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Abstract

Background: With the development of large-scale donkey farming in China, long-

distance transportation has become common practice, and the incidence of intestinal

diseases after transportation has increased. The intestinal microbiota is important in

health and disease, and whether or not transportation disturbs the intestinal micro-

biota in donkeys has not been investigated.

Objectives: To determine the effects of transportation on the fecal microbiota of

healthy donkeys using 16S rRNA sequencing.

Animals: Fecal and blood samples were collected from 12 Dezhou donkeys before

and after transportation.

Methods: Prospective controlled study. Cortisol, ACTH, and heat-shock protein

90 (HSP90) concentrations were measured. Sequencing of 16S rRNA was used to

assess the microbial composition. Alpha diversity and beta diversity were assessed.

Results: Results showed significant (P < .05) increases in cortisol (58.1 ± 14.6 to 71.1

± 9.60 ng/mL), ACTH (163.8 ± 31.9 to 315.8 ± 27.9 pg/mL), and HSP90 (10.8 ± 1.67 to

14.6 ± 1.75 ng/mL) on the day of arrival. A significantly lower (P = .04) level of bacterial

richness was found in fecal samples after transportation, compared with that before

transportation without distinct changes in diversity. Most notably, donkeys had signifi-

cant decreases in Atopostipes, Eubacterium, Streptococcus, and Coriobacteriaceae.

Conclusions and Clinical Importance: Transportation can induce stress in healthy

donkeys and have some effect on the composition of the in fecal microbiota. Addi-

tional studies are required to understand the potential effect of these microbiota

Abbreviations: HSP90, heat-shock protein 90; LEfSe, linear discriminant analysis (LDA)-effect size; OTU, operational taxonomic unit; PCoA, principal coordinate analysis.
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changes, especially significantly decreased bacteria, on the development intestinal

diseases in donkeys during recovery from transportation.
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1 | INTRODUCTION

Domestic animals are transported for various reasons, including

breeding, slaughter, and biomedical purposes, and also is associated

with animal welfare, food safety, marketing, and trade barriers.1-3

Transportation exposes animals to various potential stress factors,

such as upload and offload, vehicle bumps, crowding, noise, tem-

perature changes, as well as food and water deprivation.4,5 These

factors contribute to weight loss, affect the quality of animal

products,6 increase physical injury and tissue damage, attenuate

immune function, increase susceptibility to disease,7,8 and even

may lead to death.9 Increasing evidence indicates that transport

stress has caused substantial economic losses to the animal indus-

try worldwide.6,10

The bacterial microbiota is complex and plays a key role in human

and animal health. Imbalances in the microbial communities can be

associated with a wide variety of diseases in the equine gastrointestinal

tract, including colitis,11 laminitis,12 equine grass sickness,13 and

transient diarrhea in foals.14 Previous studies have shown that trans-

portation can alter the composition and total population of gut

microorganisms. One study examined effects of transportation on

fecal bacterial microbiota in healthy horses and reported a signifi-

cantly lower abundance of Clostridiales.15 Another study found

that 2 hours of travel disturbed the fecal microbial ecosystem in

horses, which could increase the risk of triggering microbial

dysbiosis in the hindgut.16 However, reports of the effects of

transportation on the gastrointestinal microbiota of donkeys are

relatively sparse. In recent years, transporting donkeys from tradi-

tional donkey-concentrated areas for fattening and breeding has

become a major breeding model in China and has been accompa-

nied by an increase in long-duration transportation. Previous data

showed that gastrointestinal problems in the long haul transport of

horses are very common, accounting for 27% of transportation

issues,17 and thus gastrointestinal problems induced by transporta-

tion also might be a threat to the health of transported donkeys.

Because of the relationship between animal health and the gastro-

intestinal microbiota, it is critical to understand the impact of

transportation on the gut microbiota. We evaluated the effects of

transport on the fecal bacterial microbiota of donkeys using high-

throughput pyrosequencing, which could give a new insight into

the pathophysiology of diseases related to gastrointestinal micro-

biota during recovery from transportation.

2 | MATERIALS AND METHODS

This study was approved by the Ethics Committee for Laboratory Ani-

mal Care (Animal Ethics Procedures and Guidelines of China) at the

F IGURE 1 Changes in the concentrations of plasma Cor, HSP90, and ACTH before (BT) and after transport (AT). Data are shown as means,
and error bars represent the standard deviation (SD) (n = 12). *P < .05, ***P < .001
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Shenyang Agricultural University (Permit No. 264SYXK<Liao>2011-0001,

September 2018).

2.1 | Animals and transport

Dezhou donkeys are an indigenous breed unique to China. Healthy

male Dezhou donkeys were selected from Inner Mongolia Dong-E

Black Donkey Animal Husbandry Co., Ltd, in Chifeng City, Inner Mon-

golia Province, China. The selected donkeys were bought and then

transported to a private breeding farm (Dong-E E-Jiao Co., Ltd, Shan-

dong Province, China) that produces Dezhou donkeys.

Twelve male Dezhou donkeys were used for the study. Median

body weight (BW) was 140.0 kg (range, 132.0-148.5 kg) and median

age was 11 months (range, 10-12 months). The donkeys were

clinically healthy and provided free access to water and feed com-

posed of hay and carbohydrate commercial concentrates daily. None

of the donkeys had previously experienced road transport. During

transportation, the average environmental temperature and humidity

were �10�C and 28%, respectively. The surrounding walls of the

truck (13.4 m long and 5.6 m wide) were equipped with iron guard-

rails, and the floor was iron with extremely thin bedding materials.

The truck did not have roof coverings, and the donkeys therefore were

exposed to different weather conditions. The transport started from

Chifeng City in Inner Mongolia Province at 17:00 hours and the animals

arrived at Dong-E City in Shandong Province the next day at

14:00 hours, which represents a distance of 950 km and a travel time

of approximately 21 hours, including 10 stops (≤20 minutes) for obser-

vation of conditions and to provide supplementary feed and water. The

routes were secondary roads and expressways. Before (BT) and after

F IGURE 2 Operational taxonomic unit (OTU) analysis and alpha diversity indices of the healthy donkey fecal bacterial microbiota between
before (BT) and after transport (AT) groups. A, The vertical axis (OTU number) represents the final OTU number after taxonomic analysis. B, Venn
diagram of OTUs. The overlap section represented the shared OTUs between BT and AT group. C, Shannon index, Simpson index, and Chao1
index of the fecal bacterial microbiota between BT and AT group. Horizontal line represents the mean, and error bars represent the standard
deviation (SD). *P < .05
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transportation (AT), diet and water were not changed, and all donkeys

were stabled with daily access to hay and water. The donkeys were

housed in different areas of the same barn, without any contact with

other animals. The same feeding methods and times were used BT and

AT. Fodder was transported from the original location, thereby minimiz-

ing the effects of environment and food on the study.

2.2 | Sample collection

All samples were collected from each donkey within 30 minutes BT

and AT. Five milliliters of blood was collected from the jugular vein.

Blood samples were placed on ice, immediately transferred to the lab-

oratory for analysis, and centrifuged at 3000g for 20 minutes at 4�C.

The supernatants were stored in microtubes at �80�C until analysis.

All laboratory analyses were performed within 24 hours. Fecal swabs,

autoclaved and 15 cm long, were collected from the rectum (n = 12),

stored in the microfuge tube, and frozen at �80�C pending DNA

extraction. After sampling, all donkeys were housed at the breeding

farm to provide genetic material (ie, semen) as select breeders (ie,

Jackass) to be used either for breeding or as a germplasm reservoir

(ie, frozen semen).

2.3 | Plasma concentrations of hormones and
HSP90 analysis

Cortisol (Cor), heat-shock protein 90 (HSP90), and ACTH were mea-

sured using an ELISA-based techniques with commercial kits of

Enzyme-linked Biotechnology (Shanghai Enzyme-linked Biotechnol-

ogy Co., Ltd., China).

2.4 | DNA extraction and pyrosequencing

Total bacteria DNA was extracted from the fecal samples stored at

�80�C using a genomic DNA extraction kit (Tiangen Company, Bei-

jing, China) according to the manufacturer's protocol. The quality and

concentration of the extracted DNA were measured using a

NanoDrop spectrophotometer (ND-1000, NanoDrop Technologies,

Wilmington, DE). The V3 and V4 regions of the 16S rRNA gene were

amplified by PCR (95�C for 5 minutes, followed by 25 cycles of

95�C for 30 seconds, 50�C for 30 seconds, 72�C for 40 seconds,

and 72�C for 7 minutes) using specific bacterial primers (forward: 50-

ACTCCTACGGGAGGCAGCA-30, reverse: 50-GGACTACHVGGGTW

TCTAAT-30). Indexed adapters were added to the ends of the

primers. The PCR products were mixed with the same volume of

2� loading buffer and subjected to 1.8% agarose gel electrophore-

sis for detection. Samples with a bright main band of approxi-

mately 450 bp were chosen and mixed in equidensity ratios. Then,

the mixture of PCR products was purified using a GeneJET Gel

Extraction Kit (Thermo Fisher Scientific, Waltham, Massachusetts).

Sequencing libraries were validated using an Agilent 2100 Bio-

analyzer (Agilent Technologies, Palo Alto, California) and quantified

using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific). Finally,

paired-end sequencing was conducted using an Illumina HiSeq

2500 platform (Illumina, San Diego, California) at Biomarker Tech-

nologies Co., Ltd (Beijing, China).

F IGURE 3 Principal coordinate analysis (PCoA) analysis between before (BT) and after transport (AT) groups based on the weighted UniFrac
(A) and unweighted UniFrac (B) algorithms. UniFrac PCoA were calculated based on a 97% OTU similarity to show overlap between BT and AT
microbiota. Percentage values at the axes indicate contribution of the principal components to the explanation of total variance in the dataset.
Weighted UniFrac PCoA (A) shows the first two PCs (PC1 explaining 43.01% of the variance; PC2 explaining 17.02% of the variance).
Unweighted UniFrac PCoA (B) shows the first two PCs (PC1 explaining 21.03% of the variance; PC2 explaining 12.26% of the variance). Each
sample of BT group (n = 12) is represented by a point in blue and AT group (n = 12) in red. The weighted and unweighted UniFrac distances were
compared using analysis of similarities (ANOSIM)

2452 JIANG ET AL.



2.5 | Bioinformatics and data analysis

The raw paired-end reads from the original DNA fragments were mer-

ged using FLASH v1.2.11 and assigned to each sample according to

the unique barcodes. QIIME18 (version 1.8.0) UCLUST19 software was

used based on 97% sequence similarity. The tags were clustered into

operational taxonomic units (OTUs). Alpha diversity index was evalu-

ated using MOTHUR software (version v.1.30). The number of

sequences contained in each sample was standardized as previously

described15 to compare alpha diversity indices among the samples.

Analysis measures included Shannon, Chao1, and Simpson indexes. For

beta diversity analysis, principal coordinate analysis (PCoA) between

groups based on the unweighted UniFrac and weighted UniFrac algo-

rithms was performed. Analysis of similarities (ANOSIM) was carried

out based on unweighted and weighted UniFrac distance to assess the

difference of microbial community structures between AT and BT

groups. Linear discriminant analysis (LDA) effect size (LEfSe) analysis,

using the nonparametric factorial Kruskal-Wallis sum-rank test and

unpaired Wilcoxon rank-sum test, was performed to identify differen-

tially abundant OTUs with 97% sequence similarity between groups

online (http://huttenhower.sph.harvard.edu/galaxy).20 The LEfSe

scores measure the consistency of differences in relative abundance

between taxa in the groups analyzed (BT vs AT), with a higher score

indicating higher consistency. Taxa with LEfSe score >2 and P < .05

were considered significant. The Kolmogorov-Smirnov test was used

for testing normality. P values were calculated using a Student's paired

t test using GraphPad Prism software, and a P value of <.05 was con-

sidered significant.

3 | RESULTS

3.1 | Transportation of donkey alters plasma
concentrations of hormones and HSP90

Results showed significant increases in plasma ACTH (163.8 ± 31.9 to

315.8 ± 27.9 pg/mL, P = .0001), Cor (58.1 ± 14.6 to 71.1 ± 9.60 ng/

mL, P = .04), and HSP90 (10.8 ± 1.67 to 14.6 ± 1.75 ng/mL, P = .02)

concentrations on the day of arrival compared with concentrations on

the day before transportation (Figure 1).

F IGURE 4 Relative abundance of predominant phyla (A), orders (B), families (C), and genera (D) in before transport (BT) (n = 12) and after
transport (AT) (n = 12) groups. Other: Bacterial taxa with ≤1% abundance, Unknown: Sequences which could not be classified
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3.2 | Sequencing quality data and alpha diversity
analysis

A total of 1 233 776 pairs of reads were obtained from the 24 samples

that were sequenced. Double-end read splicing and filtering resulted in

1 075 841 clean tags, and each sample produced 44 827 clean tags on

average. The number of OTUs in fecal samples AT (AT1-12) decreased

markedly (P = .03) relative to that BT (BT1-12; Figure 2A). A Venn dia-

gram showing the number of shared OTUs between AT and BT groups

is presented in Figure 2B, and the Chao1, Simpson, and Shannon indices

were calculated (Figure 2C). A significant decrease in Chao1 index

(P = .04) was found in the fecal samples AT compared with that

BT. The lower Chao1 index in the AT group indicated that transporta-

tion stress might decrease the bacterial richness. The other alpha diver-

sity indices (Simpson diversity index and Shannon evenness index) were

not significantly different between AT and BT groups.

3.3 | Beta diversity analysis

The PCoA diagrams did not show separation between the samples in

BT and AT group (Figure 3). The ANOSIM of weighted UniFrac and

unweighted UniFrac distances showed that this clustering was not

significant (weighted UniFrac: R = �0.03, P = .64; unweighted

UniFrac: R = 0.017, P = .28), indicating no significant difference in the

bacterial composition between BT and AT.

3.4 | Phylogenetic analysis

Eight phyla, 12 orders, 20 families, and 9 genera had mean relative abun-

dance >1% (Figure 4). The predominant phyla in each group were Bacte-

roidetes (BT median: 32.6%, minimum: 10.1%, maximum: 50.8%; AT

median: 40.9%, minimum: 27.7%, maximum: 53.3%), Firmicutes

(BT median: 23.3%, minimum: 11.3%, maximum: 38.3%; AT median:

30.5%, minimum: 19.6%, maximum: 58.7%), Proteobacteria (BT median:

18.1%, minimum: 0.7%, maximum: 36.6%; AT median:10.3%, minimum:

0.8%, maximum: 27.4%), and Verrucomicrobia (BT median: 9.1%, minimum:

1.0%, maximum: 18.7%; AT 5.8%, minimum: 1.7%, maximum: 15.2%).

Within Bacteroidetes, the most abundant families were Bacteroidaceae

(BT median: 9.5%, minimum: 0.04%, maximum: 32.3%; AT median:

18.2%, minimum: 0.01%, maximum: 37.2%) and Rikenellaceae (BT median:

6.3%, minimum: 0.9%, maximum: 13.8%; AT median: 8.1%, minimum:

0.2%, maximum: 19.3%). Enterobacteriaceae (BT median: 12.7%, minimum:

0.02%, maximum: 34.1%; AT median: 6.3%, minimum: 0.02%, maximum:

15.3%) was the most abundant family within Proteobacteria.

Ruminicoccaceae (BT median: 7.5%, minimum: 2.8%, maximum: 16.5%; AT

median: 11.3%, minimum: 3.1%, maximum: 34.1%) was the most abun-

dant family within Firmicutes, followed by Lachnospiraceae (BT median:

4.3%, minimum: 1.0%, maximum: 11.9%; AT median: 8.1%, minimum:

3.1%, maximum: 22.2%).

The LDA score indicates the effect size and ranking of each bac-

terial taxon. In our study, LEfSe analysis identified a large number of

bacterial taxa (eg, Eubacterium, Atopostipes, and Pseudomonas) with

significantly higher abundance in the BT group than in the AT group.

No taxa were enriched in AT group relative to BT group. Differentially

abundant taxa within these 2 groups are listed in Table 1.

4 | DISCUSSION

In our study, the effect of transport on the phylogenetic composition

of donkey fecal microbiota was analyzed. Differences in the relative

abundances of phyla, classes, and orders and loss of bacterial diversity

and richness were observed.

4.1 | Effects of transportation on donkeys

The ACTH and Cor concentrations increased under stress in response

to changes in the external environment. These hormones are impor-

tant indicators of the stress reaction of animals, including beef cattle,

TABLE 1 Linear discriminant analysis
of differentially abundant bacterial taxa
between before/after transport (BT/AT)
groups

Bacterial taxa Group LDA (Log10) P value

f__Coriobacteriaceae BT 3.04 .01

g__Atopostipes BT 2.80 .03

g__Jeotgalicoccus BT 2.76 .02

g__Family_XIII_AD3011_group BT 2.60 .006

g__Sporosarcina BT 2.49 .04

o__JG30_KF_CM45 BT 2.37 .03

g__Ornithinimicrobium BT 2.35 .04

g__Eubacterium__ruminantium_group BT 2.25 .03

g__Pseudomonas BT 2.20 .02

g__Eubacterium BT 2.16 .04

g__Sarcina BT 2.16 .02

f__Moraxellaceae BT 2.14 .02

Note: Taxonomic levels are represented as o (order), f (family), and g (genus).
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piglets, chicken, and horses. During stressful situations, such as trans-

portation, ACTH and cortisol concentrations in plasma increase vari-

ably.21-23 Heat shock protein 90 is an important stress protein in

organisms because it is rapidly activated and synthesized during

stress.24 Previous studies showed that transport stress increases the

heat shock protein concentrations in pigs.25,26 In our study, ACTH,

Cor, and HSP90 concentrations increased significantly AT, and this

finding is in agreement with other studies worldwide. For example,

ACTH and cortisol concentrations respectively increased to 4.9-fold

and 1.8-fold above baseline after beef cattle transportation.27 Similar

to the above study, plasma cortisol concentrations in transported

horses increased markedly.22 Therefore, we speculated that environ-

mental disturbances (ie, cold weather, overcrowding, bumpy transpor-

tation) serve as stress factors, triggering a stress response in donkeys.

4.2 | Microbiota differences between BT and AT

Bacterial species diversity and richness are important factors in gas-

trointestinal health. A recent study showed that donkeys have a rich,

diverse, and multifunctional microbiota along the gastrointestinal

tract.28 We found that the Chao1 index was significantly decreased

AT (P = .04), but the Shannon and Simpson indices were not changed,

suggesting that transportation results in a low level of bacterial rich-

ness but does not alter diversity and community evenness. Previous

studies showed that the intestinal flora of healthy animals can regu-

late immune function and the intestinal mucosa's barrier function by

producing lactic acid and short chain fatty acids (SCFAs),29 and inhibit

the adhesion of pathogens on the intestinal wall to prevent the occur-

rence of an inflammatory reaction.30,31 Having a diverse microbiota is

beneficial for promoting host immune defenses and metabolism,32

and loss of species diversity and richness have been associated with

several gastrointestinal diseases, including diarrhea,33,34 acute enteric

infections,35 and colitis in adult horses.36 Thus, we hypothesized that

the decreased bacterial richness induced by transport stress might

decrease resistance to infectious agents, making the donkeys more

susceptible to disease, and cause a series of gastrointestinal problems

AT, such as diarrhea, which is consistent with earlier findings.34,37,38

The diversity indices of the fecal microbiota do not differ among

horses experiencing colitis,11 transport, fasting, anesthesia15 as com-

pared to controls. These results suggest that the decreases in bacterial

diversity AT might not play a similar role in donkey disease develop-

ment, and bacterial richness might be an important factor in this

phenomenon.

Transport stress rapidly affects the composition of gut microbiota

and host physiology by the generation of bioactive metabolites.15,27

In our study, LEfSe analysis identified that AT, significant decreases

were found for some SCFAs-producing bacteria, including Eubacte-

rium genus and Coriobacteriaceae family.39 The SCFAs are not

included in the diet but synthesized by colonic commensal bacteria

from dietary carbohydrate and are important for intestinal health.40

Interfering with the SCFA synthesis in the colon may result in diarrhea

because increased production of SCFAs enhances colonic fluid

production and corrects dehydration associated with acute diarrhea.41

A previous study found Eubacteriua were significantly lower during

and immediately after diarrhea than during a diarrhea-free period of

normal health in children.42 The number of Coriobacteriaceae, found

abundantly in the healthy gut, was significantly decreased in colitis

cases.43 In addition to the decrease in SCFAs-producing bacteria, sig-

nificantly low richness of Streptococcus, Atopostipes, and Pseudomonas

was observed AT. Atopostipes and Pseudomonas are bacteria that pro-

duce branched fatty acids (BCFAs), which also have an important

influence on intestinal health and are related to various health condi-

tions. These compounds are metabolized by enterocytes and have a

beneficial role against inflammation in the upper intestinal tract, alter

the microbiota, and increase the expression of anti-inflammatory cyto-

kines.44 Streptococcus is identified as an enriched taxon using LEfSe in

healthy horses38 and negatively correlated with inflammatory vari-

ables (tumor necrosis factor-α [TNF-α], lipopolysaccharide [LSP], and

H2O2 yield).45 A previous study showed that Streptococcus

thermophilus could protect the intestinal tract and improve colonic

inflammation in experimentally-induced inflammatory bowel disease

in rats.46 Furthermore, S thermophilus also can decrease the secretion

of some inflammatory factors by increasing the secretion of folate,

which regulates the immune status.47 The decrease in the relative

abundance of members of these families AT might interfere with

metabolite synthesis, which may increase the rate of inflammatory

bowel disease during recovery. Additional studies could focus on

these bacterial families to develop preventative or therapeutic

measures.

4.3 | Limitations

Our study had some limitations, including limited sample size, animals

of only a single sex and inevitable environmental factors. Previous

studies have found that potential confounding factors, such as age,38

sex,48 diets,49 and environmental change50 could impact the bacterial

microbiota of different body sites.

Thus, we have taken a series of measures to minimize the effects

of these factors on the experiments, for example selecting donkeys of

the same sex and age, as well as consistency in fodder and feeding

management. Environmental change is most likely to impact the intes-

tinal microbial composition in our study because of the changing loca-

tions where the donkeys were housed. We cannot avoid

environmental bacteria being present in the intestinal microbiota, but

environmental bacteria have been shown to be a minimal component

of the intestinal microbiota in cattle.51 Additionally, a limitation of our

study is the absence of a control group that remained on the farm

before transportation to show that the observed changes in the

microbiota are caused by transport, rather than change over time.

However, because most Chinese farmers purchase donkeys during

winter for breeding in the following spring, long-distance transporta-

tion mainly occurs during winter. Our study was performed in dry and

cold climatic conditions, and therefore our results are not likely appli-

cable to donkeys transported under other environmental conditions,
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such as long-distance transportation in hot, humid weather. Another

consideration is that fecal microbial composition does not fully reflect

the microbial composition of different regions in the gastrointestinal

tract. Additional studies about the effects of transport stress on the

microbiota of various intestinal segments of the donkey are required.
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