized system for cervical cancer prediction using colposcopy
images. The critical contribution of the article is as follows:

(i) This research is aimed at developing automatic cer-
vical cancer detection from colposcopy images using
the proposed deep convolutional neural network
named CYENET. Unlike previous work reported in
the literature, this proposed method does not require
segmentation and feature engineering stages; it can
also extract the discriminative features using ensem-
ble approaches

(ii) The transfer learning approach is used by fine-tuning
the VGG19 model, which is widely used for medical
image processing to predict accuracy. Besides the
extensive experiment on the cancerous and noncan-
cerous colposcopy images to effectively demonstrate
the proposed CYENET (colposcopy ensemble net-
work) and pretrained VGG model with recently pro-
posed methods, and our proposed method achieves
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TaBLE 1: Summary of the related works for screening cervical cancer.
S.no Methods Dataset Advantages Disadvantages
(i) High accuracy .
1 Inception V3 model [1] Herlev dataset (ii) Good universality (i) The df:ep ne.twork ne.eds further
. study to investigate cervical cells.
Low complexity
Transfer learning, pretrained Fujian Maternal and child (i) More feasibility and N ore
2 DenseNet [2] health hospital Kaggle effective (i) Limited data
CNN-extreme learning (i) Fast learning (i) More complexit
3 machine- (ELM-) based system Herlev dataset (ii) Easy convergence o prexty
. (ii) Need more investigation
[6] (iii) Less randomized
Gene-assistance module, (‘thefse hosp ital and (i) More scalable and N or s
4 . Universitario De Caracas, . (i) Limited datasets
voting strategy [7] practical
Venezuela
5 Random forest and Adaboost Radiotherapy dataset i) Bet_ter treatment (1) Nee.:d to extract features
[14] planning (ii) Painful treatment
. (i) Better accuracy (i) Need to improve accuracy by
6 ColpoNet [16] Colposcopy images (ii) Efficient classification ~ extracting relevant information
. g . . . . o . .
” CNN Model [17] Papanicolaou-stained cervical (i) B'ettgr sensitivity and .(l) Reported 1.8% false-negative
smear dataset specificity 1images
Fourier transform and (i) Fully automatic system
8 machine learning methods. Microscopic images (ii) Saving precious time for (i) The level of complexity is more
[18] the microscopist
. (i) Need improvement to adjust
9 CNN-SVM model [21] Herlev and one private dataset Eg)cl}-;)ioﬁers(zzlisctlrllr?cs parameter
& Y (ii) Need of hand-crafted features
(i) High accuracy (i) Training time is very high due to
10 Stacked Autoencoder [27] UCI database (ii) Reduced data dimension reducing the dimension
. . . . (i) Better accuracy (i) Time-consuming due to two-
11 PSO with KNN algorithm [33] Cervical smear images (ii) Good feature selection  phase feature selection
(i) For 2 class problem
achieves the accuracy of . .
12 Ensemble model [34] PAP smear image 96% i((li)er(l)t\i,g all of cells are difficult to
(ii) For 7 class problem
achieves an accuracy of 78%
(i) Good correlation
13 Multimodal deep network [37] National Cancer Institute (if) High accuracy (i) More complexity in image fusion

(iii) Learn better

complementary features

better accuracy as compared with the existing method
in terms of classifying cervical cancer from colpos-
copy images

(iii) The convolutional neural network from scratch is
designed to automate screening the cervical images
by using an optimized architecture with an ensemble
approach named CYENET (colposcopy ensemble
network) deep learning architecture with a signifi-
cant increase in diagnostic accuracy

(iv) Intel ODT dataset is used for experimentation. The
data augmentation technique is performed on the
colposcopy images to prevent the trained model’s
overfitting problem. This technique is an efficient

strategy to learn the particular features to achieve
superior accuracy

(a) Another significant contribution of this paper is
the use of occlusion sensitivity maps to visualize
the picture characteristics of cervical cancers for
classification purposes

3. Materials and Methods

A colposcopy image is an essential aid in early cancer diagno-
sis. The assessment and identification of people with irregu-
lar cytology who need further care or follow-up depend on
the transition zone colposcopic examination (TZ). The title
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of the TZ is also an essential aspect of this study. Intra- and
interobserver heterogeneity in the colposcopy perception of
distinctive properties is considered to be relatively strong,
but the observer heterogeneity of the TZ form and squamous
column junction (SCJ) visibility evaluation and the quantita-
tive calculation of the intra- and interobserver similarities of
TZ contour tracing [37] are hardly studied. A TZ has been
graded as type 1 because it is fully ectocervical (without any
endocervical portion). Type 2 and Type 3 transition areas still
have an endocervical component. When the latest SCJ was
fully visible in TZ, it was considered a type 2. If even using
external instruments, the new SCJ was not fully visible, and
it was listed as type 3 [38]. It is used to assess a patient with
pathological cytology, although it is not a final diagnostic
examination. Variations may be made by the same colposco-
pies or by various colposcopies. The biggest downside of
using colposcopy as a diagnostic instrument is the clinician’s
expertise and experience. Different experiments demon-
strated good sensitivity and low accuracy in colposcopy diag-
nosed invasive and preinvasive cervix lesions [39].

The ensemble learning approach is employed using seven
machine learning algorithms that are stacked together for
automated detection for hepatocellular carcinoma [40] and
using collaborative representation classification with boosting
technique for classifying the hyperspectral image [41]. The
flow map of the proposed automated method for detecting
early cervical cancer is shown in Figure 1. The region between
the original and the new SCJ is described colposcopically as
the TZ [42]. The recognition of the TZ is essential information
that all colposcopies require. Next, to identify the TZ as type 1,
2, or 3, you must find the new boundary between squamous
and columnar epithel. Figure 2 displays example pictures from
the dataset with type 1, 2, and 3 classifications. The center
image in the green is the image taken by passing the green light
to improve the cervical part’s visibility.

3.1. Deep Convolutional Neural Network Model. The CNN
models have been popular in many image processing applica-
tions, including medical image analysis. Detecting cervical
cancer in the colposcopy images is an obvious computer
vision problem. When comparing deep learning with con-
ventional features, the neural network, especially convolu-
tional, is used to distinguish cases type 1, type 2, and type 3.
The test is to diagnose cervical lesions using deep convolu-
tional neural networks (moderate). The proposed VGG 19
(TL) model is fine-tuned to classify three cervical cancer clas-
ses by freezing the top layers and tested with the cervical
image dataset. We proposed a CYENET architecture by
incorporating the essential advantages of depth and parallel
convolutional filter, to enhance the extraction of specific cer-
vical cancer features from colposcopy images. The proposed
model consists of two types of convolution layers, ie.,
traditional convolution layers at the beginning of a network
preceded by one single convolution filter and multiple con-
volution layers to extract various features from the same data.
Multiple convolutional filters are used to remove the biased
parts to reduce the overfitting effect. This proposed model
involves three phases: (1) data preprocessing, (2) CNN model
training, and (3) classification results. The CYENET model

consists of 15 convolutional layers, 12 activation layers, five
max pooling layers, and four cross channel normalization
layers. The test data are entered into the trained model, and
the output parameters are measured. The initial strata are
inspired by Google net architecture, several layers for manip-
ulating functionality, and two fully connected layers with
Softmax classification layers seen in Figure 3. The network
description of the CYENET model is provided in Table 2 that
refers to the convolution layer and max-pooling layer, vary-
ing the filter size in the parallel convolutional block.

3.2. Dataset and Preprocessing. The dataset consists of 5679
colposcopy photographs obtained from the cervical screen-
ing data collection by Intel and Smartphone ODT. The data
is classified by considering the transition zone visible in the
diagnostic study’s specific picture [36]. The dataset is prepro-
cessed to delete all the cases’ ethical details. Firstly, the data
are divided into three categories through diagnostic records:
type 1, type 2, and type 3. A referenced pretrained dataset
identifies the area of interest (ROI) of the cervical images
due to minimal professionalism with MATLAB image labeler
applications’ assistance. The central region in which the
lesion occurs is the ROI area called the clinic’s transition zone
(TZ). The original picture is obtained first with annotations,
marks, and ROL

The total images are 691 cases of type 1, 3126 cases of type
2, and 1862 cases of type 3. By observing the entire dataset, it is
found that the dataset is imbalanced due to its unequal
distribution of images. Due to dataset imbalancing, the model
maybe leads to an overfitting issue. To overcome this issue, the
oversampling technique is adopted. The oversampling method
is known to repeat the type 1 and type 3 images arbitrarily and
equal to the number of images in type 2. The cumulative
images in the data collection after the oversampling technique
are 9378 images. Secondly, data enhancement methods are
used to optimize the volume of training data. Using the data
augmentation method, the model robustness is increased,
and the overfitting problem is reduced. The input image is
augmented by rotating, adjusting the brightness, cropping,
and randomly increasing the dataset. After the image augmen-
tation process, the total image size is increased to 11266. All
transformed image data is eventually dimensioned to 227 x
227 for CNN to fit the model. The dataset is divided into the
training data with 7498 images, validation data with 1,884,
and testing data with 1,884 photos. Figures 4(a) and 4(b) dis-
play the data augmentation technique to increase the data
before the input of data to train neural networks.

3.3. Model Parameters. In this work, the two-deep learning
model is used to diagnose cervical lesions through the colpo-
scopic images. The transfer learning VGG_19 is fine-tuned
for the proposed method, and CYENET architecture devel-
oped from scratch. The standard neural network framework
uses a single type of CNN filter with an input data size vary-
ing from 1x 1 to 5 x 5. The filter convolved with the input
data to produces the same input data with a discriminatory
feature map. The multilayer convolutional filter design’s
motivation is fundamental that incorporating several convo-
lutional filters to extracts the discrimination-based multilayer
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FiGuRre 1: Flow chart of the proposed CYENET model for diagnosis of cervical cancer.

FIGURE 2: Dataset samples of type 1, type 2, and type 3 classes.

features. It extends further clusters from the same data. The
three different kernel sizes are included in the training timing
with 1x 1, 3x3, and 5% 5 to extract specific features. The
proposed CYENET architecture and model parameters are

fixed as an epoch of 50, batch size of 64, Adam optimization
algorithm with a learning rate of 0.0001, and a decaying
learning rate of 0.01 using piecewise technique every ten
epochs. Before training, the data are shuffled at each point to
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TaBLE 2: Description of network architecture of the CYENET model.

Layer No. Layer type Filter size Stride No. of filters FC units Input Output

1 Convolution 1 5x5 2x2 64 — 3x227 x227 64x112x112
2 Max-pool_1 3x3 2%x2 — — 64x112x112 64 x 56 X 56
3 Convolution 2 1x1 Ix1 64 — 64 X 56 X 56 64 X 56 x 56
4 Convolution 3 3x3 1x1 128 — 64 x 56 X 56 128 x 56 x 56
5 Max-pool_2 3x3 2x2 — — 128 x 56 x 56 128 x 28 x 28
6 Parallel convolution 1 1x1,3x3,5%x5 I1x1 320640128 — 128 x 28 x 28 224 x 28 x 28
7 Max-pool_3 3x3 2x2 — — 224 x 28 x 28 224x14x 14
8 Parallel convolution 2 1x1,3%x3,5%x5 1x1 32064®128 — 224 x 14 x 14 224 x14x 14
9 Parallel convolution 3 1x1,3%3,5%5 Ix1 320640128 — 224 x 14 x 14 224 x 14 x 14
10 Max-pool_4 3x3 2x2 — — 224x14x 14 224 X7 X7
11 Parallel convolution 4 1x1,3%3,5%5 Ix1 320640128 — 224 x7x7 224 x7x7
12 Max-pool_5 5x5 Ix1 — — 224 X7 X7 224 X2X2
13 Fully connected 1 — — — 512

14 Fully connected 2 — — — 3

bring about a normalizing effect during training. Additional  the particular layer. It is given by equation (2).
discriminative features are extracted by each convolutional

layer which is adding an advantage in prediction. Figure 5(a)

shows the activation map for type 1 cases extracted from the x; = S B (2)

single filter from the convolutional layer land Figure 5(b).
The activation map for typel instances extracted from the 64
filters from the convolutional layer 1. It has been done to
understand what features our CNN model is extracting for
the detection of particular classes.

Mathematical equations that decide the performance of a
neural network are activation functions. The functionality is
attached to each neuron in the network to determine whether
or not it should be triggered (“fired”), depending on input rel-
evance with the model prediction. ReLU is a piecewise linear
function that, if the input is positive, outputs directly; other-
wise, it outputs zero. The ReLU activation is used due to its
faster converges and avoids easy saturation. It overcomes the
problem faced by logistic regression and tan hyperbolic func-
tion of an inability to output the values greater than 1. The
ReLU activation function is used in all the hidden layers. It
is defined as

f(x) = max (0, x), (1)

where x is the input of the neuron. The ReLU activation func-
tion is programmed to exit the limitless activation function.
The concatenation layer is used to concatenate the different
features provided by the other kernel. After each concatena-
tion layer, the local response normalization is employed to
carry out the channel wise normalization of the activation
function to reduce the model’s overfitting problem. The local
response normalization can be done in two ways: (i) within
the channel and (ii) across the channel. In this proposed
method, the local response normalization is carried out as
cross channel normalization for pixel-wise normalization in

(2

In equation two, the terms k, «, and S€R are hyperpara-
meters, and x; is the input pixel value. The A, pooling layer
is used to minimize dimensionality after performing normali-
zation. The max-pooling layer is used to reduce the dimension
of features extracted from the convolutional layer and reduce
the model’s computation complexity by only keeping the
channel’s maximum pixel values with the specified kernel size
2 x 2. After the max-pooling layer 5, fully connected layer 1
with 128 output nodes with a drop out ratio of 0.5 is connected
that follows the FCI layer. The fully connected layer 2 with
three output nodes is associated with the dropout ratio of
0.3% to reduce the overfitting problem. The softmax layer out-
puts each class’s probabilities concerning the ground truth
marks of the training and validation performance. The colpo-
scopic images’ three-class output are type 1, type 2, and type
3 to reduce the model’s computation complexity instead of
having 100 to 1000 nodes. The softmax activation function is
indicated as

fi(z):z Z, " (3)

In equation (3), f; is the i"™ part of the class scores f and z
vector, abd a vector of arbitrary real-valued scores is squashed 0
to 1 with the probability ofthe prediction rate. The categorical
crossentropy function is used as the cost function to determine
the error between the predicted and observed classes. The
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FIGURE 4: (a) Sample input images and (b) augmented images using different techniques.
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FIGURE 5: (a) Feature map of the convolutional layer with (a) 1 filter and (b) 64 filter.

categorical crossentropy function is given in equation (4).

N

H,(9) =~ ) yilog ((7,)). (4)

i=1

In equation (4), (7,), the i™ scalar value is in the model
output, y, is the corresponding target value, and N is the num-
ber class label (0 for type 1, 1 for type 2, and 2 for type 3). We
investigated the two models CYENET and VGG 19, in the pro-
posed process. The CYENET is developed from scratch, and
the model VGG 19 is explored through the adaptation of the
transfer learning process. Both the model is trained to classify
the type of cervical cancer from the colposcopic images.

4. Results and Discussion

The experiment is implemented in MATLAB 2020b, per-
formed on a 24 GB Quadro NVIDIA RTX 6000 workstation
computer with an Intel i9 processor. Experimental data is
derived from the Kaggle dataset [36]. The colposcopy cervical
cancer dataset is split into 80% training, 10% validation, and
10% testing. Approximately 7498 training images and 1884
validation images are used for the training and validation pro-
cess. The depth of the layer, initial learning rate, optimizer,
momentum value, and L2 regularization value are calculated
from the Bayesian optimization. The number of epochs is
fixed as 50 for training the model. The model is trained with
a multi-GPU environment, batch size of 64, and initial learn-
ing rate of 0.0001. As discussed in Section 3, CYENET and
VGG 19 with fine-tuning are trained with the same image
dataset with fixed parameters. The precision, sensitivity, spec-
ificity, and Cohen’s kappa score are evaluated to analyze the
deep learning model. The confusion matrix is also used to test
the models since it deals with a multiclass classification prob-
lem. The confusion matrix is used to analyze the classification
model’s performance in Figure 6, the training accuracy of the
proposed method VGG_19, and the CYENET model trained
against the training dataset with epoch 50.

The training accuracy gradually increased concerning the
epoch’s number and reached the training accuracy of 97.1%
for the CYENET model and 87% for the VGG_19 (TL) model.
The validation plot for the proposed CYENET and the pre-

cisely tuned VGG 19 against the epoch is shown in Figure 7.
The accuracy of the model is undoubtedly growing regarding
the number of epochs the model is trained. After 23 epochs,
the proposed CYENET model achieves the validation accu-
racy value of 91.3%. Simultaneously, the sophisticated VGG-
19 model achieved some early oscillation in the accuracy due
to the chosen learning rate of 0.0001. The VGG 19 model
obtained a validation accuracy of 68.8%. The results indicate
that cervical screening from colposcopic images of the CYE-
NET model performs better than the VGG19 model due to
its more robust and more straightforward architecture.

The training and validation loss curve of the proposed
model CYENET and VGG 19 are shown in Figure 8. The
model convergence of the proposed network is determined
by the shift in the validation loss curve. Compared to the
VGG 19, CYENET converges very quickly with a loss value
of 0.2982, and the model VGG 19 converges to 0.9885 loss
values. In comparison, the validation model of the VGG 19
is unstable, CYENET is stable, and the loss curve is smoother.

Figure 9 displays the confusion matrix for the proposed
CYENET model with test data, which shows the cumulative
number of images projected with accurate label correspon-
dence to the predicted label data from the confusion matrix.
The CYENET confusion matrix includes true positive (T
positive), false positive (F, positive), true negative (T,
negative), and false negative (F,,. negative). Table 2 reports
accuracy, sensitivity, specificity, positive predicted value
(PPV), and negative predicted value (NPV) as our evaluation
metrics. Sensitivity and specificity are the most accurate
assessment metrics for classifier completeness computed
from the confusion matrix in medical images.

rue

T Positive + F,; . Negative
AUy = e T T Negative  F o Positive + Fo Negatve” ()
rue e Negative + F ., Positive + F ;.. Negative
. T e Positive
Sensitivity = e —, (6)
T, Positive + F ;. Negative
. T, .. Negative
Specificity = rue 7C8 —, (7)
T, Negative + F .. Positive
PPV — Tr.ue Positive . ()
T, Positive + F ;.. Positive
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F1GURE 9: Confusion chart of the proposed CYENET.
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Sensitivity is the percentage of people who test positive
out of all those who have the disease. The proportion of
people who test negative among all those who do not have
the disease is the specificity of a test. The PPV is the possibil-
ity that a person will have the disease after receiving a positive
test result. The NPV is the possibility that a person will not
have the disease after receiving a negative test result.
Table 3 shows the test results of the proposed model tested
with 1884 test images. The above experimental result CYE-
NET model outperformed all the other models in the table
trained on the colposcopic images. The DenseNet-121 and
DenseNet-169 achieved lower accuracy with 72.42% and
69.79%, respectively. The model performance is influenced
by the size of the dataset and also the depth of the layer. The
deep architecture may decline its overall model classification
performance due to the problem of interclass similarity. The
Inception-Resnet-v2 model provides a lower specificity of
70.6% due to the dataset imbalance. The model is prone to
image characteristics such as contrast, brightness, tone, and
quality of the image capturing devices. The SVM method dis-
cussed in the performance table achieves an accuracy of
63.27% and the lowest sensitivity value of 38.46%. The model
is trained on both hand-crafted features and features extracted
from the CNN model. It is a time-consuming difficult task to
perform in real-time even though the cost is nominal. The
colponet model based on the CNN architecture provides an
accuracy of 81.0% for classifying cervical cancer from the
colposcopy images. The difference between the training accu-
racy and validation accuracy of the component model is very
high. The model’s training time is very high where the model
is trained for 3000 epochs and provides the convergence loss
of 1.12, which is very for the application of medical image
processing. The proposed CYENET model is designed and
trained to achieve an overall testing accuracy of 92.30% by
considering all these disadvantages. The proposed model uses
a different filter size to extract distinct features and works well
for unexpected data. It offers a 92.40% sensitivity and a 96.20%
specificity, which improves sensitivity and specificity by
approximately 25% compared with Inception-Resnet-v2 in
[45]. The proposed method has trouble distinguishing the
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TaBLE 3: Comparative experiment results of proposed architecture with different models.

Model name Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Ref
DenseNet-121 72.42 59.86 76.83 48.39 84.52 [43]
DenseNet-169 69.79 65.00 71.48 44.84 85.31 [43]
Colponet 81.0 — — — — [16]
SVM 63.27 38.46 71.85 3243 76.87 [44]
Inception-Resnet-v2 69.3 66.70 70.6 47.20 84.00 [45]
CYENET 92.30 92.40 96.20 92.00 95.00 Present study
VGGI19 (TL) 73.30 33.00 79.00 70.00 88.00 Present study
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F1GURE 10: Performance metric comparison of systems.

false positive samples from those with fewer false positives.
The CYENET model evaluates cervical epithelial features
rather than morphological ones, and its false-negative epider-
mal features are close to true negatives. The improved sensitiv-
ity and precision indicate that positive and negative samples
are predicted wisely. Since the model proposed is compared
to traditional metrics such as precision, sensitivity, and speci-
ficity, sometimes, the above metrics for multiclass problems
does not make sufficient to prove the model’s general ability.

By taking this into consideration, the F1 score of the
model is calculated by the harmonic mean of the accuracy
and reminder. Still class imbalances in the dataset influence
the f1 score, but Cohen’s Kappa metrics are seen to have
the right measure to tackle multiple class issues as well as
class imbalances which the statistical standards to find the
agreement between two parties. The suggested models CYE-
NET and VGG 19 (TL), both calculated with the colposcopy
images of the cervical cancer diagnosis, are measured using
F1 measurements and Cohen’s kappa. The F1 score of the pro-
posed CYENET and VGG 19 (TL) is 92.0% and 44.80%,
respectively, and Cohen’s Kappa score of 88% and 53.5%,
respectively. The proposed model CYENET is superior to
the literature models and even to the proposed model VGG

19 (TL). Figure 10 shows the graphical representation of the
model discussed in Table 2.Due to the existence of several
distractors such as pubic hair, intrauterine instruments, the
speculum, and even human parts, the proposed method for
cervical cancer screening using colposcopy can suffer. Another
issue with the proposed approach if the captured images are
out of focus and prediction accuracy will be reduced.

Figure 11 indicates the positive and negative expected
values (PPV) of CYENET and VGG 19 models. By fixing the
probability (prevalence) of infection to 0.05, the positive pre-
dicted value and negative predicted value of the CYENET
model are calculated with sensitivity and specificity of 92.40%
and 96.20%, respectively, for varying probabilities of infection
shown in Figure 11(b), and the VGG 19 (TL) model achieves
the sensitivity and specivity of 33.0% and 79.0%, respectively,
for varying probability demonstrated in Figure 11(a). The inci-
dence graph helps the medical practitioners to classify groups
with a previous risk of diagnosis with cervical cancer.

The overall run time of the proposed model CYENET is 3
minutes 32 seconds, and for VGG19 5 minutes 24 seconds,
the batch size of 64 is provided in Table 4. The total number
of parameters for the CYENET is 8465376, and the total
number of parameters for the VGGI19 is 123642856. Still,
the top layers are frozen to reduce the number of trainable
parameters. Among the compared models, the densenet
architecture proves to be having a significant training time
due to its dense nature.

4.1. Occlusion Sensitivity Map Visualization. We used occlu-
sion sensitivity maps [42] to determine the colposcopy images’
aspects that are most appropriate for the CYENET classifica-
tion decision in this experiment. Occlusion sensitivity is a sim-
ple technique for deciding which deep neural network uses
image features to make a classification decision. Precisely,
occlusion sensitivity measures the variation in likelihood score
for a given class as a function of mask location by systemati-
cally occluding various portions of the input picture with an
occluding mask (usually a grey square). Figure 12 depicts sev-
eral cervical cancer input colposcopy images with occlusion
sensitivity maps superimposed on them. The occlusion sensi-
tivity maps indicate that the colposcopy images’ parts contrib-
ute more to the score for cervical cancer classes and which
factors contribute less or none at all. It can be seen from the
occlusion maps that CYENET was able to distinguish regions
with speculum and other opacities. Compared to the Grad-
CAM process, the visualization results support our argument
that occlusion sensitivity maps are intuitive and interpretable.



BioMed Research International

1.1

14--
0.9 +
0.8
0.7
0.6
0.5 +
0.4 -
0.3 +
0.2 +
0.1 + -
04--

) predicted

VGG_19 (TL

-0.1 L L N

CYENET predicted cases

—=— PPV
—e— NPV

-0.1 0 0.1 02 03 04 05 0.6 0.7 0.8 0.9

Probability of infection

()

1 1.1

1.1
1_,,
0.9
0.8 ]
0.7 ]
0.6
051 -
04 ]
03 ]
021 -
01d--
0_,,

0l +—=——7 77T T T T T

-0.1 0 0.1 02 03 04 05 0.6 0.7 0.8 0.9
Probability of infection

—=— PPV
—e— NPV

(®)

FiGUre 11: PPV and NPV curve of VGG_19 (TL) (a) and CYENET (b).

TaBLE 4: Comparative results of proposed architecture with several parameters and run time.
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Model name

Number of parameters

Run time (per epoch)

DenseNet-121 [43] 7978856 21min 10s

DenseNet-169 [43] 28681000 24 min 59 s

Colponet [16] 6977000 16 min 27 s

Inception-Resnet-v2 [45] 55843161 15min 36s

CYENET 8465376 3min 32s

VGG19 (TL) 123642856 5min 24 s
. Type_1 Type_2 Type_3 -

Confidence: 0.99

Type_1
Confidence: 0.98

Confidence: 0.98

Type_2
Confidence: 0.82

Confidence: 0.93 ‘

Type_3
Confidence: 0.91

F1GURE 12: Occlusion sensitivity map for test data.



14

5. Conclusion

A new deep learning architecture name CYENET is proposed
for classifying the cervical cancer type from colposcopic
images. The image dataset is balanced using the oversampling
technique for improving the classification results. Two models
are presented in this paper. One is using a transfer learning
approach with VGG19 architecture. The other is a dedicated
new model called CYENET for cervical cancer type classifica-
tion using the ODT colposcopy image dataset. Both the models
are evaluated using classification accuracy, sensitivity, specific-
ity, Cohen’s Kappa score, and F1-measure. The VGGI19 (TL)
model’s sensitivity and specificity are 33% and 79%, respec-
tively, with Cohen’s Kappa score of 53.5%. The classification
accuracy for VGG19 was 73.3%. Relatively satisfied results are
obtained for VGG (TL). From the kappa score of the VGG19
model, we can interpret that it comes under the category of
moderate classification.

Similarly, the proposed CYENET exhibited high sensitiv-
ity, specificity, and kappa scores of 92.4%, 96.2%, and 88%,
respectively. The classification accuracy of the CYENET
model is improved as 92.3%, which is 19% higher than the
VGG19 (TL) model. Comparing the results of CYENET with
previously reported results of the work, CYENET is an effec-
tive and promising prospect as a diagnosis assist tool for clini-
cians. The proposed method of cervical cancer classification
can benefit a target population that does not need invasive
intervention. The proposed CYENET has better classification
efficiency and can assist medical professionals and skilled
healthcare practitioners in increasing the diagnostic sensitivity
and accuracy of cervical cancer detection through colposcopy
screening as a result. In the future, the theoretical deep learn-
ing model will be checked for different datasets. The approach
can also be enhanced by combining some advanced image
processing techniques and CNN algorithms to create a diag-
nostic system for cervical precancerous new data.
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