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Abstract: The synthesis process or composition of mesoporous silica nanoparticles (MSNs) affects
the physicochemical properties. Using these properties, MSNs were synthesized through the Box–
Behnken design (BBD) among statistical experimental methods. The effect of the amounts of synthetic
reagents, hexadecyl triethyl ammonium bromide (CTAB), tetraethyl orthosilicate (TEOS), and 2 N
sodium hydroxide (NaOH), was studied using the reaction surface design. Surface area, particle size,
and zeta potential were set as response values. The physicochemical properties of the optimized
MSNs were evaluated, and the effect as a drug delivery system was evaluated by loading doxorubicin
hydrochloride (DOX). Nano-sized MSNs were successfully prepared with 0.617 g of CTAB, 8.417 mL
of TEOS, and 2.726 mL of 2 N NaOH and showed excellent physicochemical properties. The
optimized MSNs showed negligible toxicity in MCF-7 cells. The drug release profile from DOX-
loaded MSNs (MSN@DOX) showed an increased rate of release with decreasing pH of the medium,
with the release profile sustained for 48 h. In the cytotoxicity test, the sustained drug release
mechanism of MSN@DOX was confirmed. This study proposed a new statistical approach to the
synthesis of MSNs.

Keywords: mesoporous silica nanoparticles; doxorubicin; design of experiment; Box–Behnken
design; optimization

1. Introduction

In the early 1990s, a new silica-based material called mesoporous silica was discovered.
After that, mesoporous silica nanoparticles (MSNs) such as MCM-41, MCM-48, and SBA-15
with pore size of 2–10 nm, and 2D hexagonal and 3D cube structural properties have
attracted great attention in various fields [1]. Recently, MSNs are actively being studied
in the field of biomedicine, especially drug delivery systems [2,3]. Among the various
nanomaterials, MSNs have become the next-generation inorganic material platform for
biomedical applications [4–6]. In particular, MSNs are being actively studied in the field
of drug delivery systems due to their unique mesostructural properties such as large
surface area, large pore volume, adjustable particle size, easy surface functionalization,
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high stability, and good biocompatibility [7]. In addition, the physical structure and surface
of MSNs can be easily modified to control pore size, surface area, and particle size, and can
be chemically adjusted to optimize drug loading and release. The main advantage is that
physical properties of MSNs can be controlled and changed depending on the synthetic
process and materials [8,9]. To use MSNs as an ideal drug carrier, their stability, small
particle size, and uniformity must be ensured [10]. In addition, the surface area and pore
volume must be maximized to load large amounts of drug [11]. These parameters can
be controlled by varying the composition of various components such as pH adjusters,
surfactant concentrations, silica sources, and organic solvents and polymers [12]. Many
studies have consistently presented ways to control the physical form of MSNs [13,14].
However, rather than using a variety of additional polymers and excipients, the method of
controlling their physical form by varying their proportions in the basic synthetic reagents
of MSNs will be the more efficient and preferred method. Various silica-based reagents,
such as sodium silicate, tetramethylammonium silicate, and tetraethyl orthosilicate (TEOS)
have been used as silicon sources for MSNs. Quaternary ammonium surfactants such as
CTAB and cetrimonium chloride have mainly used as templates [8]. Because the properties
of MSNs are influenced by many factors, it is important to control them to ascertain if the
synthetic factors of MSNs affect their physical properties [7]. A statistical design approach,
such as in the experimental design, was applied to understand the interaction between
factors affecting the physical properties of MSNs according to changes in the MSN synthetic
reagents. In particular, the Box–Behnken design (BBD) was used. The BBD is less costly
but more efficient than a central composite design consisting of the same number of factors
because it has fewer design points [15,16].

DOX is an anthracycline antibiotic commonly used in breast cancer chemotherapy [17].
DOX is a common anticancer agent which inserts into the DNA strand to interfere with
tumor cell growth. Despite the advantages associated with DOX, there are obvious prob-
lems with side effects [18]. Anaphylaxis, heart failure, tissue necrosis at the injection site,
and leukemia are typical examples. In serious cases, heart failure occurs after DOX admin-
istration, and the mortality rate for one year can reach 50%. In addition, in the absence
of specific targeting, patients treated with DOX suffer [19]. DOX is a biopharmaceutics
classification system (BCS) class 3 drug that is highly water-soluble and can be easily cross-
linked with hydrophilic MSNs without complex bonding [4]. To reduce the side effects of
DOX and to increase bioavailability, the MSNs would be beneficial as drug carriers for the
delivery of DOX.

This study was performed to develop MSNs with a large surface area, small particle
size, and low zeta potential value. The range of factors used for MSN optimization was
selected through preliminary experiments. MSNs were optimized using BBD, a statistical
experimental design method. The physicochemical properties of the optimized MSNs were
investigated. Interestingly, there is no study about optimized MSN as a drug carrier of
DOX through design of experiment. Thus, this study aims to optimize MSNs as a drug
carrier using a statistical approach.

2. Materials and Methods
2.1. Materials

TEOS, CTAB, dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthoazol-2yl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT), carbamazepine, and high-performance liquid chromatog-
raphy (HPLC) grade acetonitrile (ACN) were purchased from Sigma Aldrich (St. Louis,
MO, USA). Ethanol, toluene, NaOH, hydrochloric acid (HCl, 36–38 v/v%), and formic acid
(>99.0%) were purchased from Samchun Pure Chemical (Pyungtaek, Korea). Human breast
cancer cell (MCF-7) line was obtained from Korean cell line bank (Seoul, Korea). Dulbecco’s
modified Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin–streptomycin, and
trypsin–EDTA were purchased from Gibco® BRL (Gaithersburg, MD, USA). DOX was
provided as a gift from Korea United Pharm Inc. (Seoul, Korea).
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2.2. Synthesis of MSNs

MSNs were synthesized following the modified Stöber method [20,21], though some
parameters were changed according to the Box-Behnken design. Typically, 0.5 mg of
CTAB was dissolved in 480 mL of distilled water, and then NaOH (3.5 mL, 2 N) was
added to the aqueous solution of CTAB. The mixture was heated at 80 ◦C and stirred
vigorously at 600 rpm. After the reaction mixture was stabilized at 80 ◦C for 30 min, 5 mL
of TEOS was added dropwise at 0.33 mL/min. Subsequently, vigorous stirring for 2 h
produced the MSNs suspension. The precipitate was obtained using centrifuge at 15,000
rpm for 20 min and washed out using ethanol and distilled water to eliminate unreacted
materials. To completely remove the surfactant, the obtained residue was dispersed in
100 mL ethanol/HCl (1:8, v/v) for 20 min under ultrasound and refluxed at 60 ◦C for 6 h.
It was then centrifuged at 15,000 rpm for 20 min and washed 3 times with ethanol and
distilled water. The obtained residue was dried in an oven at 40 ◦C for more than 12 h to
obtain the MSN powder.

2.3. Determination of Synthetic Reagent Amount

A simple preliminary experiment was conducted to determine the amount of CTAB,
TEOS, and 2 N NaOH to use in the synthesis of the optimized MSNs. The synthesis method
was carried out as described in the previous section “Synthesis of MSNs”. Then, 0.5 g of
CTAB, 5 mL of TEOS, and 3.5 mL of 2 N NaOH were set as the basic amounts and MSNs
were synthesized by changing the amounts of CTAB (0.125, 0.25, 0.5, 1.0, or 1.5 g), TEOS
(1.25, 2.5, 5, 10, or 15 mL), and 2 N NaOH (0.88, 1.75, 3.5, 7.0, or 10.5 mL). The particle
size of the synthesized MSNs was confirmed as described in Section 2.2. The structural
properties of MSNs were analyzed by small angle X-ray diffraction (SAXRD) as described
in the SAXRD section.

2.4. Optimization of MSNs

BBD is suitable for optimizing parameter levels through analysis of response surface
design [22]. The experimental design and statistical analysis of BBD were conducted using
the Design Expert® 11 software (Sta-Ease Inc., Minneapolis, MN, USA). Experiments with
BBD were designed to have 3 factors and 3 responses (Table 1). Factor selection and ranges
were based on screening with CTAB amount (X1, g), TEOS volume (X2, mL), and 2 N
NaOH volume (X3, mL) set in the ranges shown in Table 1. Responses according to the
factors were set to the target response values for the maximum surface area (Y1), minimum
particle size (Y2), and minimum zeta potential (Y3). Through BBD, 17 experiments with
different factor values were designed, and the optimized response was fitted to one of
the linear, 2-fi, quadratic, or tertiary models. The model presented for each response was
analyzed by ANOVA. It was verified through variables consisting of the lack of p-value,
the squared correlation coefficient (R2), and precision. As a result, MSNs with optimized
response values were synthesized through a statistical model.

Table 1. Factors and responses used in response surface design.

Response Surface Design

Factors Low Limit High Limit

X1: CTAB amount (g) 0.25 1.00
X2: TEOS amount (mL) 5.00 10.00

X3: 2 N NaOH volume (mL) 1.75 7.00

Responses Goal

Y1: Surface area (m2/g) Maximize
Y2: Particle size (nm) Minimize

Y3: Zeta potential (mV) Most negative
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2.4.1. Surface Area

The surface area of MSNs was measured using an ASAP 2420 analyzer (Micromeritics,
Norcross, GA, USA). In brief, the sample was stabilized at 200 ◦C for 6 h, then the surface
area was measured at −196.15 ◦C and calculated using the Brunauer–Emmett–Teller (BET)
method [23].

2.4.2. Particle Size and Zeta Potential

The particle size and zeta potential of MSNs was measured using ELS-Z2 (Osaka,
Japan). About 5 mg of MSNs was suspended in 10 mL of PBS buffer (10 mM, pH 7.4) and
sonicated for 5 min. The prepared suspension was measured at a 90◦ angle at 25 ◦C. In
addition, before the measurement, all samples were properly diluted with distilled water.
The sample was placed into a cuvette and then monitored with the ELS analyzer. The
parameters were measured 50 times for each sample.

2.5. Physicochemical Properties of MSNs

Based on the BBD, the optimal composition of MSNs was selected and optimized
MSNs were synthesized using 0.617 g of CTAB, 8.417 mL of TEOS, and 2.726 mL of 2 N
NaOH. The physical properties of the MSNs were investigated.

2.5.1. Morphology

The morphology of the MSNs was observed by field emission scanning electron
microscopy (FE-SEM; FEI, Magellan 400, Hillsboro, OR, USA). The MSN samples were
placed on carbon tape and made electrically conductive by coating with a thin layer of
OsO4 in a vacuum. Then, the morphology of MSNs was observed by FE-SEM and the
specific mesopore structure of MSNs was observed by FE-TEM (Tecnai G2 F30 S-Twin, FEI,
Hillsboro, OR, USA). MSNs were properly diluted, dispersed with ethanol, and placed on
carbon-coated 400 mesh copper grids. The grids were dried at room temperature (RT), and
MSNs were imaged with FE-TEM operating at the accelerated voltage of 300 kV.

2.5.2. SAXRD and Fourier Transform Infrared Spectroscopy

SAXRD analysis was performed to identify specific hexagonal two-dimensional
peaks that appear only in MSN structures. SAXRD patterns were recorded in NANOPIX
(RIGAKU, Tokyo, Japan) at an angle of 2θ and a scanning speed of 0.005◦/s in the range of
0–6.5◦.

Fourier transform infrared (FT-IR) spectroscopy was performed to confirm the binding
that occurs during MSN synthesis. The FT-IR peak was confirmed using an ALPHA-P
FT-IR spectrometer (Bruker Optics Inc., Billerica, MA, USA) in the range of 600 to 4000 cm−1

at RT.

2.5.3. Nitrogen Adsorption–Desorption Isotherm

To measure the surface area and pore size of MSNs, which are porous structures,
the adsorption–desorption isotherm of nitrogen was measured according to the method
described in the Section 2.4.2. The surface area was calculated by the BET method, and the
pore size and distribution curves were obtained using the Barrett–Joyner–Halenda (BJH)
method [24].

2.5.4. In Vitro Degradation

In vitro degradation tests were performed to predict the in vivo degradation patterns
of MSNs. The test was performed by dispersing 5 mg of MSNs in 30 mL of simulated body
fluid (SBF, pH 7.4) and 30 mL of rat plasma, individually. The samples were stirred at 37 ◦C
and 50 rpm. Each sample was collected at 0, 24, 48, and 72 h, and observed by TEM. The
SBF was prepared using a previously reported method [25]. Briefly, 7.996 g NaCl, 0.350 g
NaHCO3, 0.224 g KCl, 0.228 g K2HPO4·3H2O, 0.305 g MgCl2·6H2O, 0.278 g CaCl2, 0.071 g
Na2SO4, 6.057 g tris(hydroxymethyl)aminomethane, and 20 mL of 2 M HCl were dissolved
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in 750 mL of distilled water. Then, the pH of the solution was adjusted to 7.4 at 37 ◦C with
1 N HCl, and the SBF was diluted to 1 L with distilled water.

2.6. Characterization of MSN@DOX

DOX was selected as a drug model for applying MSNs to drug delivery systems. Here,
DOX-loaded MSNs (MSN@DOX) were developed and evaluated by assessing the drug
loading, in vitro drug release, cytotoxicity, and cellar uptake of MSN@DOX.

2.6.1. HPLC Method

HPLC analysis of DOX was performed with the Agilent 1100 HPLC system (Agilent
Technology, Santa Clara, USA) equipped with a UV detector. The column used was Xter-
raTM RP C18, 5 µm × 4.6 mm × 250 mm, and the column temperature was maintained
at 40 ◦C. The mobile phase was prepared with ACN and 10 mM NaH2PO4 (pH 4.0, phos-
phoric acid) at a ratio of 70:30. The flow rate was set to 1 mL/min and the injected volume
was 20 µL. The detection wavelength was set to 480 nm, respectively. The encapsulation
efficiency (EE) and loading capacity (LC) of DOX were calculated through the following
equation.

EE (%) =
[(

Amount o f DOX loaded into MSNs
Initial amount o f DOX

)]
× 100

LC (%) =
[(

Initial amount o f DOX− amount o f DOX supernatant
Amount o f MSNs+amount o f DOX

)]
× 100

2.6.2. Drug Loading

DOX was loaded into the MSNs using a diffusion–filling–precipitation method [26].
Briefly, various amounts of DOX and 10 mg of MSNs were mixed in 5 mL of distilled water,
and stirred slowly for 24 h under protection from light at RT. The mixture was adjusted
to pH 7.8 by adding a dibasic sodium phosphate solution (0.1 mol/L), and a desalination
process was induced. The DOX molecules adsorbed through the desalination process were
precipitated and adsorbed into MSNs.

Each sample was centrifuged at 12,000 rpm for 10 min to collect MSN@DOX, and
then washed 3 times with distilled water to remove unreacted material. Then, MSN@DOX
powder was obtained through a lyophilization process. The amount of DOX in MSN@DOX
was determined by measuring the supernatant obtained through centrifugation in the
washing process by the HPLC method.

2.6.3. In Vitro Drug Release

To confirm the release profile of DOX from MSN@DOX, an in vitro drug release test
was conducted in PBS solutions with pH values of 5.0, 6.8, and 7.4. Briefly, a 1 mg/mL
MSN@DOX suspension containing 2 mg of DOX was added to a 6–8 kDa dialysis bag,
and stirred in a tube including 40 mL of PBS at 37 ◦C at 100 rpm. The drug release test
was conducted for 48 h, and at predetermined time points, 0.5 mL of the sample was
collected by filtration through a 0.45 µm filter. The same volume of fresh PBS was supplied
to maintain the sink condition. The DOX concentration of the sample was determined by
the HPLC method as in the Section 2.6.1.

2.7. Cell Study
2.7.1. Cell Culture

Human breast cancer (MCF-7) cells were maintained in DMEM supplemented with
10% (v/v) FBS and 1% (v/v) penicillin–streptomycin under 5% CO2 at 37 ◦C.

2.7.2. Cytotoxicity

MSN cytotoxicity was confirmed in MCF-7 cells using MTT assay. MCF-7 cells were
seeded in 96-well plates in a cell culture medium at a density of 2.0 × 104 cells/well
(100 µL) and incubated for 24 h. Then, the DMEM was removed and washed carefully with
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pH 7.4 PBS. MSNs, MSN@DOX, and free DOX were dispersed in 1% PBS with 1% (v/v)
DMSO and diluted with medium to add DOX at various concentrations ranging from 0.1
to 50 µg/mL (100 µL) to each well. After incubation for 24, 48, and 72 h, 30 µL of MTT
solution (5 mg/mL) was added to each well and the cells were incubated at 37 ◦C for 3 h.
After 3 h, the medium was removed, and MTT-formazan crystals were dissolved in 200 µL
of DMSO. The absorbance of each well was measured at a wavelength of 565 nm using a
microplate reader (Infinite M200 PRO; Tecan Trading AG, Männedorf, Switzerland). The
cell viability of MCF-7 cells for different concentrations of MSNs was calculated using the
following equation.

Cell viability (%) =
ODsample

ODcontrol
× 100

2.7.3. Cellular Uptake

MCF-7 cells were seeded in 12 well plates at a density of 1 × 104 per plate and
incubated in a DMEM medium for 24 h at 37 ◦C. Subsequently, the culture medium was
replaced with PBS solutions containing MSNs, MSN@DOX, and free DOX. After 3 h of
incubation, cells were washed 3 times with PBS solution, and cellular uptake of MSN@DOX
was evaluated using a fluorescence microscope (EVOS M500; Invitrogen, CA, USA).

3. Results and Discussion
3.1. Synthesis of Optimized MSN
3.1.1. Selection of Synthetic Reagent Range

Before the optimization of MSN, the amounts of CTAB, TEOS, and 2 N NaOH were
determined. The composition, particle size, and structure ordering of each sample are
shown in Table 2. The structure ordering was determined through the presence or absence
of particle formation and the SAXRD pattern (Figure 1).

In general, CTAB was used as the template for micelle formation during MSN synthe-
sis [27]. White powder was formed in MSNs (F1, F2, F3, F4, and F5) using various amounts
of CTAB. However, as shown in Figure 1, F1 did not show peaks corresponding to the 100,
110, and 200 hkl Miller indices. This is a characteristic peak of MCM-41 (mobile configu-
ration of substance number 41) MSNs, showing a regular hexagonal pore structure [28].
When a small amount of CTAB was used (F1), it did not sufficiently form the mesoporous
structure of MSNs. On the other hand, the mesostructure of F5 was non-uniform due to
excessive CTAB [29].

TEOS acts as a silica precursor for the synthesis of MSNs, and its concentration affects
the rate of seed growth and nucleation [30]. When a small amount of TEOS (F6, F7) was
used, particles were not formed. Increasing the amount of TEOS (F3, F8) resulted in larger
MSN sizes. In addition, although white powder was formed in F9 using 15.00 mL, it
was confirmed that the specific structure of MSNs was not formed through SAXRD. It
can be seen that there was insufficient TEOS in F6 and F7 to form the structure of MSNs;
no particles were formed. On the other hand, in F9, which used a high silica precursor
concentration, the hydrolysis of TEOS was incomplete. This resulted in a reagent residue
in the product, meaning the mesostructure could not be confirmed, and the particle size
could not be observed [13].

NaOH was used as a pH regulator and catalyst for the synthesis of MSNs [31]. Silica
affects silane hydrolysis and siloxane condensation depending on pH [32]. Silica can
exist stably at high pH due to the strong interaction between silicate–cationic surfactants.
However, it remains unstable at low pH [33]. Here, we evaluated the particle size and
structure order of MSNs by increasing the amount of NaOH (F10, F11, F3, F12, and
F13). When a low amount of NaOH was used, particles were not formed. F13 using
10.5 mL produced a white powder, but it was confirmed that the MSN structure was not
formed through SAXRD. This indicates that MSN particles were not generated due to the
condensation reaction at a low pH and low concentration of NaOH at a slow hydrolysis
rate of TEOS, but that the aggregated particles were formed due to excessive hydrolysis
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of TEOS at high pH [8]. As a result, the synthesis ranges were set to 0.25–1.0 g CTAB,
5.0–10.0 mL TEOS, and 1.75–7.0 mL 2N NaOH.

Table 2. Preliminary experimental elements and summary.

Sample CTAB
(g)

TEOS
(mL)

2 N NaOH
(mL)

Particle Size
(nm)

Structure
Ordering

F1 0.125 5.00 3.50 - 4
F2 0.250 5.00 3.50 95.7 ± 1.0 #
F3 0.500 5.00 3.50 96.1 ± 4.4 #
F4 1.000 5.00 3.50 114.5 ± 8.6 #
F5 1.500 5.00 3.50 335 ± 128.8 #
F6 0.500 1.25 3.50 - X
F7 0.500 2.50 3.50 - X
F8 0.500 10.00 3.50 124.6 ± 13.5 #
F9 0.500 15.00 3.50 - 4

F10 0.500 5.00 0.88 - X
F11 0.500 5.00 1.75 49.7 ± 2.7 #
F12 0.500 5.00 7.00 128.5 ± 10.1 #
F13 0.500 5.00 10.50 - 4

The notation of structural ordering is as follows: #, good structural ordering; ∆, poor structural ordering; X, no
structural ordering. In the case of F6, F7, and F10, samples were not generated and, thus, could not be measured
for particle size analysis and SAXRD. Values are expressed as means ± SD (n = 3).
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3.1.2. Optimization of MSNs

Optimized MSNs were formulated using the BBD statistical analysis that was con-
ducted to determine the relationship between the proposed model and the response
through the Design Expert® 12 software (Table 3). Surface area (Y1), particle size (Y2), and
zeta potential (Y3) were crucial responses in the optimization of MSNs with excellent phys-
ical properties for application to drug delivery systems. The rationality of each reaction
choice is as follows.

A high surface area (Y1) means that MSNs have mesoporous structure, and the larger
the surface area, the higher the drug load. The correlation between the surface area of MSNs
and the amount of drug loading was investigated by prior studies. Particle size (Y2) and
zeta potential (Y3) were chosen as response values with the purpose of their minimization.
In general, smaller-sized MSNs are required to avoid immune responses by the retinal
endothelial system of the liver and spleen. Zeta potential analysis is essential because it
predicts the physical stability of the nanosuspension. Since MSNs carry a negative charge,
the zeta potential of a large negative value in nanoparticles can predict high stability.
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Table 3. Experiments configuration and observation response design. Values are expressed as means ± SD (n = 3).

Run
Factors Response

X1 X2 X3 Y1 Y2 Y3

CTAB
(g)

TEOS
(mL)

2 N NaOH
(mL)

Surface Area
(m2/g)

Particle Size
(nm)

Zeta Potential
(mV)

1 0.625 5.0 1.750 848.4 ± 217.6 75.5 ± 1.6 −15.5 ± 1.2
2 0.625 10.0 1.750 1091.0 ± 68.5 95.1 ± 6.9 −17.2 ± 3.6
3 0.250 10.0 4.375 956.4 ± 110.7 164.5 ± 2.8 −25.2 ± 3.2
4 1.000 7.5 7.000 1100.8 ± 110.9 223.2 ± 65.0 −9.3 ± 0.8
5 0.625 7.5 4.375 1204.3 ± 211.1 135.7 ± 6.5 −18.9 ± 2.7
6 0.625 7.5. 4.375 1202.2 ± 100.9 139.6 ± 10.9 −17.8 ± 0.5
7 0.250 7.5 7.000 919.1 ± 122.7 195.4 ±2.6 −25.7 ± 1.7
8 1.000 5.0 4.375 1112.7 ± 46.0 144.1 ± 13.2 −14.7 ± 1.9
9 0.625 7.5 4.375 1212.1 ± 97.4 140.5 ± 28.0 −19.4 ± 1.0

10 1.000 7.5 1.750 1029.4 ± 138.9 97.6 ± 14.3 −18.8 ± 0.1
11 0.250 7.5 1.750 818.5 ± 117.5 77.9 ± 1.2 −16.3 ± 4.4
12 0.625 7.5 4.375 1215.3 ± 89.0 140.7 ± 6.24 −18.2 ± 0.7
13 0.625 10.0 7.000 920.4 ± 267.1 243.4 ± 68.3 −20.1 ± 1.0
14 0.625 5.0 7.000 1107.9 ± 374.1 195.7 ± 5.1 −16.8 ± 3.4
15 0.250 5.0 4.375 828.6 ± 81.6 114.6 ± 2.3 −18.1 ± 5.8
16 1.000 10.0 4.375 1018.6 ± 128.7 175.4 ± 4.8 −13.7 ± 2.4
17 0.625 7.5 4.375 1229.4 ± 109.1 155.3 ± 1.8 −18.9 ± 2.8

Table 4 shows the proposed models and parameters through interactions for response
surface analysis. Those presented for each of surface area (Y1), particle size (Y2), and zeta
potential (Y3) were quadratic, linear, and two-factor interaction models, respectively. To
determine the fit of the statistical model, the statistical parameters of the lack of fit, p-value,
and the squared correlation coefficient were checked [34]. In the proposed model, the
sequential p-values are significant in the 95% confidence interval, meaning that the error
is less than 5% [35]. The model’s lack of fit p-values exceeded 5%, making it suitable for
explaining the model’s reliability and association [36]. The R2, adjusted R2 values, and
the predicted R2 values indicate the degree to which the response of the proposed model
matches the experimental data. In all reactions, R2 is higher than 0.9, and the difference
between them is lower than 0.2, meaning that the experimental results are statistically
significant [37,38].

The interactions within the factors were described by three-dimensional diagrams
along with coded equations. In three-dimensional plots (Figure 2), the X2 value was fixed
with 7.5 mL because the low and high value of TEOS obstructed the formation of MSN
structure and, also, it negatively affected all responses. Figure 2A–C and Table 5 show a
three-dimensional plot of response surface analysis with response values within the set
ranges. The confines of surface area (Y1), particle size (Y2), and zeta potential (Y3) were
818.5 to 1215.3 m2/g, 75.5 to 243.4 nm, and −25.7 to −9.3 mV, respectively.

Table 6 shows the coded spinning equation of the presented model. In the case of
surface area (Y1), positive coefficients were found for CTAB amount (X1), TEOS amount
(X2), and surface area (X3). This indicates that the surface area (Y1) was increased as each
factor increases. In particular, the CTAB amount (X1) showed a superior effect on surface
area (Y1) than other factors. According to the Vazquez et al., the addition of CTAB induces
silica mesoporous structure growth following an Ostwald ripening mechanism [39]. In
particular, CTAB plays an important role in the formation of agglomerates, changing
the TEOS hydrolysis. In addition, it has been reported that the use of CTAB led the
increase of surface area (Y1). As CTAB amount (X1), TEOS amount (X2), and NaOH volume
(X3) increase, the particle size (Y2) increase with a synergistic effect. Among the factors,
NaOH volume (X3) had the most influence on particle size (Y2). Increasing the pH of
the aqueous phase with an increase in 2 N NaOH can lead to larger particle formation
due to condensation of TEOS, which has a faster hydrolysis rate. Zeta potential (Y3)
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showed an increasing effect as CTAB amount (X1) increased; however, as TEOS amount
(X2) and NaOH volume (X3) increased, zeta potential (Y3) decreased. Among them, CTAB
amount (X1) had the most influence on the zeta potential (Y3), and a CTAB amount (X1)
ranging from 0.5 to 1.5 g can lead to stable particle formation and distribution through
well-dispersed micelle formation.

Table 4. Summary of model fitting and statistical analysis.

Response Suggested
Model

Sequential
p-Value

Lack of Fit
p-Value R2 Adjusted R2 Predicted R2 Adequate

Precision

Y1 Quadratic <0.0001 0.1340 0.9950 0.9886 0.9405 33.3058
Y2 Linear <0.0001 0.4298 0.9762 0.9707 0.9600 41.1591
Y3 2FI <0.0001 0.1503 0.9630 0.9408 0.8823 27.7873Pharmaceutics 2021, 13, x FOR PEER REVIEW 10 of 19 
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In the literature, the monomer of TEOS is hydrolyzed to be negatively charged, and
the hydrolyzed TEOS interacts with positively charged CTAB micelles, leading to the
formation of a mesoporous structure [7]. A faster hydrolysis rate has been reported in
the fabrication of MSN in basic condition and, also, the type and amount of surfactant
effect the hydrolysis and micellization of surfactant [40]. It has been reported that the high
concentrations of silica precursors result in incomplete hydrolysis [20]. In this study, the
use of small amounts of CTAB resulted in incomplete and small MSNs. This might be due
to an increased ratio of alkoxide hydrolysis. In addition, herein, the MSN was not formed
in acidic conditions, indicating the slow hydrolysis in acidic conditions. This is in line with
the literature [7].
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Table 5. Predicted and actual values of the optimized MSNs. Values are expressed as means ± SD (n = 3).

Optimized
Factors Responses 95% CI Low

Predicted Value
Predicted

Value
95% CI High

Predicted Value Actual Value Error
Percentage (%)

X1: 0.617 g Y1 1118.2 1158.4 1198.6 1165.2 ± 172.9 0.6
X2: 8.417 mL Y2 91.3 110.3 129.3 116.1 ± 9.8 5.3
X3: 2.726 mL Y3 −20 −17.8 −15.5 −16.2 ± 4.4 8.6

Table 6. Coefficient equations of responses according to the level of factors.

Responses Coefficient Equations

Y1 1212.66 + 92.34X1 + 11.11X2 + 32.61X3 − 55.47X1X2 − 7.30 X1X3 − 107.53X2X3 − 129.29X1
2 − 104.28 X2

2 − 116.43X3
2

Y2 147.89 + 11.00X1 + 18.56X2 + 63.94X3
Y3 −17.91+ 3.60X1 − 1.38X2 − 0.5062X3 + 2.03X1X2 + 4.75X1X3 − 0.3875X2X3

The surface area (Y1) of MSNs results from the formation of aligned pore structures
due to the alkoxide hydrolysis of surfactants. The use of small amounts of CTAB increases
the rate of alkoxide hydrolysis, resulting in incomplete and small MSNs. In accordance
with the literature, the CTAB amount plays a key role in the surface area of MSN. It has
been reported that the surface area of MSN shows a tendency to increase along with
the increasing CTAB concentration (0.5–4% CTAB) [30,39,41]. In addition, herein, the
surface area was increased by increasing the CTAB amount. High concentrations of silica
precursors are incompletely hydrolyzed, resulting in reagent residues in the product and
the production of silica walls, leading to low surface area [20]. As a result, it can be said that
adjusting the ratio of CTAB and TEOS to an appropriate level is essential for manufacturing
MSNs with large surface area. A large surface area can adsorb large amounts of drugs onto
MSNs, increasing the amount of drug loaded.

Particle size (Y2) was found to increase the surface area by increasing the amount of
silica precursor. The concentration of the silica precursor affects the rate of seed growth and
nucleation. The amount of silica precursor acts as an important factor in the nuclear growth
of MSNs, and the optimal range should be set to ensure high yield and desired particle
size. It is possible to control the particle size of MSNs by adjusting the pH of the synthetic
aqueous solution of MSNs. Changes in particle size by NaOH can lead to smaller particle
formation due to condensation of TEOS, which has a slow hydrolysis rate at low pH.

The zeta potential (Y3) can result in stable particle formation and distribution by
forming well-dispersed micelles through a large amount of surfactant.

In conclusion, MSN composition was optimized through BBD, a response surface
analysis method. In this study, only drug-free MSNs were optimized using the statistical
approach (QbD), then the DOX was loaded into the optimized MSNs. In the case of MSNs,
the drug is loaded into the mesopore, therefore, there is a limitation to assess the surface area
after drug loading. Thus, the MSNs were optimized to maximize the surface area, minimize
the particle size, and with the most negative zeta potential. Figure 2D shows the desirability
obtained through optimization. Optimized formulations consisted of 0.617 g, 8.417 mL,
and 2.726 mL of X1, X2, and X3, respectively. The desirability value of the optimized
formulation was 0.697. Table 5 shows the predicted and observed values for optimized
MSN. The optimized MSN formed uniform particles with a large surface area (Y1), particle
size (Y2), and zeta potential (Y3) of 1165.2 m2/g, 116.1 nm, and −16.2 mV, respectively.

3.2. Physicochemical Properties of MSNs
3.2.1. Morphology

The morphology of MSNs was observed in SEM and TEM images (Figure 3A). MSNs
showed uniform particle distribution with a diameter of 110 to 120 nm. A well-ordered
mesoporous structure with spherical particles has been reported as a characteristic of
MCM-41-type MSNs [42]. According to DLS measurements, the mean hydrodynamic size
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of MSNs was 116.1 nm, and the PDI was 0.2 (Figure 3B). This is consistent with the size
observed in SEM and TEM images.

3.2.2. SAXRD

Figure 3C shows the MSN SAXRD pattern. It was confirmed that peaks appear at
2θ values of 100, 110, and 200 hkl in the SAXRD pattern of MSNs. It has been reported
that the peak of the 2θ value represents the aligned hexagonal structure of MCM-41-type
MSNs [42]. In addition, a well-ordered hexagonal pore structure of the MSNs was also
observed in the TEM image.

3.2.3. FT-IR Spectroscopy

In the FT-IR spectrum of MSNs, as shown in Figure 3D, strong absorption signals
appeared at 806 and 1110 cm−1. These are peaks caused by asymmetric stretching and
skeletal vibration of the Si–O–Si stretching, and it can be confirmed that silica ions form
the skeleton for the Si–O–Si structure of MSNs [43].

3.2.4. Nitrogen Adsorption–Desorption Isotherm

Figure 3E is the nitrogen adsorption–desorption isotherm and pore size distribution
of MSNs. The pattern of the isotherm shown in Figure 3E indicates a type 4 isotherm
that is free from the adsorption and desorption of gas through condensation of capillaries
due to fine pores in the material having a mesostructure [44]. Therefore, it was confirmed
that the optimized MSN is free of gas adsorption–desorption and has a well-developed
mesostructure with a large surface area. Figure 3E was calculated using the standard BJH
method, and it was confirmed that the uniform pore size was 2.74 nm.
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Figure 3. Physicochemical properties of MSNs. (A) (a) SEM image; (A) (b) TEM image; (B) particle size distribution;
(C) SAXRD pattern; (D) FT-IR spectrum; (E) nitrogen adsorption–desorption isotherm curve, pore distributions.

3.2.5. In Vitro Degradation

The degradation of MSNs was investigated through TEM. As can be seen in Figure 4,
the degradation of MSNs was observed by collecting each sample at 0, 24, 48, and 72 h
in both the SBF and rat plasma environments. As shown in Figure 4, MSNs at 0 h have
an elaborate mesoporous structure. After 24 h immersion in SBF, the particle diameter of
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MSNs did not change, but some particles were connected to each other (Figure 4). After
48 h, the density of the aligned mesopores was weakened, and it was confirmed that the
collapse of the structure proceeded (Figure 4). After 72 h, more particles agglomerated in
MSNs, resulting in irregularly shaped structures, and no mesoporous structure specific
to MSNs was observed (Figure 4). After immersion in plasma for 24 h, a collapse of the
structure faster than the SBF environment was observed (Figure 4). After 48 h, the mesopore
density of most MSNs had weakened (Figure 4). For 72 h, the MSN particles were mostly
decomposed, and no particles were observed except for irregularly shaped substances
(Figure 4). As the degradation of MSNs progresses, the silica density of the mesoporous
structure of MSNs decreases and the surface becomes rough, indicating that the porous
Si–O–Si framework of MSNs is attacked by water [45]. It is known that silica nanoparticles
are dissolved by processes including hydration, hydrolysis, and ion exchange process [46].
Moreover, the plasma consists of various enzymes, such as the protease, if compared to
the SBF. In addition, it has been reported that porous silicon nanoparticles (PSNs) show
less stability in plasma than in PBS [47,48]. Silica, which is hydrolyzed in aqueous media,
has been reported as nontoxic and to diffuse through the bloodstream to be cleared in
urine [46]. As a result, the MSNs showed faster and stronger degradation in plasma than
SBF, and the MSNs might be suitable for the purpose of sustained release.
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3.3. Drug Loading

Using various concentrations of DOX in MSNs, the effect of DOX on the mass ratio was
investigated through EE and LC. The DOX EE and LC of MSN@DOX at various mass ratios of
MSNs and DOX are shown in Figure 5A. As the DOX/MSN mass ratio increased from 0.075
to 1, the encapsulation efficiency of the drug decreased from 99.52% to 34.94%. However, the
drug loading capacity increased from 6.95% to 25.88%. Thus, in this study, 0.4 DOX/MSN
mass ratio, which is the most efficient, was selected for the fabrication of MSNs.

3.4. In Vitro Release

The in vitro drug release pattern of MSN@DOX was confirmed at physiological cell
pH (pH 7.4), weak tumor cell pH (pH 6.8), and tumor cell pH (pH 5.0). In Figure 5B, the
rate of drug release from MSN@DOX was pH-dependent and increased with decreasing
pH. The cumulative release of DOX could reach 52.77% and 38.97% after 48 h at pH 5.0
and pH 6.8, respectively, while the DOX was more slowly released at pH 7.4 (23.91%). In
addition, DOX@MSN showed sustained release properties over 50 h. In this study, we
aimed to develop and optimize the DOX@MSN for sustained release. However, regarding
the formulation with sustained release, there is a chance of dose dumping in the clinical
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situation of daily intake. In the clinical situation, DOX is intravenously injected every
14–21 days. Thus, the patient treated with DOX@MSN would be unlikely to experience
dose dumping compared to those treated with the daily intake formulation. The low drug
release profile of DOX is due to the solubility of DOX decreasing as the pH increases.
Decreases in pH increase the protonation of DOX due to its increased solubility, whereas
the dissolution rate and solubility increase with increasing pH. It is also known that the
slow release rate of the drug is due to the fact that the drug is contained in small pores and,
therefore, does not easily diffuse into the medium [4]. Moreover, in the literature, it has
been reported that the structure of MSNs (silica) is partially attacked under strongly acidic
conditions [49]. Under acidic conditions, the loss of texture and structure has occurred due
to the degradation of silicas. Although the degradation rate depends on the type of silica,
the pores of MSNs are the first to be attacked by acid. Thus, in this study, the increase
in DOX release under acidic conditions might be due to the acceleration of mesopore
degradation.
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Figure 5. (A) Loading capacity and encapsulation efficiency according to DOX/MSN ratio; (B) the
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DOX release from MSN@DOX is pH-dependent, and MSNs can act as pH-reactive
nanocarriers. In a cancerous environment, acidic extracellular pH is one of the characteris-
tics of tumor tissue. Thus, MSNs could be an effective drug carrier for cancer treatment.

3.5. Cytotoxicity Study

Cell viabilities of MSNs, MSN@DOX, and free DOX on MCF-7 cells were evaluated by
MTT assay. The cytotoxicity test results of MSNs are shown in Figure 6A. MSNs did not
show any cytotoxic effect on MCF-7 cells for 24, 48, and 72 h within the test concentration
range. Even at high concentrations of 72 h, cytotoxicity was less than 10%, showing the
negligible toxicity and excellent biocompatibility of MSNs. This aligned with previous
research results that MSNs were less toxic and more biocompatible in MCF-7 cells [50]. On
the other hand, an increase in the cytotoxicity of free DOX and MSN@DOX was observed
with increasing time and drug concentration (Figure 6B–D).

After 24 and 48 h, free DOX showed higher toxicity than MSN@DOX. However, when
the incubation period was extended to 72 h, the cytotoxicity of MSN@DOX was significantly
higher than that at 24 and 48 h, and the cytotoxicity was similar to that of free DOX at 72 h.
This is because free DOX spreads rapidly into cells within a short period of time, due to
the drug characteristics, and shows high cytotoxicity, whereas MSN@DOX continuously
releases DOX molecules from MSNs [51]. The high cytotoxicity of early free DOX can
lead to serious side effects due to the high concentration and long-term administration of
chemotherapy drugs [52]. However, MSN@DOX can reduce the initial toxicity and deliver
DOX to cancer cells in a continuous and controllable manner without side effects. These
results suggest that MSN@DOX can be used as a safe and effective anticancer drug.
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free DOX were internalized by MCF-7 cells. Cells incubated with MSNs did not show flu-
orescence at all time points. After incubation for 24 h, the fluorescence signal of free DOX 
was stronger than that of MSN@DOX, indicating rapid drug uptake. At 48 h, cells cultured 
with MSN@DOX showed obviously stronger DOX fluorescence in the nucleus until 72 h. 
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Figure 6. Cell viability of MCF-7 cells exposed to different concentration of MSNs, MSN@DOX, and free DOX. (A) MSNs;
(B) after 24 h of MSN@DOX and free DOX; (C) 48 h of MSN@DOX and free DOX; (D) 72 h MSN@DOX and free DOX. Values
are expressed as means ± SD (n = 5). * p < 0.05 compared with the free DOX group.

3.6. Cellular Uptake

Cellular uptake of DOX from MSN@DOX, free DOX, and MSNs in MCF-7 cells was
assessed by fluorescence microscopy. After the cells were incubated for 3 h, free DOX
was rapidly absorbed into the cells by diffusion, as indicated by the strong fluorescence
intensity in both the cytoplasm and nucleus. As shown in Figure 7, MSNs, MSN@DOX,
and free DOX were internalized by MCF-7 cells. Cells incubated with MSNs did not show
fluorescence at all time points. After incubation for 24 h, the fluorescence signal of free
DOX was stronger than that of MSN@DOX, indicating rapid drug uptake. At 48 h, cells
cultured with MSN@DOX showed obviously stronger DOX fluorescence in the nucleus
until 72 h. On the other hand, the fluorescence signal of free DOX showed a maximum at
24 h and then decreased over 48 and 72 h. This is consistent with the toxicity test of MCF-7
cells, and MSN@ DOX showed cell uptake that sustained release of DOX from MCF-7 cells.
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4. Conclusions

MSNs were successfully optimized through the statistical approach (BBD). Based on
the results of SEM, TEM, SAXRD, FT-IR, nitrogen adsorption–desorption isotherm, and
degradation tests, the optimized MSNs seem to be suitable for DOX delivery. In vitro
release tests of MSN@DOX showed a sustained release profile, and the release rate in-
creased as the pH value was decreased. Cytotoxicity studies showed that the MSNs had
negligible cytotoxicity, while MSN@DOX showed significant cytotoxicity against MCF-7
cells. Cytotoxicity and fluorescence microscopy observations supported the potential of
MSNs in sustained-release drug delivery systems. Thus, the optimized MSN@DOX could
be an option to improve the bioavailability of DOX.
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