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A dense network of blood vessels distributes blood to different regions of the brain.

To meet the temporarily and spatially varying energy demand resulting from changes

in neuronal activity, the vasculature is able to locally up-regulate the blood supply.

However, to which extent diameter changes of different vessel types contribute to the

up-regulation, as well as the spatial and temporal characteristics of their changes,

are currently unknown. Here, we present a new simulation method, which solves an

inverse problem to calculate diameter changes of individual blood vessels needed to

achieve predefined blood flow distributions in microvascular networks. This allows us

to systematically compare the impact of different vessel types in various regulation

scenarios. Moreover, the method offers the advantage that it handles the stochastic

nature of blood flow originating from tracking the movement of individual red blood cells.

Since the inverse problem is formulated for time-averaged pressures and flow rates, a

deterministic approach for calculating the diameter changes is used, which allows us

to apply the method for large realistic microvascular networks with high-dimensional

parameter spaces. Our results obtained in both artificial and realistic microvascular

networks reveal that diameter changes at the level of capillaries enable a very localized

regulation of blood flow. In scenarios where only larger vessels, i.e., arterioles, are allowed

to adapt, the flow increase cannot be confined to a specific activated region and flow

changes spread into neighboring regions. Furthermore, relatively small dilations and

constrictions of all vessel types can lead to substantial changes of capillary blood flow

distributions. This suggests that small scale regulation is necessary to obtain a localized

increase in blood flow.

Keywords: functional hyperaemia, vessel diameter changes, blood flow, realistic microvascular networks, inverse

simulation model, parameter inference, activation

1. INTRODUCTION

The brain has the ability to up-regulate blood flow in response to a locally varying energy demand
(neurovascular coupling). This mechanism has been observed for more than a century (Mosso,
1881; Roy and Sherrington, 1890) and is the basis of various imaging techniques such as functional
magnetic resonance imaging (fMRI) (Ogawa et al., 1990; Kwong et al., 1992). However, the exact

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.566303
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.566303&domain=pdf&date_stamp=2020-10-16
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eppr@ethz.ch
https://doi.org/10.3389/fphys.2020.566303
https://www.frontiersin.org/articles/10.3389/fphys.2020.566303/full


Epp et al. Predicting Vessel Diameters During Activation

signaling pathways between neurons, astrocytes and the
vasculature, as well as the underlying vasodynamics, are still
poorly understood (Hillman, 2014; Weber, 2015; Schmid et al.,
2019a).

It is widely accepted that smooth muscle cells (SMCs) regulate
arteriole diameters to change pressure and flow distributions
in the microvasculature. Pial arterioles (PAs) either dilate or
constrict in response to neuronal activation, depending on their
distance to the activation center and as a function of time after
stimulus (Devor et al., 2007). Descending arterioles (DAs) are
vessels that branch off the PAs and supply the capillary bed with
blood over cortical depth. Many studies have confirmed that
DAs adapt their diameters during functional hyperaemia (Tian
et al., 2010; Lindvere et al., 2013; Hall et al., 2014; Hillman, 2014;
Mishra et al., 2016; Kisler et al., 2017). Recently, it has been
suggested that capillaries are contractible as well (Hall et al., 2014;
Mishra et al., 2016; Kisler et al., 2017; Rungta et al., 2018). As
capillaries are the vessels closest to tissue, they would be perfectly
suited for regulative purposes. Furthermore, there is evidence
that blood flow at the level of capillaries first homogenizes, before
its magnitude increases (Gutiérrez-Jiménez et al., 2016; Lee et al.,
2016), which further suggests that regulation on the capillary
level takes place. However, the precise spatio-temporal response
of arterioles and capillaries, and whether changes are initiated
passively or actively, are currently under debate (Fernández-Klett
et al., 2010; Tian et al., 2010; Hall et al., 2014; Hillman, 2014; Hill
et al., 2015; Mishra et al., 2016; Kisler et al., 2017; Rungta et al.,
2018).

The goal of our work is to provide additional insight, by
simulating how blood vessels optimally should change their
diameters to achieve specific blood flow distributions in the
microvasculature. Importantly, our study addresses this topic
from a purely fluid dynamical point of view. Thus, we do
not take the transcellular signaling into account, and we do
not distinguish between active and passive diameter changes.
However, by comparing different scenarios where only subsets of
vessels can react, we evaluate, on which scales regulation is likely
to take place.

Several numerical works investigated how dilations of selected
blood vessels affect the flow field (Reichold et al., 2009; Lorthois
et al., 2011b; Lorthois and Lauwers, 2012; Schmid et al.,
2015). However, unlike these works, here, we consider the
corresponding inverse problem and present a new simulation
method which is capable of predicting how individual diameters
need to change to achieve desired flow distributions in the
brain vasculature. This is done by calculating the sensitivities
of time-averaged blood flow distributions with regard to
vascular diameter changes and subsequently, adapting the vessel
diameters to achieve a desired flow increase. Since we are
using a deterministic approach to solve the inverse problem,
our method has the unique feature that diameter changes of
very large microvascular networks (MVNs) can be predicted
at relatively small computational cost. Moreover, our method
considers the biphasic nature of blood and deals with the
stochastic impact of individual red blood cells (RBCs) on flow
resistance (Schmid et al., 2019b). To the best of our knowledge,
this is the first numerical work which solves an inverse problem

to calculate diameter changes for different activation scenarios
in large MVNs. Furthermore, our method can be easily adapted
for being used in various data assimilation applications, i.e.,
to infer simulation parameters such as boundary conditions
or to reduce overall modeling uncertainties based on sparse
experimental measurements.

Several other methods have been proposed for estimating
modeling parameters or boundary conditions in MVNs.
Recently, a Bayesian framework was presented to infer boundary
conditions based on experimental measurements (Rasmussen
et al., 2017) and to tune modeling parameters of an empirical
phase separation law (Rasmussen et al., 2018). This Bayesian
model automatically treats uncertainties of model parameters
and experimental data. However, computational cost can be
high for large parameter spaces with thousands of uncertainties.
Other works estimated boundary pressure values by solving a
weighted least squares problem based on experimental blood
flow measurements (Sunwoo et al., 2011; Bollu et al., 2018)
and literature data of typical distributions of wall shear stresses
and pressures (Fry et al., 2012), or based on particle swarm
optimization (Pan et al., 2014).

In the following, we first derive our numerical method
as generally as possible for arbitrarily chosen parameters.
Subsequently, the parameter space will be restricted to only
include diameter changes of a subset of blood vessels and the
specific modeling equations will be presented. The capabilities
of the method are then demonstrated in a simulation study
conducted in small hexagonal and large realistic networks
from the mouse cerebral cortex. This study improves our
understanding on the impact of vessel diameter changes on the
regulation of blood flow and contributes to answer the two
following questions: (1) Which vessel types are most relevant for
a local regulation and (2) how large are the required diameter
changes of individual blood vessels.

2. MATERIALS AND METHODS

Our simulation model consists of two main components: The
first is a blood flow simulation framework for MVNs and the
second is the corresponding inverse model to predict diameter
changes necessary to achieve a predefined flow increase in
selected blood vessels. In the following, we describe the two
components in detail and introduce a solution algorithm for the
overall method.

2.1. Network Representation of the
Vasculature
The microvasculature consists of a dense network of highly
interconnected blood vessels (Weber et al., 2008; Blinder et al.,
2013). Due to the small diameter scales, the Reynolds and
Womersley numbers are small and the complex structure can
be modeled by a network consisting of Ne edges representing
individual blood vessels and Nn nodes representing connections
or intersections of two or more blood vessels. An edge between
two nodes ni ∈ n and nj ∈ n is denoted as eij ∈ e, where
n and e are the sets of all nodes and edges of the network.
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Attributes of the network corresponding to node ni and edge eij
are referred to as ai and aij, respectively, where a represents the
different node and edge parameters as summarized in Table 1.
Each individual blood vessel is modeled as a straight pipe with
a constant diameter that results in the same flow resistance and
length as the corresponding real tortuous vessel. An example of
the network representation of a realistic microvascular network
is given in Figures 1A,B.

2.2. Blood Flow Simulation Model
The blood flow simulation model is based on the one previously
presented by Schmid et al. (2015, 2017). Here, only the key model
concepts are reviewed to briefly introduce the nomenclature.
Blood is considered a biphasic fluid consisting of blood plasma

and individual RBCs. In every time step [t] the flow rate q[t]ij in

edge eij is computed by Poiseuille’s law, i.e.,

q
[t]
ij = T

[t]
ij (p

[t]
i − p

[t]
j ), (1)

TABLE 1 | Node and edge attributes a of the network.

Node attributes Edge attributes

Pressure p Diameter d

Source / sink terms b Length l

Number of RBCs nrbc

Tube haematocrit Ht

Discharge haematocrit Hd

Relative apparent viscosity µrel

Transmissibility T

Flow rate q

Flow direction dir

Red blood cell velocity vrbc

where p
[t]
i and p

[t]
j are the pressures at nodes ni and nj, and

T
[t]
ij is the effective transmissibility at time [t]. The effective

transmissibility is the inverse of the flow resistance, i.e.,

T
[t]
ij =

πd4ij

128lij µp µ
[t]
rel,ij

, (2)

where dij and lij are the diameter and length of the vessel and
µp the viscosity of blood plasma. The Fåhraeus-Linquist effect is

modeled by a relative apparent viscosity µ
[t]
rel,ij which depends on

the tube haematocrit H[t]
t,ij and the vessel diameter, i.e.,

µ
[t]
rel,ij = f

(
H

[t]
t,ij, dij

)
. (3)

The tube haematocrit is the volume fraction of RBCs in a
vessel, i.e.,

H
[t]
t,ij =

n
[t]
rbc,ijVrbc

d2ij
π
4 lij

, (4)

where n
[t]
rbc,ij is the number of RBCs in the vessel and Vrbc the

volume of an individual cell. The flow balance equation g
[t]
i for

each node is

g
[t]
i : =

∑

nk∈N(ni)

q
[t]
ik
− b

[t]
i = 0, (5)

where b
[t]
i is a source or sink term and N(ni) denotes the set

of all neighboring nodes to node ni. Note that b[t]i = 0 for all

nodes except at boundaries, where b
[t]
i is used to account for

constant pressure boundary conditions. Since the flow rate is

conserved in each node, g[t]i = 0 at all times. By combining
Equations (1) and (5), a system of linear equations is derived,

FIGURE 1 | Network representation of a realistic microvascular network and visualization of the tracking of individual red blood cells. (A) Tortuous structure of a

realistic microvascular network. (B) Corresponding network consisting of nodes and edges. The blood vessels are represented by straight pipes. (C) Individual red

blood cells that follow the flow field and dynamically affect the flow resistance in the network. (D) Schematic of red blood cells squeezing through the vessels and

bifurcation rule. (E) Example of a set of activated edges in which the average perfusion will be increased, i.e., where a target flow rate is prescribed, in response to

diameter adaptations.
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which can be solved for the pressures and flow rates in the entire
network. RBCs are tracked individually as they move through
the network and dynamically affect the flow field (Schmid et al.,
2019b) (Figure 1C). Due to the Fåhraeus effect, the RBC velocity

v
[t]
rbc,ij is different from the mean plasma velocity, i.e.,

v
[t]
rbc,ij =

q
[t]
ij

d2ij
π
4

H
[t]
d,ij

H
[t]
t,ij

, (6)

where H[t]
d,ij is the discharge haematocrit. We use equations based

on empirical data (Pries et al., 1992) for the ratio H
[t]
d,ij/H

[t]
t,ij

of Equation (6) and for calculating µ
[t]
rel,ij in Equation (3).

Similarly to Schmid et al. (2017), the RBCs are moved in the
network during a constant global time step 1t based on the

current v[t]
rbc,ij. At divergent bifurcations (Figure 1D), RBCs are

assigned to downstream vessels by sampling from a probability
function, which was extracted from a bifurcation rule based on
experimental data (Pries and Secomb, 2005), i.e.,

Prob(eij) = FQRBCij = f
(
FQBij ,Hd,parent ,Dparent ,Dij,Dik

)
. (7)

Here, Prob(eij) is the probability that a RBC enters daughter
vessel eij, FQRBCij and FQBij are fractional RBC flux and blood
flow rate in daughter vessel eij, Hd,parent is the discharge
haematocrit in the parent vessel and Dparent , Dij and Dik are the
diameters of the parent and the two daughter vessels, respectively.
Compared to Schmid et al. (2015, 2017, 2019b), Equation (7)
was used for the entire network and no threshold diameter was
introduced, below which RBCs follow the path of the largest
pressure force. Note that especially for time averaged simulations
on the network scale, the difference between the formulation in
Schmid et al. (2015, 2017, 2019b) and in the current work is small
(Figures S1, S2). For studies focusing on local effects at single
capillary level, we recommend using the formulation by Schmid
et al. (2015, 2017, 2019b).

2.3. Inverse Model to Infer Parameters of
MVNs Based on Time Averaged Blood
Flow Characteristics
The blood flow simulation model depends on various modeling
parameters such as the diameters and lengths of individual
vessels, the bifurcation rule, coefficients that specify the law for
calculating the flow resistance and boundary conditions at in-
and outflows. In the previous section, we described how a unique
solution for the pressure and flow rate distribution is obtained for
a fixed set of parameters at each time step. Here, we want to solve
the corresponding inverse problem to investigate the influence of
parameter changes on the resulting flow field. One possibility to
investigate the impact of parameter changes on the flow field is to
deflect individual or multiple parameters, e.g., vessel diameters,
and compare the resulting flow fields with each other (Reichold
et al., 2009; Lorthois et al., 2011b; Lorthois and Lauwers, 2012;
Schmid et al., 2015). However, this can be computationally
expensive for large parameter spaces. Furthermore, solutions that

require a combined change of multiple parameters are difficult
to obtain.

In the following, we describe an iterative approach to
solve this inverse problem, i.e., to compute possible values
for parameters which are required to achieve desired flow or
pressure distributions in the network. Due to the tracking of

individual RBCs and the stochastic bifurcation rule, q[t]ij and

p
[t]
i can be highly unsteady. Since we aim to change the overall
flow characteristics in the network, our method is formulated
for statistically stationary quantities. The statistically stationary
blood flow rate 〈qij〉(ν) at iteration step (ν) is obtained by

averaging over N(ν)
1t time steps, i.e.,

〈qij〉
(ν)

: =
1

N
(ν)
1t

N
(ν)
1t∑

t=1

q
[t]
ij . (8)

Similarly, statistically stationary pressures 〈pi〉(ν) and source

terms 〈bi〉
(ν) are computed. Furthermore, we define a

representative transmissibility T̃(ν)
ij as

T̃
(ν)
ij : =

〈qij〉
(ν)

〈pi〉
(ν) − 〈pj〉

(ν)
. (9)

In analogy to Equations (1) and (5), we can now find a flow

balance equation g̃
(ν)
i which is consistent with the time averaged

pressures and flow rates at each node, i.e.,

g̃
(ν)
i =

∑

nk∈N(ni)

T̃
(ν)
ik

(
〈pi〉

(ν) − 〈pk〉
(ν)
)
− 〈bi〉

(ν)
= 0. (10)

In the following, it is convenient to interpret g̃(ν)i as the i-th

element of a vector g̃(ν) ∈ R
Nn . Hence, Equation (10) can be

rewritten in matrix form, i.e.,

g̃(ν) = Ã(ν)〈p〉(ν) − 〈b〉(ν) = 0, (11)

with 〈p〉(ν) ∈ R
Nn and 〈b〉(ν) ∈ R

Nn being vectors containing
the pressures and source terms of all nodes in the network. The
system matrix Ã(ν) ∈ R

Nn×Nn depends on the transmissibilities
of the whole network, i.e., the vector T̃(ν) ∈ R

Ne . We postulate
that the solutions of our inverse problem are the parameter values

that minimize a certain predefined cost function J
(
α(ν)

)
, with

α ∈ R
Nα being the vector containing allNα modeling parameters.

Here, J will be defined as the difference between simulated
and target flow distributions. However, for other applications,
different definitions for J could be considered. A minimum of J is
calculated iteratively by using a gradient-based approach, i.e.,

α(ν+1) = α(ν) − γ

(
dJ(ν)

dα(ν)

)T

, (12)

where dJ(ν)

dα(ν) is the gradient or sensitivity of J(ν) with regard to

α, and γ is a constant weighting factor. Note that the inverse
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problem is ill-posed and multiple local minima may exist for the
cost function. If γ is chosen small enough, Equation (12) finds
the local minima of J in the vicinity of the initial state α(0). Since
we are interested in computing how parameters need to change
to alter flow distributions compared to a baseline state, we are
confident that finding the solution close to the initial α(0) is well-
suited for our study. Furthermore, we will demonstrate how the
cost function can be augmented with additional constraints, in a
subsequent section of this paper.

Calculating dJ(ν)

dα(ν) with a conventional method requiresO(Nn ·

Nα) finite differences, which leads to a very high computational
cost for large Nα . Therefore, we use the adjoint method to
calculate the sensitivity, i.e.,

dJ(ν)

dα(ν)
= λT

∂ g̃(ν)

∂α(ν)
+

∂J(ν)

∂α(ν)
, (13)

where λ is found by solving the adjoint equation

(
∂ g̃(ν)

∂〈p〉(ν)

)T

λ = −

(
∂J(ν)

∂〈p〉(ν)

)T

. (14)

The computational cost of solving the adjoint equation is
comparable to solving Equation (11) once. More details on
the theory behind the adjoint method can be found in various
textbooks and papers on data assimilation and optimization,
e.g., in Asch et al. (2016). Furthermore, the adjoint method for
parameter estimation in MVNs is derived in Equations (S1–S3).

2.4. Application of the Inverse Model for
Calculating Diameter Changes to Reach
Predefined Flow Distributions
If we can find the derivatives ∂ g̃(ν)

∂α(ν) and
∂J(ν)

∂α(ν) , the above described

sensitivity analysis can be applied to arbitrarily chosen parameter
vectors α(ν). However, in this study, we are specifically interested
in predicting how the diameters of MVNs need to adapt to
achieve a predefined flow distribution. Hence, the parameter
vector α only consists of the relative diameters, i.e.,

α
(ν)
ij : =

d
(ν)
ij

d
(0)
ij

, (15)

where d
(ν)
ij is the diameter at iteration step (ν) and d

(0)
ij is the

initial diameter at baseline conditions. Our goal is to simulate
specific activation scenarios and therefore, to locally increase the
average flow rate, i.e., in the set of activated edges eact ⊆ e
(Figure 1E). The length-averaged blood flow in the activated
region is

q̄
(ν)
sim : =

1

lact

∑

eij∈eact

lij dir
(0)
ij 〈qij〉

(ν), (16)

where lact is the total length of all activated edges

lact =
∑

eij∈eact

lij (17)

and

dir
(0)
ij : = sgn

(
〈qij〉

(0)
)

(18)

denotes the edge flow direction at baseline conditions with the

property dir(0)ij = −dir
(0)
ji . We define a cost function that aims to

minimize the difference between q̄
(ν)
sim and a certain target value

q̄tar , i.e.,

J(ν)
(
α(ν), 〈p〉(ν)

)
=

(
q̄
(ν)
sim − q̄tar

q̄tar

)2

. (19)

The partial derivatives ∂J(ν)

∂α(ν) and ∂J(ν)

∂〈p〉(ν)
in

Equations (13) and (14) are calculated analytically, i.e.,

∂J(ν)

∂α
(ν)
ij

=





2 lij dir
(0)
ij

lact

(
q̄
(ν)
sim−q̄tar

q̄2tar

)(
〈pi〉

(ν) − 〈pj〉
(ν)
)

∂T̃
(ν)
ij

∂α
(ν)
ij

, eij ∈ eact

0, eij /∈ eact

(20)

and

∂J(ν)

∂〈p
(ν)
i 〉
=





2
lact

(
q̄
(ν)
sim−q̄tar

q̄2tar

)∑
nk |nk∈N(ni)∧nk∈nact

(
lik dir

(0)
ik
T̃
(ν)
ik

)
, ni ∈ nact

0, ni /∈ nact

(21)

where nact ⊆ n is the set of all nodes that are adjacent to at least

one activated edge eij ∈ eact . Furthermore, the derivatives of g̃(ν)i

with regard to α(ν) and 〈p〉(ν) are

∂ g̃
(ν)
i

∂α
(ν)
ij

=

(
〈pi〉

(ν) − 〈pj〉
(ν)
) ∂T̃

(ν)
ij

∂α
(ν)
ij

(22)

and

∂ g̃
(ν)
i

∂〈pl〉(ν)
=

∑

nk∈N(ni)

T̃ik (δil − δkl) , (23)

where δij is the Kronecker delta. Note, that ∂ g̃(ν)

∂〈p〉(ν)
is the

Jacobian Ã(ν) from Equation (11). The derivative
∂T̃

(ν)
ij

∂α
(ν)
ij

in

Equations (20) and (22) is

∂T̃
(ν)
ij

∂α
(ν)
ij

=
π

128lijµp

∂

∂α
(ν)
ij


 d

(ν)
ij

4

µ̃
(ν)
rel,ij


 , (24)
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where µ̃
(ν)
rel
∈ R

Ne is a representative relative viscosity, which is,

similarly to T̃(ν), consistent with the time averaged flow rates and
pressures, i.e.,

µ̃
(ν)
rel,ij

: =
π

128lijµp

d
(ν)
ij

4

T̃
(ν)
ij

. (25)

Due to the stochastic nature of the blood flow, an exact

analytical derivative for
∂µ̃

(ν)
rel

∂α(ν) cannot be found. We approximate

Equation (24) as

∂T̃
(ν)
ij

∂α
(ν)
ij

≈
πd

(0)
ij

4

32lij µp µ̃
(ν)
rel,ij

α
(ν)
ij

3
, (26)

and hence assume that
∂µ̃

(ν)
rel

∂α(ν) ≈ 0. Although this assumption does

not fully apply to all diameters and haematocrit values, we believe

it is justified, since the direction of the approximate
∂T̃

(ν)
ij

∂α
(ν)
ij

is always

consistent with the exact derivative. Therefore, this simplification
primarily affects the convergence rate, and not the overall result
of the inverse problem.

Note that the inverse model only requires the actual µ̃rel,ij

field, and not its derivatives (Equation 26). Consequently, it is
flexible with respect to the precise formulation of the blood flow
model, i.e., it can be combined easily with different bifurcation
rules (Figures S1, S2) and it can also be applied for continuous
blood flow models (Lorthois et al., 2011a; Safaeian and David,
2013; Gould and Linninger, 2015).

2.5. Augmentation of the Cost Function
With Secondary Constraints to Obtain
Non-ambiguous Solutions
In the previous sections we ignored that J can have multiple
minima and many solutions for the inverse problem may
exist. For the example shown in Figure 1E this means that
different combinations of diameter changes of individual blood
vessels could achieve the desired flow change in eact . We
reduce this ambiguity by augmenting the inverse problem with
additional constraints, i.e., by specifically seeking solutions that
also minimize flow rate changes outside of eact , if compared to
baseline. The modified cost function reads

J(ν)
(
α(ν), 〈p〉(ν)

)
=

(
q̄
(ν)
sim − q̄tar

q̄tar

)

︸ ︷︷ ︸
I

2

+ ǫ

(
ρ(ν) − ρmin

)

︸ ︷︷ ︸
II

2
, (27)

where the first term (I) is identical to Equation (19) and
motivated by the primary target, i.e., to reach the flow increase in
eact . The additional constraints are included in the second term
(II), where ρ(ν) is the Euclidean norm of the flow rate changes
outside of eact , i.e.,

ρ(ν) =

√√√√√
∑

eij /∈eact

(
〈qij〉(ν) − 〈qij〉(0)

q̄tar

)2

, (28)

and ρmin is the minimum possible constant value that still
enables full convergence of term I in Equation (27). The precise
value of ρmin is not known initially and has to be determined
iteratively. In our implementation we use the ρ(ν) which we
would obtain if term II of the cost function was neglected, as
an initial value for ρmin, and subsequently reduce the value until
its minimum is reached. In other words, we first converge our
solution to the local minima we find with the gradient-based
approach (Equation 12) and the cost function without secondary
constraints (Equation 19). In a second step, we activate term II
of Equation (27) and iteratively reduce ρmin. This allows us to
move along the solution manifold of J ≈ 0 given g̃ = 0, until the
minimum ρmin is found, i.e., when J 6= 0 given g̃ = 0, any more.
Although it is difficult to prove that we reach the most-suitable
solution for this inverse problem, we are confident that with this
strategy we obtain the solution which achieves the desired q̄tar in
e ∈ eact , minimizes the flow rate changes compared to baseline in
e /∈ eact and is in the neighborhood of the initial state α(0). Keep
in mind that our goal is to find the solution closest to the initial
state and term I approaches≈ 0 for all cases.

In Equation (27) ǫ is a constant weighting factor, which
is chosen such that both terms I and II are of approximately
the same order of magnitude. Since the cost function is always
converged to a value J ≈ 0, the precise value does not change
the final result and primarily affects the convergence rate of
the method.

Note, that the cost function here is very different to what is
used in conventional variational data assimilation algorithms,
where usually a weighted sum of both prior knowledge and
observations are used (Asch et al., 2016). However, this
conventional approach would lead to solutions where the desired
target flow rate is not matched exactly, depending on the
weighting factor.

For completeness, the partial derivatives of J are

∂J(ν)

∂α
(ν)
ij

=





2 lij dir
(0)
ij

lact

q̄
(ν)
sim−q̄tar

q̄2tar

(
〈pi〉

(ν) − 〈pj〉
(ν)
)

∂T̃
(ν)
ij

∂α
(ν)
ij

, eij ∈ eact

2ǫ ρ(ν)−ρmin

ρ(ν)

〈qij〉
(ν)−〈qij〉

(0)

q̄2tar

(
〈pi〉

(ν) − 〈pj〉
(ν)
)

∂T̃
(ν)
ij

∂α
(ν)
ij

, eij /∈ eact

(29)

and

∂J(ν)

∂〈p
(ν)
i 〉
=





2
lact

(
q̄
(ν)
sim−q̄tar

q̄2tar

)∑
nk |nk∈N(ni)∧nk∈nact

(
lik dir

(0)
ik
T̃
(ν)
ik

)

+2ǫ ρ(ν)−ρmin

ρ(ν) q̄2tar

×
∑

nk |nk∈N(ni)∧nk /∈nact

(
〈qik〉

(ν) − 〈qik〉
(0)
)
T̃
(ν)
ik

, ni ∈ nact

2ǫ ρ(ν)−ρmin

ρ(ν) q̄2tar

∑
nk∈N(ni)

(
〈qik〉

(ν) − 〈qik〉
(0)
)
T̃
(ν)
ik

, ni /∈ nact

(30)

respectively.
Alternatively, we could also specify different or additional

secondary constraints in a similar way, e.g., to aim for the
solution that minimizes the diameter changes of the vessels or
the variance of all flow rates in the network.

2.6. Solution Algorithm
The overall solution algorithm is summarized in Algorithm 1.
The term of J containing the secondary constraints is initially
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deactivated, i.e., initially ǫ = 0. The simulation loop is repeated
until J(ν) is converged below a certain tolerance value tol and the
minimum ρmin has been reached.

Algorithm 1: Algorithm for simulating activation scenarios

1: initialize relative diameters α(0) = 1
2: deactivate secondary constraints ǫ = 0
3: ν ← 0
4: while simulation is running do
5: BLOOD FLOWWITH RBC DYNAMICS
6: for each time step t = 1 . . .N

(ν)
1t do

7: compute q[t] and p[t] based on the current RBC
distribution (Equations 1–6)

8: move RBCs for a time step 1t

9: compute averages 〈q〉(ν) and 〈p〉(ν) (Equation 8)
10: compute ρ(ν) (Equation 28)
11: update cost function J(ν) (Equation 27)
12: if J(ν) > tol then

13: UPDATE RELATIVE DIAMETERS
14: compute T̃n, µ̃(ν)

rel
and ∂T̃(ν)

∂α(ν) (Equations 9,25,26)

15: compute ∂ g̃(ν)

∂α(ν) and
∂ g̃(ν)

∂〈p〉(ν)
(Equations 22,23),

16: compute ∂J(ν)

∂α(ν) (Equation 29) and
∂J(ν)

∂〈p〉(ν)
(Equation 30)

17: compute sensitivity dJ(ν)

dα(ν) (Equations 13 and 14)

18: update parameters α(ν+1) (Equation 12)
19: else

20: UPDATE SECONDARY CONSTRAINTS
21: if ǫ = 0 then
22: activate secondary constraints, e.g., ǫ = 1

23: set new ρmin < ρ(ν)

24: ν ← ν + 1
25: return final parameters α(ν)

2.7. Convergence of the Method and
Impact of Secondary Constraints
The typical convergence behavior of term I in Equation (27) is
shown in Figure 2A, for a test case in a hexagonal network. The
goal was to locally increase the flow rate by 30% in a subset of
blood vessels, i.e., in the vessels within the green dashed line
shown in Figures 2B,C. The simulation setup and results will be
analyzed in more detail in the subsequent section. Here, we will
focus on the influence of ρmin on the convergence rate and the
resulting flow field.

The tracking of individual RBCs and the approximation

for calculating ∂T̃(ν)

∂α(ν) introduced in Equation (26) result in

a noisy convergence of J(ν) (gray line). Therefore, a filtered
convergence curve (black line) is also shown to better visualize
the overall behavior.

The convergence tolerance is tol = 10−5 and N
(ν)
1t = 500 time

steps are used for time averaging between each iteration step ν.
The overall convergence rate depends on γ from Equation (12),
which is chosen as large as possible, while the calculated diameter

changes still reach their final values without oscillations in almost
all blood vessels. Initially, term II of Equation (27) is deactivated
(ǫ = 0) until the method converges at ν = 120. Subsequently,
term II is activated with ρmin < ρ(ν=119). At iteration steps 400
and 1,000 this ρmin is further reduced until its minimum value
is found. After ν = 1, 000 the method does not converge,
since ρmin is chosen too small and hence q̄tar cannot be reached
any more.

Figures 2B,C visualize normalized blood flow changes,
compared to baseline at ν = 120 (no secondary constraints)
and ν = 1, 000 (final result with minimum ρmin). Note that the
absolute flow rate changes are normalized with the mean baseline
flow rate in the activated region, i.e.,

1〈qij〉
(ν) =

dir
(0)
ij

(
〈qij〉

(ν) − 〈qij〉
(0)
)

q̄
(0)
sim

. (31)

The primary goal, i.e., the flow increase in the activated region, is
achieved in both scenarios. Therefore, both results are solutions
for the inverse problem without secondary constraints, i.e.,
Equation (19). This ambiguity is only resolved with term II of
Equation (27) and theminimum ρmin, which assures that the flow
rate changes outside of the activated region are minimized.

The secondary constraint may also impact the inflow rates
over the boundaries, if pressures at in- and outflow nodes are
kept constant. For example, the flow rate over the boundaries
increases by 16.3% for ν = 120, and by 3.9% for ν = 1, 000.
Therefore, for ν = 120, the flow increase is primarily achieved
by increasing the overall blood supply over the boundaries,
i.e., the diameters change in such a way that the overall flow
resistance of the network is reduced. For ν = 1, 000, the up-
regulation results from diameter changes that not only increase
the overall supply, but also internally redistribute the blood flow.
This illustrates, that choosing an adequate cost function is a
crucial part of the method, since it directly affects the final result.

3. RESULTS

Our method allows to investigate various scenarios related
to blood flow regulation. We performed simulations in both
artificial and large realistic microvascular networks as visualized
in Figure 3. The goal was to compute the diameter changes which
are required to locally increase the average blood flow rate in
a predefined activated region (primary constraint). Outside of
the activated region, the flow rates should remain as constant as
possible compared to baseline conditions (secondary constraint).

Note, that the scope of our study is not to systematically
investigate all possible scenarios, but merely to demonstrate
the main capabilities of our method by applying it to different
test cases.

3.1. Activation in Artificial Hexagonal
Networks
Our first study considers an artificial network as shown in
Figure 3A. The hexagonal structure is a rough approximation
of the highly interconnected capillary bed, where blood vessels
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FIGURE 2 | Convergence of the cost function and computed flow rate changes with/without secondary constraints. (A) Instantaneous and filtered convergence of

primary constraints of J. (B) Flow rate changes at ν = 120 without secondary constraints. (C) Flow rate changes for the final result with the minimum ρmin at

ν = 1, 000. The average flow rate is increased by 30% in the edges encircled by the green dashed line. All edges within the blue dashed line are allowed to change their

diameters to up-regulate flow. The absolute flow rate changes are normalized with the mean baseline flow rate in the activated region, i.e., q̄(0)sim. For more information

on how the normalized flow rate changes were calculated, and for a visualization of the absolute flow distributions at ν = 0, ν = 120 and ν = 1, 000, see Figure S4.

FIGURE 3 | Microvascular networks used in the present study to investigate

different activation scenarios. (A) Artificial hexagonal network with uniform

initial diameters and lengths. The goal is to increase the average blood flow

rate by 30% in the green-colored vessels. The vessels which are allowed to

change their diameters are encircled by different blue dashed lines, for the

three scenarios considered here. (B) Realistic microvascular network from the

mouse cerebral cortex (network from Blinder et al., 2013). Arterioles are

colored red, venules blue and capillaries gray. The goal was to increase the

average capillary blood flow rate in the green colored vessels.

are mainly connected through bifurcations. The activated region
consists of 30 vessels located approximately in the center of the
network (Figure 3A, within the green dashed line) and the target

flow rate is q̄tar = 1.3 q̄
(0)
sim, which corresponds to a 30% flow

increase compared to baseline. In the following, we refer to the
vessels within the activated region (Act) as Gen 0 vessels. The

adjacent vessels to Gen 0 are referred to as Gen 1, and the next
generations of vessels accordingly as Gen 2 to Gen 5 vessels.

We compare three scenarios in which different subsets of
vessels are allowed to change their diameters to obtain the
predefined target flow rate: In the first scenario, all vessels of the
entire network are allowed to react. In the other two scenarios,
only Gen 0-5 and Gen 0-2 vessels can change their diameters,
respectively. The vessels which are allowed to adapt are encircled
by different blue dashed lines in Figure 3A for each scenario.

At baseline conditions, the vessel diameters are d(0)ij = 4.5 µm

with α
(0)
ij = 1 in the entire network. The vessel lengths are lij =

75 µm and constant throughout the simulation. These values are
consistent with the mean values of the realistic network from
the mouse cerebral cortex shown in Figure 3B (Schmid et al.,
2017). Constant pressure boundary conditions are assigned to
one in- and one outflow node. Furthermore, a constant inflow
tube haematocrit Ht,in = 0.3 is prescribed (Schmid et al.,
2019b). Since the computed diameter changes can be large for the
scenario where only Gen 0-2 vessels react, they were restricted

to ±15%, i.e., to 0.85 < α
(ν)
ij < 1.15, to not obtain results

exceeding typical maximal dilations observed in experimental
studies (Lindvere et al., 2013; Hall et al., 2014; Rungta et al.,
2018). The tolerance for convergence of J was set to tol =
10−5, which corresponds to a discrepancy < 0.5 % between

q̄
(ν)
sim and q̄tar .
The simulated relative diameter changes are visualized in

Figures 4A–C for all three scenarios. Furthermore, in Figure 4D

the average and individual diameter changes for each vessel
generation are shown. The corresponding changes of the flow
rates are presented in Figures 4E–H. We observe that a very
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FIGURE 4 | Diameter and flow rate changes for different scenarios in artificial networks. Relative diameter changes of individual vessels for the scenarios where all (A),

Gen 0-5 (B) and Gen 0-2 (C) vessels can react. In each scenario, the blood vessels within the blue dashed lines can adapt. The average flow rate is increased by 30%

in the edges within the green dashed circle. (D) Relative diameter changes as a function of the vessel generation. Gray dots represent relative changes in individual

blood vessels and bars the mean change for each generation. Flow rate changes in individual vessels for the scenarios where all (E), Gen 0-5 (F) and Gen 0-2 (G)

vessels can react. The absolute flow rate changes are normalized with the mean baseline flow rate in the activated region, i.e., q̄(0)sim. (H) Relative flow rate changes as a

function of the vessel generation. Gray dots represent changes in individual vessels with respect to the mean flow rate in the corresponding generation and bars are

relative changes of the mean flow rates in each generation.

localized flow increase in Act is achieved in all three scenarios
and that the specified target flow increase of 30% is matched
accurately (Figure 4H). Flow rate changes are also observed in
the surrounding vessels. While the average flow rate increases in
Gen 1, it decreases in Gen 2. Further away, the average changes
are relatively small, i.e., . 5%. However, changes in individual
vessels are highly heterogeneous andmay differ significantly from
themean values. For example, the flow rate changes range from≈
6− 60% in Act for all three scenarios (Figure 4H). By comparing
Figures 4E–G, we see that the overall characteristics of the flow
rate changes are very similar, independent of the number of
reacting vessels.

We observe that there are exclusively dilations in Act, but
a combination of dilations and constrictions outside of Act

(Figure 4D). The diameter changes are generally small, if all
vessels in the network can react, i.e., ≈ 5.8% on average in
Act (Figure 4A). The changes become larger the fewer vessels
are allowed to adapt, i.e., ≈ 8.8% (Figure 4B) and ≈ 12.9%
(Figure 4C) on average inAct, if onlyGen 0-5 andGen 0-2 vessels
can react, respectively.

3.2. Activation in Realistic Microvascular
Networks
The second study investigates different scenarios related to
activation in a realistic microvascular network from the mouse
cerebral cortex. The network was obtained by Blinder et al.
(2013) and the blood vessels were classified as pial arterioles (PA),
arterioles (A), capillaries (C), venules (V), and pial venules (PV),
based on the network topology and vessel diameters (Blinder
et al., 2013; Schmid et al., 2017). In Figure 3B, the colors red, blue,
and gray are used to highlight arterioles, venules and capillaries,
respectively. The network spans an area of 1.13mm× 1.15mm
and has a depth of 1.30mm. It consists of 12,502 edges with a
mean capillary diameter of 4.5 µm. For all simulations, a constant
time step size of 1t = 0.4ms is used and the instantaneous

flow rates and pressures are averaged over 4 s (N(ν)
1t =10,000)

between each iteration step ν. Due to the constant time step
size, bifurcation events occur on average in 3.3% of all capillaries
at every time step. For more details on the choice of the
constant time step size and the averaging time see Figure S3.
Constant pressure and haematocrit boundary conditions are
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TABLE 2 | Investigated scenarios were different vessel types are allowed to

react simultaneously.

Scenario Vessel

types

Nr. of responding

edges

Volume

responding (%)

Length

responding (%)

I A, V, C 12,427 (99.4 %) 73.7 99.0

II A, C 10,510 (84.1 %) 52.4 89.3

III C 9,182 (73.4 %) 35.7 81.5

IV A, V 2,167 (17.3 %) 27.2 12.1

V A 1,328 (10.6 %) 16.7 7.8

For each scenario, the number and percentage of vessels which are allowed to change
their diameters, and the corresponding fractional volumes and lengths, are given.
Percentage values are calculated relative to all vessels in the entire network, including
PAs and PVs.

assigned to in- and outflow nodes at the level of pial vessels
and capillaries (Schmid et al., 2017). While literature data on
pressure measurements exists for the larger pial vessels (Shapiro
et al., 1971; Harper and Bohlen, 1984; Werber and Heistad, 1984;
Hudetz et al., 1987), no such data are available for the capillaries.
Therefore, a hierarchical boundary approach was applied by
implanting the realistic network into a much larger artificial
domain to obtain appropriate boundaries at the capillary level.
For more details on the structure of the network, the vessel
classification and on how the boundary conditions were obtained
we refer to a previous publication of our group (Schmid et al.,
2017). The network was taken from the somatosensory cortex
and covers parts of the barrel field. Barrels are regions with higher
cell density and each of these barrels primarily receives sensory
input from one whisker. By stimulating one specific whisker, an
increase of neuronal activity and consequently, blood flow, can be
observed in the corresponding barrel. Since the locations of the
barrels are available (Blinder et al., 2013), we investigate different
activation scenarios for one specific barrel. More precisely, the
goal of our study is to increase the average capillary blood flow
rate by 30% in the most central barrel (Vbarrel = 3.9× 106 fL) of
the network, i.e., in the green colored vessels of Figure 3B. Note
that the blood vessels defining the activated region are located at
the depth of cortical layer IV and consequently, not all vessels
of the entire barrel column are included. This is motivated by
the observation of laminar differences in vessel topology (Weber
et al., 2008; Blinder et al., 2013) and blood flow distributions
during baseline and activation (Goense et al., 2012; Schmid et al.,
2017; Li et al., 2019). However, the exact temporal and spatial
flow patterns on the capillary level are currently unknown and
more advanced high-resolution tomographic imaging methods,
e.g., Ntziachristos and Razansky (2010), Errico et al. (2015), will
be required for its quantification in the future.

We compare five scenarios where only selected vessel types
are allowed to dilate or constrict simultaneously. In Table 2, the
vessel types, the total number of vessels which are allowed to react
at the same time and the corresponding percentage relative to all
vessels in the network are listed for each scenario. Furthermore,
the fractions of responding vessel volumes and lengths are also
given in the table. Due to their close proximity to boundaries,
the diameters of pial vessels (PA/PV) are kept constant in all
scenarios and only the impact of A, V, and C is considered. It

should be noted, that no active regulation of venule diameters
has been reported in the literature. However, passive diameter
changes may occur based on variations in the pressure field and
considerable changes of venous blood volume were observed in
MRI-based studies (Chen and Pike, 2009, 2010).

3.2.1. Diameter and Blood Flow Rate Changes
The simulated relative diameter changes of individual vessels are
visualized in Figures 5A,B for scenarios I and IV, respectively,
and the corresponding flow rate changes are shown in
Figures 5D,E. In the following, our analysis mainly focuses on
changes in the capillary bed. For more information on average
diameter and blood flow changes of all vessel types, see Tables S1,
S2, respectively.

To compare the changes at the capillary level more
quantitatively, the network is partitioned into 5355 overlapping
averaging cubes of 82 µm side length. For each cube we computed
the relative changes of mean capillary diameters and flow
rates, and determined the relative distance to the center of the
activated barrel, i.e., the polar coordinate r/ract , where ract is
the approximate radius of the barrel, i.e., ract = 98 µm in
the current study. The average relative changes in individual
cubes are classified into different ranges of distances to the
activation center and shown as gray dots in Figures 5C,F.
The corresponding bar plots visualize mean changes obtained
by averaging over all cubes within a certain distance to the
activation center.

Our results reveal that the desired target flow rate in Act
is reached in all five scenarios (Figure 5F). We observe a very
localized flow rate increase in the activated barrel in all scenarios
where capillaries are allowed to change their diameters, i.e.,
in scenarios I–III (Figure 5D). On the contrary, the change is
far less local and also spreads into neighboring barrels, if only
larger vessels are allowed to react, i.e., in scenarios IV and
V (Figure 5E). In scenarios I - IV the flow rates within Act
exclusively increase. Outside of Act there are also regions with a
reduction of blood flow (Figure 5F). These regions with reduced
blood supply are observed less for scenarios where more blood
vessels can react, i.e., in scenarios I - III if compared to IV and
V (Figure 5F). As in the artificial network, the flow rate changes
outside of Act are highly heterogeneous, i.e., a complex pattern
of flow increases and decreases is observed (Figures 5D,E). The
magnitudes of these changes can be very large, if capillaries are
not allowed to change diameters. For example, the increase can
reach 60% at distances of r/ract > 2 in individual cubes, which
is twice the value of the desired increase in Act (Figure 5F). The
flow increase is also achieved, if capillaries are the only vessels
that change. Hence, from a purely hemodynamic perspective,
capillary dilations and constrictions are sufficient to achieve a
flow increase of 30% in Act.

A closer look at the required diameter changes at the
capillary level reveals that they are most pronounced in the
range with r/ract < 2 (Figure 5C). Note that in scenarios IV
and V the capillary diameter changes are zero by definition.
Furthermore, we see that there are only dilations in Act, but
a combination of dilations and constrictions outside of Act
(Figure 5C). As expected, individual diameters need to change
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FIGURE 5 | Relative diameter and flow rate changes in a realistic microvascular network, when only selected vessel types are allowed to dilate and constrict. (A)

Diameter changes, if A, V, and C can react (scenario I). (B) Diameter changes, if only A and V can react (scenario IV). (C) Capillary diameter changes for scenarios I–V.

Results are shown as functions of distance to the barrel center. Gray dots are relative diameter changes in individual averaging cubes, and bars represent mean values

obtained by averaging over all cubes within a certain distance to the activation center. (D–F) Corresponding relative changes of blood flow rates. In (F) the mean blood

flow changes in Act are calculated based on the values in individual capillaries, i.e., with Equation (16), to demonstrate that the target flow rate increase is reached. For

completeness, the relative diameter and flow rate changes for scenarios II, III, and V in the entire network are visualized in Figure S5. Furthermore, absolute flow rate

changes normalized with the mean capillary blood flow rate in the activated barrel at baseline, i.e., q̄(0)sim, are visualized in Figure S6 for scenarios I–IV.

more, if fewer vessels are allowed to react. For example, the
average diameter changes in Act are higher in scenarios II
and III than in scenario I (Figure 5C). However, the required
diameter changes are relatively small for all test cases, especially
if we consider that a 5% diameter change corresponds to
an absolute change of < 0.5 µm for capillaries. If capillary
diameters are kept constant (scenarios IV and V), diameter
changes of As and Vs are observed in a large region of the
network (Figure 5B).

Since the pressures at boundary nodes are kept constant
throughout the simulation, the total blood supply to the network
may change based on diameter changes in the network. However,
in our study, the changes of total blood flow over the boundaries
are relatively small, i.e., < 0.005% for scenarios I - III,≈ 0.7% for
scenario IV and≈ 1.2% for scenario V.

3.2.2. Tube Haematocrit and RBC Flux Changes
In the following, we compare how RBC distributions are affected
by the diameter changes presented in Figure 5. Therefore, the
average relative changes of tube haematocrit and RBC flux are

shown in Figure 6 as functions of distance to the activation
center. We want to point out that the goal of our inverse model
was to locally increase averaged blood flow rates (Equation 27),
and no optimization has been performed with respect to RBC
flux and haematocrit. Hence, the relative changes presented
in Figure 6 are only passive results, caused by the computed
diameter and flow rate changes (Figure 5). Therefore, it is
possible that different diameter changes may yield a more
optimized result to obtain a localized RBC flux increase in Act.

Our results indicate that the tube haematocrit within Act
increases for scenarios where capillaries adapt, i.e., for scenarios
I–III. For the other two scenarios, the average haematocrit
remains approximately constant (IV) or even decreases (V). Note
that the relative change in haematocrit per averaging cube is
highly heterogeneous across the network. This observation is
most pronounced for scenarios IV and V (Figure 6A).

Due to phase separation at divergent bifurcations, changes of
RBC fluxes are not exactly equivalent to changes of the overall
blood flow rate. For scenarios I–III, i.e., with capillary diameter
changes, the average RBC flux in Act increases more than the
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FIGURE 6 | Relative changes of tube haematocrit (A) and RBC flux (B) as

functions of distance to the barrel center. Note that the color legend and the

procedure to calculate the relative changes for individual averaging cubes are

identical to Figures 5C,F. The RBC fluxes were determined by counting the

number of discrete RBCs which enter each blood vessel on average.

corresponding blood flow rate. The opposite trend is observed
for scenarios IV and V, where the increase of average RBC flux in
Act is below the 30%, which was the prescribed blood flow rate
increase during activation (Figure 6B).

3.2.3. Consistency of Results Across Barrels
So far we focused on blood flow changes in the most central
barrel of the realistic MVN (Figure 3B). To ensure that results
are robust across barrels, we repeated our study for two
additional barrels as visualized in Figures S7A, S8A. For both
barrels, results for the relative changes of diameter, flow rate,
tube haematocrit and RBC flux are shown in Figures S7B–J,
S8B–J, respectively.

The results for the two additional barrels are comparable to
the results in the most central barrel (Figures 5, 6). For example,
the blood flow increase of 30% in the activated barrel is reached
for all five vessel response scenarios considered. Furthermore,
if capillaries are allowed to react (scenarios I - III), the blood
flow increase is more confined to the activated region, and the

RBC flux increases more than for scenarios where only larger
vessels react. Some differences are observed for the diameter
distributions of scenario I and the haematocrit distributions of
scenarios IV and V. However, due to the highly heterogeneous
structure of realistic MVNs, not every barrel is fed by the equal
number of vessels of the same types, and therefore, certain
differences can be expected. Consequently, we conclude that our
observations hold across barrels.

4. DISCUSSION

4.1. Capillary Diameter Changes Enable a
Locally Confined Regulation of Blood Flow
We investigated how dilations and constrictions of different
blood vessels influence the local up-regulation of blood flow. Our
results indicate that a localized blood flow increase in a specific
region of the brain is not possible, if capillaries are rigid and
only larger vessels (A+V) change their diameters. In this case,
significant flow rate changes also occur outside of the activated
region. This can be explained by considering that A+V feed or
drain a large number of capillaries and hence, it can be expected
that vasodilations and -constrictions of those vessels lead to
changes of blood flow distributions in much larger regions of the
microvasculature. In contrast, diameter changes at the capillary
level lead to a redistribution of blood flow on a much more local
scale. Our study suggests that two different mechanisms may
be involved in regulating blood flow. On one hand, the larger
vessels are responsible for increasing the overall blood supply
to the activated region. On the other hand, diameter changes at
the capillary level may be necessary to confine the blood flow
changes to a particular region, e.g., to a specific barrel of the
somatosensory cortex. It is currently difficult to validate our
results with experimental data, since diameter changes would
have to be measured in many vessels simultaneously. However,
our findings are in line with various in vivo studies which show
that arterioles as well as capillaries change their diameters during
activation (Hall et al., 2014; Mishra et al., 2016; Kisler et al., 2017;
Rungta et al., 2018).

We want to point out that our simulation framework seems
to be a valuable tool to better understand the possible impact of
various cell types on regulation. For example, one could think
of scenarios where only the vessels which are wrapped by SMCs
could change their diameters and compare the results to test cases
where also vessels with pericytes can react.

We further observed that the blood flow increase is also
achieved, if only capillaries change their diameters and A+V are
rigid. It should be noted that this is not necessarily a realistic
scenario, since it is known that arterioles dilate in vivo (Tian
et al., 2010; Lindvere et al., 2013; Hall et al., 2014; Hillman, 2014;
Mishra et al., 2016; Kisler et al., 2017). However, it demonstrates
that, from a purely hemodynamic point of view, simultaneous
dilations and constrictions of multiple capillaries can locally
induce a flow increase comparable to diameter changes at
the level of A+V. These results are consistent with previous
numerical studies which also reported that significant changes of
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blood flow rates are possible in response to dilations of capillaries
only (Lorthois and Lauwers, 2012).

It has been suggested that the location of the largest pressure
drop is the optimal place for regulating blood flow (Hall
et al., 2014). However, based on our results, it seems likely
that the vasodynamic response is complex and not easy to
describe in full detail (Lindvere et al., 2013). In the scenarios
considered, we observed that the most local regulation is
achieved with very heterogeneous and small positive and negative
diameter changes.

A previous study of our group shows that the location of
the largest pressure drop varies over cortical depth (Schmid
et al., 2017). Hence, it should be further investigated if those
differences over depth affect the blood flow regulation, since
different mechanisms may play a role depending on the exact
location of the activated region.

Due to phase separation at divergent bifurcations, RBC flux
and blood flow distributions do not change equally in the
activated region. This is also observed in our results, where
the RBC flux increase in Act is larger than the corresponding
blood flow change, if Cs can change their diameters. This
is in line with previous observations of Schmid et al. (2015,
2019b), which report an increase in RBC flux in response to
capillary dilation. For scenarios where only As and Vs adapt,
the opposite trend is observed and the RBC flux increase is
below the blood flow increase. We suggest that capillary diameter
changes are beneficial both for the localized up-regulation of
flow and haematocrit. This is of particular interest, since Lücker
et al. (2017) recently showed that haematocrit as well as RBC
velocity have a large influence on the actual tissue oxygenation.
However, as we did not optimize the diameter changes to obtain
a prescribed RBC flux, further investigations are necessary to
confirm this hypothesis.

4.2. Substantial Blood Flow Increase Is
Achieved With Relatively Small Dilations
and Constrictions
Our results show that a substantial blood flow increase is
achieved with relatively small vessel diameter changes. This can
be explained, if we consider that the relative flow resistance
change of one single vessel is inversely proportional to the fourth
power of the relative diameter, i.e.,

R
(ν)
ij − R

(0)
ij

R
(0)
ij

∼


 1

α
(ν)
ij

4 − 1


 . (32)

For example, a diameter increase of 5% reduces the flow
resistance in an individual vessel by 17.7%, if we only consider
plasma flow and neglect the impact of RBCs. This is in line
with our observation of exclusively dilating vessels in Act.
The blood supply in Act is further increased by dilations
of vessels which are located up- or downstream of Act.
Note that from a purely hemodynamic point of view and
in a symmetric network, both up- and downstream diameter
changes would have an identical influence on the overall
resistance and thus affect the flow in vessels equivalently. Besides

dilations, we also observed vasoconstrictions outside of Act.
These constrictions are responsible for rerouting blood from
regions outside of Act toward the inside to further increase
local perfusion.

Generally, the diameter changes are highly heterogeneous
and form a complex interplay of dilations and constrictions.
Such heterogeneous responses were also observed in previous
in vivo studies, where activation induced diameter changes
were detected simultaneously in multiple blood vessels
(Lindvere et al., 2013).

For all scenarios where capillaries can react (I–III) the
computed diameter and flow rate changes are located within or
in the closer vicinity of Act. If only A+V are allowed to change
(IV and V), the changes spread over the entire network. In
this case larger microvascular networks would be beneficial to
simulate the diameter changes and to better quantify the locality
of the regulation.

In our study in hexagonal networks we compared how the
number of reacting vessels affect the flow distributions. Although
the computed diameter changes vary considerably as a function
of the number of reacting vessels, the corresponding flow rate
changes show a very similar behavior for all scenarios. Hence,
similar flow patterns can be achieved, if either a small number
of vessels experience pronounced diameter changes, or if a much
larger set of vessels reacts mildly.

Importantly, the computed diameter changes are in a range
which is difficult to be detected in vivo. For the capillary bed
we observe relative changes of approximately 1–6%, which, for
an average diameter of 4.5 µm, correspond to absolute changes
in the range of 0.05–0.27 µm. This is below the resolution of
most experimental methods and has to be kept in mind for in
vivo experiments.

In our current analysis we assume that each vessel reacts
homogeneously over its entire edge length. Due to varying mural
cell densities along the vessels, this assumption might not hold
in vivo, e.g., since it has been observed that capillary pericytes
may change diameters locally along individual vessels (Hall
et al., 2014). By neglecting the influence of individual RBCs on
resistance, our results can easily be transformed to the case where
vessels dilate or constrict partially over their length. If only the
fraction βij of an edge eij is able to react, the relative diameter
αβ ,ij, with

αβ ,ij ≈

(
βij

1/α4
ij − 1+ βij

)1/4

, (33)

yields the same flow resistance as the case with a relative diameter
αij over the entire edge length. For example, entire vessel-
length changes of 1 and 5% would correspond to changes of
approximately 4 and 36%, if only 25% of the vessel lengths
could react.

Recent studies suggest that in response to changes in tissue
oxygenation, the deformability of RBCs is altered, which causes
a direct local increase in RBC velocity (Wei et al., 2016; Zhou
et al., 2019). Currently, our inverse model is parameterized such
that vessel diameter changes are the only possible mechanism
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to regulate blood flow. However, these changes could directly
be translated into changes in vessel resistance, which could be
translated to changes in µ̃rel. Eventually, these changes of µ̃rel

could be translated to average changes of RBC deformability,
given such relation is available.

4.3. Inference of Simulation Parameters
and Reduction of Network Uncertainties
Based on Sparse Experimental Data
Although not extensively studied in this work, we want
to highlight that our numerical method can easily be
extended for estimating various simulation parameters such
as boundary conditions and for reducing overall uncertainties
of microvascular networks. This aspect can be highly relevant
because of the discussed strong impact of vessel diameter
changes on flow rates. Furthermore, the accuracy of blood flow
simulations highly depends on the uncertainties related to the
acquisition and vectorization of microvascular networks, and on
the boundary conditions.

Here we used our method to compare different activation
scenarios and the parameter vector α only included the relative
diameters of blood vessels. However, Equations (8)–(14) hold
for arbitrarily chosen parameters and α could, for example,
also include pressure values at boundaries or vessel lengths.
Such simulation parameters could be improved by incorporating
any other available information into our model, i.e., flow
measurements obtained in individual blood vessels or prior
knowledge available from literature. Depending on the specific
application, a different cost function to Equation (27) would
be required.

One drawback of our approach to solve the inverse model
is that the adjoint method is intrusive and requires complete
knowledge of the underlying physical relations. However, due
to its deterministic formulation, we only have to simulate
one single realization and therefore, the computational cost
is relatively small compared to statistical approaches. This
is a clear advantage, if very large networks with many
uncertain parameters are considered. For applications, where
a deterministic approach is not applicable, using a Bayesian
approach as recently proposed by Rasmussen et al. (2017, 2018)
could be considered.

4.4. Importance of Defining Appropriate
Cost Functions
Our numerical method relies on the minimization of a
user-defined cost function to solve an inverse problem. The
assumptions that are made for defining a cost function
have an impact on the simulation result, as demonstrated
in Figures 2B,C. Although the desired flow rate increase in
Act is achieved in both scenarios, the flow distributions
outside of Act highly depend on the value ρmin. Similarly, we
could also define alternative cost functions, e.g., to minimize
the diameter changes in the vasculature or to increase the
homogeneity of blood flow. This demonstrates that defining
adequate cost functions which represent realistic scenarios is

crucial, since the underlying assumptions directly affect the
simulation result.

We are confident that the cost function we chose is suitable
because our goal was to find the diameters closest to the baseline
state which achieve a very localized up-regulation of blood flow.
Consequently, we are convinced that our numerical method
allows us to obtain meaningful and fundamental results. By
comparing various cases where only subsets of blood vessels
react, we can evaluate which scenarios are feasible, more likely
than others or impossible. Note that the same could also be
achieved bymanually defining possible combinations of diameter
changes of individual vessels and comparing the resulting flow
fields. However, our method allows us to do this much more
systematically and efficiently, since the target flow distribution is
a direct input parameter to the model and the diameter changes
are the final simulation result.

We presented a novel numerical method to calculate
diameter changes of blood vessels which are needed to achieve
localized changes of blood flow in the brain vasculature. The
applicability of our method was demonstrated by considering
different scenarios in artificial and realistic microvascular
networks. In summary, we observed that capillary diameter
changes are necessary to obtain a locally confined up-
regulation of blood flow. Furthermore, our results revealed
that relatively small dilations and constrictions of blood
vessels are sufficient to achieve pronounced changes of
local blood flow distributions. Of course, many questions
regarding the brain’s energy supply remain and further
studies are necessary to better understand possible regulation
mechanisms. Nonetheless, we believe that our numerical
method is a convenient tool to systematically investigate the
impact of various network and flow parameters on blood
flow regulation.
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