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Infrared Multiple Photon Dissociation Spectroscopy of Hydrated
Cobalt Anions Doped with Carbon Dioxide CoCO2(H2O)n

@@ ,
n = 1–10, in the C@O Stretch Region

Erik Barwa, Milan Onč#k,* Tobias F. Pascher, Andreas Herburger, Christian van der Linde, and
Martin K. Beyer*[a]

Abstract: We investigate anionic [Co,CO2,nH2O]@ clusters as

model systems for the electrochemical activation of CO2 by
infrared multiple photon dissociation (IRMPD) spectroscopy

in the range of 1250–2234 cm@1 using an FT-ICR mass spec-

trometer. We show that both CO2 and H2O are activated in a
significant fraction of the [Co,CO2,H2O]@ clusters since it dis-

sociates by CO loss, and the IR spectrum exhibits the charac-
teristic C@O stretching frequency. About 25 % of the ion

population can be dissociated by pumping the C@O stretch-
ing mode. With the help of quantum chemical calculations,
we assign the structure of this ion as Co(CO)(OH)2

@ . Howev-

er, calculations find Co(HCOO)(OH)@ as the global minimum,
which is stable against IRMPD under the conditions of our

experiment. Weak features around 1590–1730 cm@1 are most

likely due to higher lying isomers of the composition
Co(HOCO)(OH)@ . Upon additional hydration, all species

[Co,CO2,nH2O]@ , n+2, undergo IRMPD through loss of H2O

molecules as a relatively weakly bound messenger. The main
spectral features are the C@O stretching mode of the CO

ligand around 1900 cm@1, the water bending mode mixed
with the antisymmetric C@O stretching mode of the HCOO@

ligand around 1580–1730 cm@1, and the symmetric C@O
stretching mode of the HCOO@ ligand around 1300 cm@1. A
weak feature above 2000 cm@1 is assigned to water combi-

nation bands. The spectral assignment clearly indicates the
presence of at least two distinct isomers for n +2.

Introduction

Carbon dioxide as the most important greenhouse gas in the
Earth’s atmosphere is currently intensely investigated.[1] The

electrochemical route of activation involves the carbon dioxide
radical anion CO2

@ as a short-lived intermediate.[2, 3] It is well

known that CO2
@ is metastable and undergoes autodetach-

ment with a measured lifetime of up to milliseconds.[4–7] This
has been repeatedly confirmed by quantum chemical calcula-

tions.[3, 7–9] In interaction with a rare gas matrix[10] or a solvation
shell such as (CO2)n

@[6, 11, 12] or CO2(H2O)n
@ ,[13, 14] the radical anion

is stabilized.[4] The same is true in a salt environment where
the interaction with positive charge centers is responsible for

the stabilization.[15, 16] In the interaction of CO2 with metal ions,

electron transfer from the metal to the electrophilic carbon
atom can occur spontaneously, leading to complexes of the

metal center with CO2
@ .[4, 17–20] When a single bond is formed

between the metal and the carbon atom, as observed for ex-

ample, with the nickel group, coinage metal, or bismuth
anions, the excess charge in this metalloformate h1-(C) com-

plex, MCO2
@ , is delocalized over the whole molecular ion.[21, 22]

Organometallic complexes of transition metals like cobalt
can play an important role in catalytic reductions of CO2,[23] a

key step in carbon capture and usage (CCU) processes. In the
gas phase, the reverse reaction, CO oxidation leading to CO2,
has been observed with anionic cobalt oxide clusters.[24] De-
composition reactions of copper formate revealed important

elementary steps in the transformation of CO2 to HCOOH.[25]

Schwarz has recently summarized the mechanistic insight into
CO2 activation derived from gas-phase studies, combining ex-

periment and theory.[26]

Vibrational spectroscopy is a powerful method for structural

analysis in the gas phase.[4] Vibrational spectra of
Con

+(CH3OH)3 (n = 1–3) were measured by IR photodissociation

spectroscopy.[27] Anionic cobalt clusters doped with methanol,

ethanol, or propanol molecules were probed by IR spectrosco-
py in the O@H stretch region.[28] Cobalt carbonyl cations

Co(CO)n
+ (n = 1–9) were investigated in an Ar tagging experi-

ment by the group of Duncan, finding one strong absorption

for n = 1 at 2156 cm@1.[29] Cationic metal–CO2 complexes
M+(CO2)n (M = Mg, Al, Si, V, Fe, Co, Ni, Rh, Ir) have been exten-
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sively investigated in the past decades,[30–40] and also anionic
species M@(CO2)n (M = Ti, Mn, Fe, Co, Ni, Cu, Ag, Au, Sn, Bi)

have received considerable attention, foremost by the group
of Weber.[41–51] Generally, the anionic CO2

@ stretching vibrations

shift to the red compared to neutral CO2 vibrations.[4, 52] CO2 as
a ligand was also investigated as metal oxides, NbO2

+(CO2)n

and TaO2
+(CO2)n by Mackenzie and co-workers.[53] Photoelec-

tron spectroscopy by the Bowen group revealed CO2 activation
upon attachment to anionic cobalt pyridine complexes[54] and

provided a different look on anionic coinage metal complexes
with CO2.[55]

The above-mentioned IR study of Co(CO2)n
@ showed that Co

forms a core with two negatively charged CO2 molecules at-

tached via a bidentate motif, forming a twisted butterfly ar-
rangement. Further CO2 molecules surround this core.[43] A very

interesting study on cooperative effects which are operative

during metal insertion into the C=O bond of CO2 has been per-
formed recently by the group of Weber with Ti@(CO2)n.[51] Inser-

tion of neutral Ti into the C=O bond of CO2 had been predict-
ed by quantum chemical calculations.[56]

In an environmentally benign chemical process, water is the
ideal solvent. It is, therefore, important to understand coopera-

tive effects during the activation of CO2 in the presence of

water molecules. We have recently demonstrated C@H,[57]

C@C,[58–60] C@S[61] bond formation and protonation reactions[62]

with CO2
@(H2O)n clusters in the gas phase. Nanocalorimetry re-

vealed important details about the thermochemistry of the

carbon dioxide radical anion, in particular, its hydration enthal-
py.[63, 64] Raman spectroscopy of CO2

@ in bulk aqueous solu-

tion[65] places the symmetric stretching mode of hydrated CO2
@

at 1298 cm@1. In our recent IR study on gas phase clusters
CO2

@(H2O)n, we observed very similar values already around

n = 20.[14] Some hydrated metal ions M+(H2O)n, M = Mg, Cr, Co,
pick up exactly one CO2 molecule, indicating that electron

transfer from the metal to carbon dioxide takes place.[66–68] In
the case of magnesium, the electron is already present in the
hydration shell, detached from the metal center, as recently

confirmed by electronic spectroscopy of Mg+(H2O)n.[69]

For the structural analysis of hydrated metal ions M(H2O)n

(M = Li+ , Na+ , Mg+ , Mg2 + , Al+ , Ca2 + , Co+ , Co2 + , Cu+ , Ag+ ,
Cs+ , Ba2 + , Tm3 + , La3 +), a series of infrared photodissociation
studies are available.[70–77] Pure cationic cobalt clusters Con

+Ar
were investigated spectroscopically by argon tagging.[78]

Herein, we report the first IR multiphoton dissociation (IRMPD)
study investigating CO2 attached to a metal anion solvated
with water. The spectra of isolated CoCO2(H2O)n

@ , n = 1–10,

clusters along with quantum chemical calculations provide
clear evidence of CO2 and H2O bond rearrangements already

for the CoCO2H2O@ ion.

Experimental and Theoretical Methods

The experiments were performed on a modified 4.7 T FT-ICR
Bruker/Spectrospin CMS47X mass spectrometer[64, 79–82] equipped
with a Bruker infinity cell.[83] Ions are produced in an external laser
vaporization source[84, 85] with a 30 Hz pulsed frequency doubled
Nd:YAG laser (Litron Nano S 60-30). A gas mixture of He, H2O, and

CO2 is expanded through a homebuilt piezoelectric valve. The laser
is focused on a rotating Co target, producing a hot plasma, which
is cooled by supersonic jet expansion. These ions are guided
through a system of electrostatic lenses passing three differential
pumping stages to the center of the ICR cell[86] where they are
stored and mass selected in a 4.7 T magnetic field[87] under ultra-
high vacuum (&10@10 mbar) conditions. A copper shield, which is
cooled by liquid nitrogen to T &80 K, surrounds the cell[88, 89] to
minimize the amount of black body infrared radiative dissociation
(BIRD).[90–99]

From the rear side of the magnet, a tunable IR OPO laser system
(EKSPLA NT273-XIR) is coupled into the cell through a CaF2

window.[100] When absorption events lead to photodissociation,[101]

they are detected by the experiment. The measurements were per-
formed in the range of 1250–2234 cm@1 where characteristic C@O
stretching modes are typically observed. Details on the experimen-
tal laser setup can be found elsewhere.[14, 100] The present experi-
ments are lacking information on the number of photons required
for dissociation, thus we determine the IRMPD yield, which is total
photofragment intensity divided by total ion intensity, irradiation
time and laser power. In contrast to the usual definition of IRMPD
yield,[102] we also include the irradiation time, since we adjust it to
avoid saturation effects and to increase the signal-to-noise ratio of
weak bands. As already mentioned above, fragments like CO2C@

and CO2C@(H2O) cannot be detected,[103] because the excess electron
undergoes autodetachment. However, no signal loss was detected
in the present experiment, implying that the decomposition into
fragments like CO2C@ and CO2C@(H2O) does not take place to a signif-
icant extent.

Structure and properties of CoCO2(H2O)n
@ , n = 1–10, were studied

using methods of theoretical chemistry at the B3LYP/def2TZVPP
level of theory. Benchmark calculations with respect to CCSD(T) re-
sults for the most stable isomers of n = 1 can be found in Tables S1
and S2.

The CoCO2
@ ion exhibits either a metalloformate h1-(C) motif or the

linear OCoCO@ inserted structure. Starting with those, we added a
water molecule and constructed several isomers with both, an
intact and an activated water molecule, resulting in 14 stable struc-
tures for the CoCO2H2O@ ion. By adding successive water molecules
to various positions and optimizing the structures, we created
structures for clusters with up to four water molecules. For seven
selected structures, further solvation with up to a total of 10 water
molecules was performed. Vibrational spectra are modeled by
using Gaussian broadening with a full width at half maximum
(FWHM) of 20 cm@1 and scaled by a factor of 0.96. Wavefunction
stabilization was performed for every calculation, with internal in-
stability issues found in more than 20 % of calculated structures.
All considered structures represent local minima. Transition states
are verified through intrinsic reaction coordinate (IRC) calculations.
For some transition states, starting points with a small offset along
the normal vector of the corresponding imaginary frequency with
subsequent steepest decent optimization had to be used to make
the IRC calculations work. The Gaussian 16 software was employed
for all calculations.[104]

Results and Discussion

Bare CoCO2
@@

We start our discussion with the non-hydrated ion, CoCO2
@ . In

the experiment, no fragments are observed in the investigated
wavelength region even after irradiating for 20 s. This is in
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agreement with the results of Knurr et al.[43] Dissociation to
Co@ and CO2, the lowest energy fragmentation pathway, re-

quires 73 kJ mol@1, calculated at the B3LYP/def2TZVPP level.
IRMPD is inefficient in small systems with high binding energy,

since the molecule undergoes radiative cooling before dissoci-
ation.

Monohydrated CoCO2H2O@@

The absorption spectrum of the monohydrated ion,
CoCO2H2O@ , is shown in Figure 1 a. The only detected fragment

is CoOH2O@ formed in reaction (1), in which m is the number
of photons:

CoCO2H2O@ þmhnIR ! CoOH2O@ þ CO ð1Þ

In the measured IRMPD spectrum of CoCO2H2O@ , the ab-
sorption maximum appears at 1881 cm@1. A less intense broad
band was observed in the 1570–1730 cm@1 region. The absorp-
tion saturates upon longer irradiation at the maximum, but

only 25 % of the precursor ions dissociate. Laser misalignment
can be ruled out, since other ions could be almost fully deplet-
ed with the same laser alignment. This indicates that additional
isomers are present with an abundance of &75 %, which do
not absorb at this wavelength.

Quantum chemical calculations of CoCO2H2O@ reveal a rich
structural diversity. The most stable structure is isomer Ia, with

Co(OH)(HCO2)@ structure, in which both H2O and CO2 are acti-
vated, see Figure 1. Isomer Ib with cobalt inserted in the C=O

bond is less stable by 41 kJ mol@1. Further isomers with activat-
ed H2O, HCo(HCO3)@ (Ic), HOCo(HOCO)@ (Id, Ie), and

HCoOH(CO2)@ (If) lie even higher in energy. Two isomers with
intact H2O (Ig) and both intact H2O and CO2 (Ih) lie about
180 kJ mol@1 above Ia.

Figure 2 shows the potential energy surface of possible CO
loss reactions for the CoCO2H2O@ ion. Figure 2 a reveals a low
water activation energy on CoCO2

@ of 24 kJ mol@1 relative to
the entrance channel, transferring a hydrogen atom metal-

mediated to CO2 and eventually creating the most stable
Co(OH)(HCO2)@ structure (Ia), with If as an intermediate. Anoth-

er possible pathway can be seen in Figure 2 b, in which CO2 ac-

tivation in the absence of water requires 167 kJ mol@1 relative

Figure 1. Comparison of a) measured IRMPD spectrum for CoCO2H2O@ result-
ing in CO loss with b–d) the calculated absorption cross section stheo for iso-
mers Ia–h. The main band in the experiment was fitted with a Gaussian to
determine the peak position. Geometry optimization and frequency calcula-
tion for each isomer was performed at the B3LYP/def2TZVPP level of theory.
Relative energy of isomers is given in kJ mol@1 including zero-point correc-
tion.

Figure 2. Potential energy surface for CoCO2H2O@ , with relative energy in-
cluding zero-point correction in kJ mol@1. Calculated at the B3LYP/def2TZVPP
level of theory.
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to the entrance channel. As soon as water is added, the
OCCoO(H2O)@ structure (Ig) is formed. From there, water acti-

vation proceeds readily over a small barrier, and the path
opens to form the OCCo(OH)2

@ ion (Ib). Water activation on

bare Co@ requires 119 kJ mol@1 (Figure 2 c). CO2 can then be fur-
ther activated over a barrier of about 80 kJ mol@1 forming iso-

mer Ic. A potential energy barrier of 243 kJ mol@1 needs
to be overcome for isomerization to Id with
Co(OH)(HCO2)2

@ structure.
The most prominent spectral feature in the experiment at

1881 cm@1 can be reproduced by the C=O vibration in both Ib
and Ig isomers (Figure 1). However, isomerization of Ig to Ib
faces a barrier of only 8 kJ mol@1 (Figure 2 b) and is thus not ex-

pected to survive in the ICR cell. In the Ib structure, a CO
group is present and will readily dissociate after absorption of

3–4 photons at 1881 cm@1. We thus assign the 1881 cm@1 band

exclusively to isomer Ib. The experiment indicates that this
isomer forms about 25 % of the total ion abundance, estimated

from the IRMPD yield in saturation.
The weaker absorption band observed experimentally at

1570–1730 cm@1 lies in the range of the H2O bending mode
and the antisymmetric stretching mode of CO2

@ .[14] The pres-

ence of an intact water molecule, isomers Ig and Ih, can be

ruled out. According to Figure 2 these ions are expected to
dissociate by loss of water, which is not observed in the experi-

ment. The remaining calculated isomers Ia, Ic–f all exhibit vi-
brational modes in this region. The presence of the most

stable isomer Ia is probable, also due to its vibration at
&1300 cm@1 observed for n>1 (see below). The CO loss

energy is calculated to be 126 kJ mol@1 with respect to isomer

Ia, but it requires a rearrangement with a barrier of
291 kJ mol@1. For that reason, it is not plausible that Ia contrib-

utes to the observed photodissociation spectrum, as approxi-
mately 15 photons would be required. Similarly, isomer Ic is

topologically well separated from the CO loss pathway and
CO2 loss would be the most probable channel here.

Only isomers Id and Ie can thus account for the broad weak

feature. These isomers feature a HOCO ligand, with absorp-
tions in the relevant spectral region. Both face a barrier around
40 kJ mol@1 against rearrangement to isomer Ib, and the barri-
ers lie above the CO loss channel, Figure 2 b. Isomerization to

Ib will, therefore, be immediately followed by CO loss. The bar-
rier corresponds to the absorption of 2–3 photons. Depending

on the orientation of the ligand in Id and Ie and dynamic ef-
fects, the spectrum may exhibit the observed broad structure,
given the high conformational flexibility of the HOCO ligand.

Since relatively few photons are required for dissociation of Id
and Ie, a low abundance of these isomers is sufficient to cause

the observed features.
We therefore conclude that from the calculated isomers,

only Ib, Id and Ie contribute to the observed spectrum. Isomer
Ia is very likely present, even as the most abundant isomer,
but it does not lead to an IRMPD signal under the conditions

of our experiment.

Dihydrated CoCO2(H2O)2
@@

For clusters with two water molecules, water evaporation is ex-
clusively observed, reaction (2) with n = 2. The most intense

absorption band shifts to the blue, and additional bands arise
at both ends of the spectrum.

CoCO2ðH2OÞn
@ þmhnIR ! CoCO2ðH2OÞn@1

@ þ H2O ð2Þ

The features from the monohydrated species are again ob-
served, Figure 3. The absorption maximum in the IRMPD spec-

trum lies at 1898 cm@1, shifted by about 18 cm@1 to the blue,

and roughly an order of magnitude more intense compared to
the n = 1 spectrum. The higher intensity is due to the fact that
H2O loss requires less energy than the loss of a CO molecule,

that is, only about two photons. At longer irradiation times,
CoOH2O@ is formed by secondary fragmentation of

CoCO2H2O@ . To avoid saturation effects and secondary frag-
mentation, this strong band around 1900 cm@1 is measured

with shorter irradiation time than the rest of the spectrum.

In the region of 1500–1700 cm@1, two clearly visible bands at
&1622 and &1665 cm@1 are observed for n = 2. Further, two

new absorption bands are observed, a very weak transition be-
tween 1272 and 1314 cm@1 and a band around 2060 cm@1. The

isomer absorbing in the former region seems to be present
only in very little amount in our experiment. Even after irradia-

Figure 3. Comparison of a) measured IRMPD spectrum for CoCO2(H2O)2
@

with H2O loss with b–d) calculated absorption cross section stheo for
isomers IIa–h. The main band in the experiment was fitted with a Gaussian.
Geometry optimization and frequency calculation for each isomer was per-
formed at the B3LYP/def2TZVPP level of theory. Relative energy of isomers is
given in kJ mol@1 including zero-point correction.
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tion times as long as 10 s, only &2 % of the ions dissociate
due to laser irradiation. This band might arise due to the sym-

metric C@O stretching mode of an HCO2
@ ligand, which lies at

1314 cm@1 in HCOO@(Ar).[105, 106] In a recent study by Weber on

[Ti(CO2)n]@ , in which titanium inserts into a C=O bond, a small
band observed at 2056 cm@1 was assigned to oxalato ligands,
which can be ruled out here.[51]

DFT calculations predict very similar structures compared to
the case of one water molecule. The most stable isomer IIa has

a (H2O)(OH)Co(HCO2)@ structure, that is, CO2 and one H2O are
activated. Isomer IIb with an inserted metal in the C=O bond
and an activated H2O is less stable by only 31 kJ mol@1. Further
isomers lie at least &70 kJ mol@1 higher in energy.

As seen in Figures 3, 4, and Figure S1, Supporting Informa-
tion, calculated IR spectra do not change much when passing

from one to two water molecules. The most intense band in

the experiment at 1898 cm@1 results from the C=O vibration in
isomer IIb. The absorption at &1580–1700 cm@1 is due to a

mixture of the bending mode of the intact H2O molecule and
the antisymmetric C@O stretching mode in the HCO2 ligand,

with contributions from various isomers, for example, the C@O
stretch in IIc-e as well as the water bend in IIa or IIb. In iso-

mers IIc and IIf, the frequencies corresponding to the Co@H vi-

bration lie between 1650 and 1800 cm@1.
The small absorption at low energies can be assigned to

either isomer IIa or IIc. Depending on the angle of the (HCO2)
complex in IIa, the absorption might shift even more to higher

energies as seen in Figure S2, Supporting Information. The

presence of an exotic Co(OH)(H2O)···HCO2
@ complex with a rel-

ative energy of 24 kJ mol@1 could also account for the observed

band, see Figure S2, Supporting Information. However, forma-
tion of such an isomer does not correspond to the observed

water loss within the IRMPD process.
With respect to the experimentally measured band at

2060 cm@1, no calculated isomer features harmonic vibrational
modes near this wavenumber. Our excited states calculations
at the equation of motion-coupled cluster singles and doubles

(EOM-CCSD) level show that there are also no low-lying elec-
tronically excited states in the IR region. Such states are calcu-

lated in the OCoCO@ ion but disappear upon water activation.
Most likely, the band origins from overtones and combination

bands of lower-lying transitions.

Larger hydrated species

Clusters with n>2 also evaporate a single water molecule
upon resonant IR irradiation, reaction (2). Saturation effects
become more evident with increasing cluster size, and the
effect on the band shape of the absorption at 1900 cm@1 is
shown for n = 3 with two different irradiation times tIR in Fig-
ure S3, Supporting Information.

The spectra for n = 1–10 are shown in Figure 5, with the
spectra for n = 1, 2 included for comparison. Generally, one can

see a blueshift of the bands at &1300 and &1900 cm@1,
whereas the other two bands do not exhibit a systematic shift.

Figure 4. IR spectra of CoCO2(H2O)n
@ , 1,n,10, isomers a--c (see Figures 1,

Figure 2, and Figure S4, Supporting Information, for the respective struc-
tures) calculated at the B3LYP/def2TZVPP level of theory. Spectra of less
stable isomers are shown in Figure S1, Supporting Information.

Figure 5. Infrared multiple photon dissociation spectra of CoCO2(H2O)n
@ for

1,n,10 in the 1250–2234 cm@1 region. An irradiation time of 20 s is used
for n = 1. For n>1 ions are generally irradiated for 3 s, with exception of the
main peak, which is measured with 1 s for n = 2 and 0.5 s for n>2 to avoid
saturation.
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These shifts are compared in Figure 6, in which the evolution
of absorption maxima with respect to the cluster size is

shown. For the band at &1300 cm@1, experimental data shows
an average shift of &4 cm@1 per water molecule. This shift is

reproduced in the calculations by the vibrations of isomers Ia-
Xa with an average shift of &3 cm@1 per water molecule (Fig-

ure 6 a). The corresponding structures are shown in Figure S4,
Supporting Information.

The most intense absorption is found for all cluster sizes be-

tween 1860 and 1960 cm@1 and shifts to the blue with increas-
ing n. As mentioned above, this band corresponds to the C=O

vibration in isomer b, and its shift can be well reproduced by
our calculations, see Figure 6 b. For n,6, a nearly linear blue

shift is observed. As seen in Figure S5, Supporting Information,
a shoulder arises on the low-energy side for n = 4, which be-

comes more and more dominant for higher n, and two data

points are included for these cluster sizes in Figure 6 b. This
band is also seen in CO adsorption experiments on a Co sur-

face.[107] It is also seen as a very weak feature for inserted iso-
mers in Co(CO2)n

@ by the group of Weber.[43] We interpret it
here as the emergence of a new isomer, most likely involving a
hydrated CO group.

The wavenumber region of 1550–1750 cm@1 is composed
mainly of water vibrations, with minor contributions from the
antisymmetric stretching mode of formate. No clear trends can

be identified due to several isomers contributing to the spec-
tral envelope. Theoretical calculations do not show any clear

trend with respect to the cluster size for any isomer, Figure 4.
The last feature at &2060 cm@1 exhibits a pronounced band

only for 2,n,5. It does not shift to the blue with increasing

n. However, the band broadens with increasing n so that the
band is smeared out for n+6, resulting in a raised baseline as

seen in Figure 5. For larger clusters, the band might be ex-
plained by a combination of H2O bending n2, H2O libration nL2,

and bending of H2O triplets nT2,[108] as seen before in the spec-
tra of CO2

@(H2O)n.[14]

Conclusions

We measured IR multiple photon dissociation spectra of the
CoCO2(H2O)n

@ systems. As reported before,[43] the non-hydrated

species CoCO2
@ does not show an IRMPD signal in the wave-

length region investigated. Already for n = 1, the most promi-

nent absorption is characteristic of a metal-coordinated CO
group, which shows that the Co atom has inserted into the
C=O bond of CO2. However, the spectra also show that multi-
ple isomers are present, and those without a metal coordinat-
ed CO seem to prevail. Two isomers featuring a HOCO ligand
are most likely responsible for the weak, broad transition
around 1570–1730 cm@1, since they have absorptions in that

region and simple rearrangements allow for the release of CO.
For n+2, all primary IRMPD signals are due to loss of one

H2O molecule. The probably most abundant isomer class that

features a formate ligand is directly evidenced by a band the
position of which shifts from 1303 to 1337 cm@1 upon hydra-

tion with up to 10 H2O molecules. The region, which could be
indicative of a HOCO ligand, however, is now smeared out by

overlapping absorptions due to the water bending and anti-
symmetric HOCO@ or HCOO@ stretching modes. The most in-

tense absorption of the C@O stretching mode in the metal in-

serted isomer shifts to the blue with increasing n, from 1881 to
1938 cm@1. A weak feature at roughly 2060 cm@1, which is as-

signed to a combination band of low-lying water modes,
smears out with increasing solvation, leading to an elevated

baseline for large clusters in this region.
We rationalize the presence of different isomers by the pro-

nounced non-equilibrium conditions in the ion source. Due to

the specific nature of the potential energy surface of the
and thus persist under the experimental conditions.
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