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Abstract
The immune system plays a fundamental role in both the development and pathobiology of

stroke. Inflammasomes are multiprotein complexes that have come to be recognized as crit-

ical players in the inflammation that ultimately contributes to stroke severity. Inflamma-

somes recognize microbial and host-derived danger signals and activate caspase-1, which

in turn controls the production of the pro-inflammatory cytokine IL-1β. We have shown that

A151, a synthetic oligodeoxynucleotide containing multiple telemeric TTAGGGmotifs,

reduces IL-1β production by activated bone marrow derived macrophages that have been

subjected to oxygen-glucose deprivation and LPS stimulation. Further, we demonstrate that

A151 reduces the maturation of caspase-1 and IL-1β, the levels of both the iNOS and

NLRP3 proteins, and the depolarization of mitochondrial membrane potential within such

cells. In addition, we have demonstrated that A151 reduces ischemic brain damage and

NLRP3 mRNA levels in SHR-SP rats that have undergone permanent middle cerebral

artery occlusion. These findings clearly suggest that the modulation of inflammasome activ-

ity via A151 may contribute to a reduction in pro-inflammatory cytokine production by
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macrophages subjected to conditions that model brain ischemia and modulate ischemic

brain damage in an animal model of stroke. Therefore, modulation of ischemic pathobiology

by A151 may have a role in the development of novel stroke prevention and therapeutic

strategies.

Introduction
Stroke is the second most common cause of death and the third most common cause of disabil-
ity-adjusted life-years (DALYs) worldwide. Of note, the global burden of stroke as measured
by the number of people affected every year, stroke survivors, related deaths, and DALYs lost
continues to increase [1]. The immune system plays a critical role in the development and sub-
sequent pathobiology of stroke. Inflammation and immunity have been linked to multiple risk
factors for stroke which include hypertension [2], atherosclerosis [3], diabetes [4,5], atrial
fibrillation [6], and tobacco smoke-induced vascular impairment [7]. Of particular interest are
the damage-associated molecular pattern molecules (DAMPs) released as a result of a cerebro-
vascular accident, that promote innate immune responses that contribute to brain damage and
ultimately to neurological deficits [8,9].

Although therapies directed at the early restoration of perfusion (i.e. recombinant tissue
plasminogen activator) have shown clear efficacy within the clinic [10], decades of research
focusing on putative mechanisms of cytoprotection that may permit brain cells to maintain
homeostasis both during/after an ischemic stress have uniformly failed to translate into clini-
cally relevant therapies [11]. Nonetheless, the basic and translational efforts of the international
stroke community have massively advanced the understanding of the governing dynamics
underlying stroke pathobiology.

Inflammasomes are multi-protein complexes activated as part of the innate immune
response to stressors and/or infections that trigger the maturation of caspase-1 followed by the
production of IL-1β and IL-18 [12,13]. Caspase-1 and IL-1β promote inflammation and cell
death with IL-1β having been implicated in a number of disease processes including those that
unfold after an ischemic injury [14–16]. In experimental stroke, IL-1β expression increases fol-
lowing brain ischemia and multiple studies have shown that blocking IL-1β can be neuropro-
tective [17]. Of note, in humans IL-1β levels increase in both the cerebrospinal fluid and blood
after an ischemic stroke [18–20]. In murine models, levels of inflammasome related proteins
increase after an ischemic brain injury and the inhibition of inflammasome activity has been
shown capable of reducing the extent of such injuries [21–25].

Telomeres cap the ends of linear chromosomes, protecting them from fusion, degradation,
and/or recombination [26]. Mammalian telomeres are composed of repetitive TTAGGG
motifs [27]. These motifs are released from dying host cells and serve to down-regulate inflam-
matory responses that can cause tissue destruction (e.g. as in autoimmune disease) [28,29].
The synthetic oligodeoxynucleotide A151 is composed of four TTAGGGmotifs on a phos-
phorothioate backbone. A151 duplicates the ability of telomeric DNA to modulate inflamma-
tion, including the production of IL-6, IL-12, IFNγ, MIP-2, and TNFα [29–31]. A151’s
potential as an anti-inflammatory agent has been demonstrated in animal models of arthritis
[32], endotoxic shock [31], concanavalin A induced hepatitis [33], ocular inflammation [34],
lupus nephritis [35], atherosclerosis [36], and silica-induced pulmonary inflammation [37].
Critically, the pharmacokinetics, pharmacodynamics and safety of phosphorothioate oligo-
deoxynucleotides have been established in multiple clinical trials [38–40].

Given the role of IL-1β in the development/progression of ischemic brain injury and the
success of A151 in ameliorating multiple diseases with inflammatory components, we sought
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to examine the effect of A151 on critical processes (i.e. inflammasome mediated responses)
underlying the pathophysiology of brain ischemia via the synergistic use of both oxygen-glu-
cose deprivation (OGD) and lipopolysaccharide (LPS) stimulation in a reductionist in vitro
system which is intended to replicate the complex pathobiology that unfolds during an ische-
mic stroke. We then sought to confirm the potential therapeutic utility of this compound in
vivo via a murine model of stroke. Per the aforementioned, bone marrow derived macrophages
(BMDM) were selected for study because macrophages/microglia are the major sources of IL-
1β within the ischemic brain [17]. In addition to perivascular macrophages, monocytes rapidly
infiltrate the brain and become macrophages after brain ischemia [8,41]. The effect of A151 on
the development of ischemic lesions in stroke-prone spontaneously hypertensive (SHR-SP)
rats was investigated by means of permanent middle cerebral artery occlusion (pMCAO),
which is a widely accepted animal model of ischemic stroke.

In the course of these studies we found that A151 reduces the maturation of caspase-1 and
IL-1β, the production of the inflammasome sensor protein NLRP3, and iNOS, and the depolar-
ization of mitochondrial membrane potential. Further, A151 was also shown to reduce ische-
mic brain injury (via a decrease in lesional volume) and NLRP3 mRNA in SHR-SP rats.
Therefore, this type of anti-inflammatory agent may thus represent a novel approach to the
prevention and/or treatment of ischemic stroke.

Materials and Methods

Reagents
Phosphorothioate oligodeoxynucleotides (ODN) A151 (5’-TTAGGGTTAGGGTTAGGGTT
AGGG-3’) and control ODN C151 (5’-TTCAAATTCAAATTCAAATTCAAA-3’) were syn-
thesized at the FDA CBER Core Facility (Silver Spring, MD). These ODNs were free of both
detectable protein and endotoxin contamination. The ODNs were reconstituted in saline for
intraperitoneal injection in rats. For cell culture, the ODNs were reconstituted in PBS. Lipo-
polysaccharide from E. coli OIII:B4 was purchased from Invivogen (San Diego, CA; #LPS-EB).
Rat macrophage colony stimulating factor (M-CSF) was from GenScript (Piscataway, NJ). All
cytokine ELISA kits were purchased from R&D Systems (Minneapolis, MN). LDH kits were
from Abcam (Cambridge, MA).

Cell culture
BMDM were derived from both the femurs and tibias of SHR-SP rats as has been previously
described, with slight modifications [42]. Bone marrow cells were cultured in DMEM supple-
mented with 10% FBS and 10 ng/ml rat M-CSF. 2x106 cells in 11 ml culture medium were
seeded in one 100 mm tissue culture dish. Three days later, 5.5 ml medium with 30 ng/ml rat
M-CSF was added to each dish. On day 6, the cells were washed twice with PBS and scraped in
the presence of cold HBSS. After centrifugation and resuspension, the cell density was adjusted
to 2х105 cells per ml and 2 ml cells were seeded in each well of six-well plates. Iba-1 staining
indicated that>99% cells were macrophages. On day 7, the cells were treated with 1 ng/ml LPS
and OGD with or without oligodeoxynucleotides for 18 hours. Supernatants were collected
and used for both ELISA and LDH assays.

Oxygen and glucose deprivation (OGD)
BMDM cells were seeded at a density of 2x105/ml. After an overnight incubation, the cells were
washed twice in PBS and 1 ml culture medium without glucose (Life Technologies, Grand
Island, NY) was added to each well. The plates were placed inside modular incubator chambers
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(Billups-Rothenberg, Del Mar, CA) with anaerobic colorimetric indicator strips that detect a
0.2% oxygen threshold (Becton Dickinson). The chamber was flushed with a gas mixture of
95% N2 and 5% CO2 for 20 min at room temperature at 6 L/min. After flushing, the chambers
were sealed and maintained at 37°C for 18 hours.

Western blot
Total cell lysate was prepared via the use of a commercial lysis buffer (Thermo Fisher Scientific,
Rockford, IL), which was added directly to each well of the six-well plates. After 15 min incuba-
tion on ice and 5s of sonication, the lysate was centrifuged at 10,000g for 15 min at 4°C. The
supernatant was collected and the protein concentration determined via a BCA assay (Thermo
Fisher Scientific, Rockford, IL). All samples were heated for 5 min at 95°C. 15μg of total cell
lysate was used for each SDS-PAGE. The following primary antibodies were used for WB anal-
yses: anti-IL-1β (R&D Systems, Minneapolis, MN; #AF-501-NA), anti-caspase-1 (Abcam,
Cambridge, MA; #ab108362), anti-caspase 8 (Cell Signaling, Danver, MA; #4790), anti-NLRP3
(AdipoGen, San Diego, CA; #AG-20B-0014), anti-ASC (AdipoGen, San Diego, CA; #AG-25B-
0006), anti-AIM2 (Santa Cruz Biotechnology, Santa Cruz, CA; #SC137967), anti-NLRP1 (Cell
Signaling, Beverly, MA; #4990), anti-NLRC4 (Santa Cruz Biotechnology, Santa Cruz, CA;
#SC49395), anti-iNOS (Abcam, Cambridge, MA; #ab3523), anti-caspase-11 (Santa Cruz Bio-
technology, Santa Cruz, CA; #SC28230). Signals were detected using a chemiluminescent sub-
strate − Immobilon Western (Millipore, Billerica, MA) followed by digital imaging with Fluor
Chem camera (Alpha Innotech, San Leandro, CA) or C-Digit (LI-COR, Lincoln, NE).

The supernatant was concentrated using methanol/chloroform precipitation as has been
described [43]. Briefly, 500ul supernatant was mixed with 500ul methanol and 125ul chloro-
form. After centrifuging at 16,000g for 5 min and removal of the top layer, 500ul methanol was
added to the sample. Following centrifugation for 5 min at 16,000g, the pellet was then dried at
50°C for 5 min. The pellet was resuspended in 50 ul SDS loading buffer and heated at 95°C for
15 min.

JC-1 assay
The MitoProbe JC-1 assay kit was obtained from Life Technologies (Grand Island, NY).
BMDM cells were cultured in 100 mm dishes and subjected to 1 hour OGD in the presence of
1 ng/ml LPS + 50 ug/ml A151 or C151. After OGD, the cells were incubated with 2uM JC-1 in
colorless DMEMmedium at 37°C for 30 min. The cells were washed twice with cold PBS sup-
plemented with 1.8 mM CaCl2, 0.8mMMgCl2, 10mM glucose, and 1 mg/ml BSA. The cells
were scraped, centrifuged and resuspended in 500 ul colorless DMEM with 1uM DAPI for and
prepped for FACS analysis.

Stroke-prone spontaneously hypertensive (SHR-SP) rats
Male and female offspring (5–7 months of age) of SHR-SP breeders (a kind gift from Professor
Yukio Yamori, Disease Model Cooperative Research Association, Hamamatsu, Shizuoka,
Japan) were used throughout the course of this study. The National Institute of Neurological
Disorders and Stroke Animal Care and Use Committee reviewed and approved all procedures.
The rats were randomly divided into treatment groups; with each group containing between
7–18 rats. Each group received one intraperitoneal (i.p.) injection of oligodeoxynucleotides
or saline 3 days before, 1 day before, or 3 hours after pMCAO. Oligodeoxynucleotide doses of
1 mg or 3 mg per rat were tested.
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Permanent middle cerebral artery occlusion (pMCAO)
Rats were anesthetized using 5% isoflurane for the induction phase and 2–2.5% isoflurane for
the maintenance phase in a 30% O2 /70% N2O vehicle via a facemask. The rats were then
placed in a lateral position, and a curved, vertical 2-cm skin incision was made in the midpoint
between the left orbit and the external auditory canal. A 1 mm hole was drilled into the skull, 1
mm posterior and 6 mm lateral from the midline. A filamental probe was attached to the cere-
bral blood flow (CBF) monitor, followed by one small burr hole (1.5–2 mm) made via a high-
speed microdrill through the outer surface of the skull at the junction between the medial wall
and the roof of the inferotemporal fossa. The dura was opened with a 30-gauge needle to
expose the middle cerebral artery (MCA), which was then occluded between the inferior cere-
bral vein and the lateral olfactory tract using a bipolar electrocoagulator. The coagulated MCA
segment was then transected with microscissors to ensure that the occlusion was permanent.
During pMCAO, the rectal temperature was monitored and maintained at 37±0.5°C with a
heating pad (TCAT-2DF controller, Physitemp Instruments, Clifton, NJ); the rats were allowed
to recover for 48 hours. 30% lidocaine was applied to the surgical sites to alleviate suffering
during the post-surgical recovery. Of note, the surgeon was blinded to the treatment each of
the rats received or was ultimately to receive. Upon sacrifice, the rats were asphyxiated via an
overdose of isoflurane anesthesia followed by immediate decapitation.

Neurological assessment
48 hours post-pMCAO, the rats were evaluated using methods that have been described previ-
ously [44]. However, we decided to modify the forepaw test to assess behavior in greater detail.
Briefly, the animal was held by the base of the tail and allowed to grasp a horizontal bar. If both
of the forepaws were able to grasp the bar immediately and at the same time, the grip-strength
was defined as equal, score 0; if both of the forepaws grasped the bar immediately, and at the
same time, but with decreased right forepaw grip-strength while the animal is gripping the bar
as its tail is pulled up, a score of 0.5 was assigned; if both of the forepaws are able to grasp the
bar, but with delayed motion and decreased strength of the right forepaw, a score of 1.0 was
assigned; if the right forepaw was not able to grasp the bar, a score of 1.5 was assigned; if the rat
displayed no motion/attempt to grasp the bar, a score of 2 was assigned. Of note, the scientist
evaluating the neurological deficits was blinded to the treatment the rats had received.

Infarct volume determination
Rats were euthanized 48 hours after pMCAO. The brains were removed, frozen on dry ice, and
stored at −80°C for downstream analyses. Frozen brains were sectioned coronally at a thickness
of 20-μm. One section was collected every 800-μm, with the discarded sections being used for
RNA isolation and real-time (RT)-PCR. The cut sections were then fixed using paraformalde-
hyde vapor and stained with cresyl violet. Image J (NIH, Bethesda, MD) was used to quantify
the infarct area. Infarct volume was calculated by summing cross-sectional areas and multiply-
ing by the distance between sections, followed by a correction for brain swelling (edema) as has
been previously described [45]. Again, the scientist calculating volume of infarction was
blinded to the treatment of the rats.

RNA isolation and RT-PCR
Frozen rat brain sections were homogenized in Qiazol lysis reagent (Qiagen, Valencia, CA). All
of the reagents and primers used for RNA isolation and real time RT-PCR were purchased
from Qiagen. Total RNA was isolated using the Qiagen miRNeasy mini kit according to the
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manufacturer’s instructions. RNA was then quantitated via a NanoDrop spectrophotometer
(Thermo Fisher Scientific Inc). 1 μg RNA was used for cDNA synthesis using the QuantiTect
Reverse Transcription kit. Real-time PCR was performed using a QuantiTect SYBR Green PCR
kit and the following PCR primers: caspase-1 (#QT00191814), IL-1β (#QT00181657), NLRP3
(#QT01568448), NLRC4 (#QT01604652), Aim2 (#QT02376171), iNOS (#QT00178325), sdha
(#QT00195958). The LightCycler 480 II (Roche, Indianapolis, IN) was used for reverse transcrip-
tion and PCR. Melt-curve analysis was performed to affirm the single-band production. Gene
expression was normalized to the housekeeping gene succinate dehydrogenase complex, subunit
A (sdha) and the delta delta Ct method was used to compare amongst treatment groups.

Statistical analysis
All data are expressed as mean ± standard error of the mean (SEM). All in vitro data were com-
pared using the student’s t-test. Comparisons of infarct volume, and the neurological deficit
score of two different treatment groups in rats were analyzed using the Mann-Whitney U test.
Differences were considered significant when p< 0.05.

Results

A151 reduces the release of inflammatory factors and the death of
BMDM induced by exposure to LPS and OGD
Brain ischemia is characterized by oxygen and glucose deprivation and inflammation within
the brain. To investigate the immunomodulatory potential of A151 under ischemic conditions,
BMDM were treated with A151 or C151, LPS, and OGD. A151 dramatically reduced the levels
of IL-1β, IL-1α, IL-6, CINC-1, and TNFα in culture supernatants (Fig 1). This was in contrast
to the effects of the control ODN C151, which only reduced the levels of IL-6 and CINC-1. Of
note, neither ODN altered the levels of CINC-3, IFNγ, IL-10, or TGFβ (data not shown).

Ischemia is also capable of inducing cell death, one form of which is pro-inflammatory cell
death (i.e. pyroptosis). Because, pyroptosis has been associated with the release of pro-inflam-
matory cytokines from macrophages [15] and occurs in various forms of organ ischemia
[46,47], we explored the effects of A151 on the survival of oxygen and glucose deprived
BMDM. Compared with LPS treatment, A151 at 50 ug/ml reduced LDH release from
94.3 ± 4.2% to 62.6 ± 7.3% (p<0.05). Of note, C151 did not affect LDH release. These findings
verify results from other groups, which have shown that the anti-inflammatory effects medi-
ated by A151, are not due to an increase in target cell cytotoxicity [28,31].

A151 reduces the maturation of IL-1β and caspase-1 and the expression
of NLRP3 and iNOS in response to LPS and OGD stimulation
The effect of A151 on IL-1β expression and maturation was explored further by western blot
analysis. A151 treatment of oxygen and glucose deprived BMDM reduced the levels of mature
IL-1β in cell culture supernatants (Fig 2A). Being that the inflammasome is a multiprotein
complex and a key regulator of IL-1β production, we studied the regulatory potential of A151
on the expression/protein levels of additional inflammasome components. A151 reduced
mature caspase-1 (Fig 2B) and NLRP3 (Fig 2D), but did not affect ASC, AIM2, NLRP1 or
NLRC4 (data not shown). Further it is known that IL-1β can induce the expression of iNOS
[48] and that iNOS can influence stroke-induced cellular damage [49]. We therefore analyzed
iNOS levels and found that A151 reduced the levels of iNOS expression (Fig 2E). It is impor-
tant to note that in murine systems caspase-11 in part controls IL-1β secretion via the potentia-
tion of caspase-1 activation and can thus induce caspase-1-independent pyroptosis
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downstream of non-canonical NLRP3 inflammasome activators. We thus sought to check the
expression and maturation of caspase-11. Of note, A151 did not influence the levels of pro-
and/or mature caspase-11 in cell lysates or supernatants (Fig 2C).

A151 reduces the depolarization of mitochondrial membrane potential in
BMDM
Mitochondrial dysfunction has been linked to NLRP3 inflammasome activation and we observed
that A151 reduces NLRP3 protein expression [50]. We therefore sought to determine whether
A151 could ameliorate BMDMmitochondrial dysfunction. To accomplish this we used the JC-1
assay to study the mitochondrial membrane potential (MMP) and found that A151 reduced the
depolarization of MMP (Fig 3). Compared with C151 treatment, A151 reduced the percentage of
cells with depolarized MMP from 15.8 ± 2.8% to 7.4 ± 0.9% (p<0.05).

A151 reduces pMCAO induced ischemic brain damage in SHR-SP rats
The ability of A151 to prevent and/or treat ischemic injury was evaluated in SHR-SP rats using
the permanent middle cerebral artery occlusion (pMCAO) model. A single dose of 3 mg A151

Fig 1. A151 reduced pro-inflammatory cytokine production and cell death in BMDM subjected to LPS and OGD. BMDMwere treated with OGD, with
or without 1 ng/ml LPS, A151 or C151 for 18 hours. IL-1β (A), IL-1α (B), IL-6 (C), CINC-1 (D), TNFα (E), and LDH (F) in cell culture supernatants were
measured by ELISA. Data are presented as mean ± SEM from three replicates representative of three independent experiments (*, p < 0.05 compared with
LPS treatment; **, p < 0.05 compared with control or C151 treatment).

doi:10.1371/journal.pone.0140772.g001
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Fig 2. A151 reduced IL-1β and caspase 1 maturation, and the expression of NLRP3 and iNOS in BMDM subjected to LPS and OGD. (A) A151
reduced mature IL-1β in supernatants. (B) A151 reduced mature caspase 1 in supernatants. (C) A151 did not influence caspase 11 in cell lysates or
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was administered via i.p. injection 3 days prior to (-3d), 1 day prior to (-1d), or 3 hours post
(+3h) pMCAO. Of note, we also tested 1 mg A151 administered 1 day prior to pMCAO in an
effort demonstrate a threshold for effective dosing. Each of these treatment regimens signifi-
cantly reduced infarct volumes (p<0.05, Fig 4). In male rats (Fig 4B), at 48 hours after MCAO,
the infarct volumes (corrected for edema) of the saline treated (145.7 ± 6.6 mm3), 3 mg C151
-1d treated (141.3± 7.6 mm3) and +3h treated (151.2± 10.4 mm3) animals were similar; the
infarct volumes in 3 mg A151 -3d treated animals (119.5 ± 5.8 mm3) averaged 15.4% smaller
than in C151 -1d treated rats; infarct volume was decreased by 26.9% and 23.9%, respectively,
in 3 mg A151 -1d group (103.2 ± 9.3 mm3) and +3h group (107.5 ± 11.7mm3); 1 mg A151 -1d
reduced infarct volume (101.5 ± 14.0 mm3) by 28.1%. In female rats (Fig 4C), compared with
the saline group (116.8 ± 7.1 mm3), infarct volume was decreased in 3 mg A151 -1d group

supernatants. (D) A151 reduced NLRP3 in cell lysates. (E) A151 reduced iNOS in cell lysates. Data are presented as mean ± SEM from three replicates
representative of three independent experiments (**, p < 0.05 compared with control or C151 treatment).

doi:10.1371/journal.pone.0140772.g002

Fig 3. A151 reduced depolarization of mitochondrial membrane potential (MMP) in BMDM subjected to LPS and OGD. (A) FACS analysis of cells
stained with JC-1. (B) The percentage of cells with depolarized MMPwas reduced by A151 treatment. Data are presented as mean ± SEM from three
replicates representative of three independent experiments (**, p < 0.05 compared with control or C151 treatment).

doi:10.1371/journal.pone.0140772.g003
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(94.3 ± 3.9 mm3) and 3 mg A151 +3h group (89.2± 4.7mm3); 3 mg C151 +3h did not affect
infarct volume (118.8 ± 10.3 mm3).

Fig 4. A151 reduced brain ischemic injury in SHR-SP rats 48 hours after pMCAO. The rats in saline groups were combined for analysis, as they were
not statistically different. (A) Representative coronal brain sections stained with cresyl violet. (B) A151 reduced infarct volumes in male rats. (C) A151
reduced infarct volumes in female rats. (D) A151 improved performance in forepaw test in female rats. (E) A151 reduced brain NLRP3 mRNA 48 hours after
pMCAO, the error bars represent the 95th upper and lower confidence intervals of gene expression. (n = 7–17 per group; *, p < 0.05 compared with saline
control; **, p < 0.05 compared with saline control or C151).

doi:10.1371/journal.pone.0140772.g004
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In addition to lesional volumes, neurological deficits were also evaluated at 48 hours after
surgery. 3 mg of A151 improved the forepaw grasp and grip performance in female rats if
administered 3 hours post-surgery (Fig 4D). Further, A151 (3 mg) -1d showed a trend toward
improved forepaw performance. Unexpectedly in male rats, A151 did not improve forepaw
grasp and grip performance. Further, we also tested the rats circling, swing, and side push
responses, yet A151 did not affect these functions in either gender.

A151 reduced NLRP3 mRNA within the brains of post-ischemic SHR-SP
rats
We purified total RNA from the brain of SHR-SP rats 48 hours after pMCAO. All data were
normalized against sdha mRNA levels and the expression of NLRP3 mRNA in the 3 mg A151
−1d rats were compared to rats treated with saline and 3 mg C151 −1d. Compared with saline
and 3 mg C151 -1d treatments, the expression of NLRP3 was reduced by about 6.9-fold and
2-fold in 3 mg A151 −1d treated rats, respectively (p< 0.05, Fig 4E). Of note, the expression of
Aim2 and NLRC4 were not altered by A151 (Fig 4E).

Discussion
Inflammation has been shown to contribute to the development of strokes and to magnify sub-
sequent brain damage [51,52]. Brain ischemia itself has been shown to trigger local inflamma-
tion that exacerbates brain damage and promotes stroke recurrence [8,53]. Thus, inflammation
can influence both a patient’s prognosis and ultimate survival [54,55]. As such, the possibility
that the temporally appropriate modulation of inflammation may be used to reduce ischemic
brain injury is of interest.

This work provides evidence that A151, a synthetic oligodeoxynucleotide containing tele-
meric TTAGGGmotifs, suppresses the production of inflammatory factors by BMDM sub-
jected to OGD/LPS (e.g. CINC-1, IL-1α, mature IL-1β, IL-6, TNFα, and mature caspase-1) and
reduces ischemic brain injury in SHR-SP rats that have undergone pMCAO. Having further
explored the regulation of inflammasome sensors and adaptors, we noted that A151 reduces
the expression of the NLRP3 protein in BMDM and NLRP3 mRNA within the ischemic brains
of SHR-SP rats.

Inflammasomes act as sensors of both host-derived danger signals and infectious agents.
Thus they play an important role in mediating inflammation in diseases including cancer,
ischemia/reperfusion injuries, metabolic and autoimmune disorders [56,57]. Stroke involves
an increase in extracellular ATP abundance, the production of reactive oxygen species, and
necrotic cell death [8]. Critically all of these factors have been implicated in the activation of
the NLRP3 inflammasome [58,59]. Beyond the induction of bioactive IL-1β, caspase-1 and
NLRP3 also directly mediate cell death [60,61]. Immunoglobulin treatment, intermittent fast-
ing, and intraperitoneal injection of the fungal isolate chrysophanol, all attenuate NLRP3
inflammasome activity and have been shown to reduce ischemic brain damage [24,25,62]. Our
results thus add to the growing body of evidence indicating that ischemic stroke-induced brain
damage can be ameliorated by modulating the NLRP3 inflammasome axis. Of note, the work
of Denes et al. has suggested that both the AIM2 and NLRC4 inflammasomes (i.e. not the
NLRP3 inflammasome) contribute to stroke pathogenesis [63]. While experimental models are
often complicated by variations in animal species, age/gender, and anesthesia/surgical proce-
dures it is prudent to note that Kastbom et al. have provided evidence linking genetic variants
of NLRP3 with stroke in humans [64]. Clearly, the innate immune response after focal ische-
mia is complicated and further studies will be need to definitive clarify the core components
involved and ultimately delineate species specific responses.
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With the understanding that metabolic products have been shown to activate NRLP3 and
mitochondria have been shown to be involved in NRLP3 inflammasome activation/function
[65–67] we thought that the therapeutic effects mediated by A151 may proceed via this axis. Of
note, recent work by Chang et. al. has directly linked the inhibition of the NRLP3 inflamma-
some to the preservation of mitochondrial integrity [68]. In an effort to determine if such a
relationship does in fact exist within our experimental system a series of JC-1 assays were per-
formed. This work has indicated that cells treated with A151 gave rise to both a greater propor-
tion of BMDM cells in which mitochondrial membrane potential was intact and a decrease in
those cells which displayed a decrease in mitochondrial membrane potential vs the control
ODN, C151, after OGD. This result has clear implications and suggests a role for the mito-
chondria in A151’s suppression of inflammation. Further work will be necessary to dissect the
precise roles of mitochondria ROS/DAMPs from the potential metabolic regulation of inflam-
mation via A151 as recent evidence has come to suggest that mononuclear phagocyte (MP)
polarization is accompanied by profound metabolic changes; pro-inflammatory MPs (M1)
switch toward glycolysis, whereas anti-inflammatory MPs (M2) become more oxidative [69].

Our findings do not exclude the possibility that A151 may protect against brain ischemia by
additional mechanisms. Multiple sensor molecules, including NLRP1, NLRP3, NLRP6,
NLRP7, NLRP12, NLRC4, AIM2, and IFI16 can trigger inflammasome formation [12]. We
have not excluded the possibility that A151 regulates the expression of inflammasome sensor
molecules in addition to NLRP3 and/or influences the multimolecular assembly of the inflam-
masomes, however we have shown that the expression of Aim2 and NLRC4 were not altered
by A151 in vivo. It is interesting to note that by supplementing extracellular poly(dA:dT) or by
a DNA virus infection, Kaminski and colleagues showed that A151 binds to AIM2 and thereby
competes for the binding of immune-stimulatory DNA [70]. Of interest, A151 has also been
shown capable of promoting the generation of regulatory T cells which are protective in murine
models of brain ischemia [71] [72]. Clearly, further investigation of the roles A151 is playing
the regulation of other inflammasome components and in the assembly of inflammasomes is
likely to reveal additional protective mechanisms pertinent for brain ischemia.

Though we have shown that A151 reduced pro-inflammatory cytokine production by acti-
vated macrophages, we do not exclude the possibility that A151 may protect the ischemic brain
by changing peripheral immune responses. In line with such thinking it is prudent to note that
remote ischemic conditioning (i.e. the application of brief episodes of ischemia and reperfusion
to the remote organs/tissues) has been show to protect ischemic brain and heart [73]. Phos-
phorothioate ODNs administered by i.p. injection distribute systemically and reach most tis-
sues including the bone marrow [74–76]. Monocytes, macrophages, lymphocytes, dendritic
cells, and endothelial cells internalize and respond to phosphorothioate ODNs following par-
enteral administration [77–79]. Interestingly, A151 was shown to prevent the phosphorylation
of STAT1 and STAT4 in LPS stimulated peritoneal macrophages [31], however the expression
of phosphorylated STAT1 and STAT4 in BMDM subjected to OGD/LPS was not detectable in
our experimental system.

Previous studies have examined the effects of administering immunostimulatory CpG
ODNs in animal models of stroke. Briefly, CpG ODNs trigger TLR9 receptors and activate the
innate immune system [80]. Systemic delivery of CpG ODNs prior to temporary MCAO
reduced infarct volumes in mice and rhesus macaques via modulation of the TNFα axis
[81,82]. Per the abovementioned findings we therefore conclude that A151 ameliorates ische-
mic brain injury through mechanisms that differ from CpG ODNs. Of note, the control ODN
C151 reduced the production of IL-6 and CINC-1 in BMDM subjected to OGD and LPS treat-
ment; this finding warrants the examination of sequence independent effects of suppressive
ODNs in ischemic settings in the future.
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Synthetic ODN A151 mimics the inhibitory activity of telemeric TTAGGGmotifs and has
been shown to slow or prevent the development of diseases characterized by excessive immune
activation [83]. This raises concerns about the long-term administration of A151 which may
reduce responsiveness to immunization and/or to infectious challenges [84]. However, avail-
able evidence suggests that A151 promotes the maturation of Th17 effector cells and improves
host resistance to fungal pathogens [85]. The reduced infarct volume in the brains of SHR-SP
rats with pMCAO demonstrated that a single administration of A151 is safe in an animal
model of brain ischemia and in our studies we did not observe adverse effects on weight, serum
chemistry, and/or blood composition (data not shown). In line with such findings it has been
shown that administering A151 for up to 32 weeks does not adversely impact the health of
mice [35].

The development of stroke and post-ischemic inflammation involves multiple cell types and
inflammatory pathways. Blocking upstream components of inflammatory signaling and/or
rationally targeting inflammatory pathways have shown efficacy in animal models of stroke
[8]. Our study adds to this existing knowledge by demonstrating that oligodeoxynucleotides
containing telemeric TTAGGGmotifs reduce IL-1β and caspase-1 maturation, NLRP3 expres-
sion, and ischemic brain injury (i.e. lesional volume). Further investigation into the precise
molecular mechanisms governing this immune modulation of post-stroke inflammation may
lead to novel preventive and therapeutic strategies.
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