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Abstract Transcription factors bind low-affinity DNA sequences for only short durations. It is not

clear how brief, low-affinity interactions can drive efficient transcription. Here, we report that the

transcription factor Ultrabithorax (Ubx) utilizes low-affinity binding sites in the Drosophila

melanogaster shavenbaby (svb) locus and related enhancers in nuclear microenvironments of high

Ubx concentrations. Related enhancers colocalize to the same microenvironments independently of

their chromosomal location, suggesting that microenvironments are highly differentiated

transcription domains. Manipulating the affinity of svb enhancers revealed an inverse relationship

between enhancer affinity and Ubx concentration required for transcriptional activation. The Ubx

cofactor, Homothorax (Hth), was co-enriched with Ubx near enhancers that require Hth, even

though Ubx and Hth did not co-localize throughout the nucleus. Thus, microenvironments of high

local transcription factor and cofactor concentrations could help low-affinity sites overcome their

kinetic inefficiency. Mechanisms that generate these microenvironments could be a general feature

of eukaryotic transcriptional regulation.

DOI: https://doi.org/10.7554/eLife.28975.001

Introduction
Genomic regions near coding genes, called enhancers, direct specific patterns of gene expression

(Spitz and Furlong, 2012; Reiter et al., 2017; Long et al., 2016). Enhancers contain short DNA

sequences that bind sequence-specific activating and repressive transcription factor proteins, and

the integration of these positive and negative signals directs gene expression (Crocker et al.,

2016a). Protein-DNA binding is often an ephemeral event; studies in mammalian cells demonstrate

that transcription factors disassociate within seconds of binding to DNA (Liu et al., 2014;

Chen et al., 2014; Izeddin et al., 2014; Voss et al., 2011; Normanno et al., 2015; Morisaki et al.,

2014). Furthermore, recent studies in animals ranging from fruit flies to mammals have revealed that

low-affinity DNA-binding sites are critical to confer specificity between related transcription factors

having binding sites with similar DNA sequences (Crocker et al., 2015; Farley et al., 2015;

Farley et al., 2016; Lorberbaum et al., 2016; Antosova et al., 2016; Rister et al., 2015;

Crocker et al., 2010; Crocker et al., 2016b; Tanay, 2006; Lebrecht et al., 2005; Rowan et al.,

2010; Gaudet and Mango, 2002; Jiang and Levine, 1993). Increasing the affinity of binding sites

to more stably recruit transcription factors activates promiscuous gene expression (Farley et al.,

2015; Ramos and Barolo, 2013), which leads to developmental defects. It is unclear how brief pro-

tein-DNA contacts can mediate efficient transcription from enhancers containing low-affinity binding

sites.

One possible mechanism that could mitigate their kinetic inefficiency is to increase the local con-

centrations of transcription factors. At the scale of a single enhancer over a few hundred base pairs
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long, multiple low-affinity binding sites for the same transcription factor in close proximity could

increase the frequency of binding events by trapping the protein. Furthermore, interactions between

transcription factors and cofactors with multiple binding sites within an enhancer could generate

‘microenvironments’ (Reiter et al., 2017) of high factor concentrations.

We have explored this problem using the shavenbaby (svb) locus, which contains multiple

enhancers that drive specific patterns of svb gene expression in developing Drosophila embryos.

Each of three characterized svb enhancers contains clusters of low-affinity binding sites for the Hox

gene Ultrabithorax (Ubx). These enhancers also require a Ubx cofactor Homothorax (Hth) to function

(Crocker et al., 2015). We have exploited robust transgenic tools in Drosophila, new fluorescent

dyes, and new approaches to prepare embryos for microscopy to systematically perturb these svb

enhancers and directly image the results at a sub-nuclear level. We find that microenvironments of

high Ubx and Hth concentrations mediate transcription from low-affinity enhancers.

Results

Ubx is present in microenvironments of varying local concentrations
We first examined whether nuclei in Drosophila melanogaster embryos possess Ubx microenviron-

ments by performing immunofluorescence (IF) staining in fixed embryos and high-resolution confocal

imaging using Airyscan (Carl Zeiss Microscopy, Jena, Germany). We found that Ubx protein was not

distributed uniformly, but rather exhibited regions of high and low Ubx intensities (Figure 1A,B). To

observe Ubx distribution at higher resolution, we expanded the size of the embryos (Tillberg et al.,

2016) by approximately four-fold in each dimension (Figure 1C). Nuclei of expanded embryos

revealed distinct regions of high Ubx intensity separated by regions of low Ubx intensity. We

observed, on average, 185 ± 25 (n = 12, three embryos) clusters per nucleus that were stronger than

one-quarter of the maximum Ubx intensity within that nucleus (Figure 1D,E, and Figure 1—figure

supplement 1).

One explanation for the observed distribution of Ubx is that transcription factors localize gener-

ally to accessible regions of the nucleus that have high levels of transcriptional activity. This mecha-

nism, if shared by transcription factors in general, should yield Ubx distributions that mostly overlap

with that of other transcription factors. Engrailed (En), a transcription factor unrelated to Ubx, dis-

played non-uniform sub-nuclear concentrations, but its distribution only partially overlapped with

that of Ubx (Figure 1—figure supplement 2A–C, white regions indicate overlap). We similarly

observed only partial overlap between Ubx and Even-skipped (Eve) (Figure 1—figure supplement

2D–F). Abdominal-A (AdbA), a paralog of Ubx that is expressed mainly in separate cells from Ubx

and that has similar DNA-binding specificity as Ubx, was excluded from Ubx regions in the few nuclei

where both were expressed (Figure 1—figure supplement 2G–I). These results indicate that the dis-

tributions of these transcription factors do not result from a shared mechanism that limits the distri-

bution of all transcription factors to the same sub-nuclear regions.

We also examined whether Ubx simply occupies regions containing actively transcribed DNA.

Both active RNA Polymerase II (Pol II, Ser5 phosphorylated CTD) and the methylated histone

H3K4me3, which marks actively transcribed DNA, only partially overlapped with Ubx (Figure 1—fig-

ure supplement 3A–F). In contrast, the histone mark H3K27me3, which marks regions of repressed

chromatin, displayed almost no overlap with the distribution of Ubx (Figure 1—figure supplement

3G–I). Thus, Ubx is not merely restricted to regions inside the nucleus that are available to transcrip-

tion factors or to regions of high transcriptional activity.

Ubx repeatedly binds to specific regions in nuclei of live embryos
To understand if the heterogeneous distribution of Ubx is dynamic or stable over the timescale of

seconds to minutes, as well as to rule out the possibility that our observations of Ubx microenviron-

ments are an artifact of the fixation protocol (Teves et al., 2016), we examined the spatiotemporal

dynamics of single Ubx molecules in live Drosophila embryos. Single-molecule imaging has been

mostly performed in cell lines previously because live-imaging studies of transcription factor dynam-

ics in embryos requires overcoming several new challenges, including imaging at lower signal-to-

noise ratios, compensating for rapid morphological changes during embryonic development, and

determining how to deliver fluorescent dyes. We overcame these challenges by generating a

Tsai et al. eLife 2017;6:e28975. DOI: https://doi.org/10.7554/eLife.28975 2 of 18

Research article Biophysics and Structural Biology Genes and Chromosomes

https://doi.org/10.7554/eLife.28975


50 µm

255

0

500 µm

10 µm

10 µm 1 µm

P
re

 E
x
p
a
n
s
io

n

(A
.U

.)

P
o
s
t 
E

x
p
a
n
s
io

n

Ubx Ubx

Ubx Ubx

SUM 100 s

2 sec
50 AU

Ubx-HaloTag

SUM 100 s

Ubx R3A, N51A-HaloTag

Ubx-HaloTag

Ubx R3A, N51A-HaloTag

A1

2 sec
50 AU

0 ms

Figure 1. Ubx is present in microenvironments with varying local concentrations. (A) Stage 15 embryos stained for Ubx protein with a bounding box

indicating a ventral region of abdominal segment one (A1). (B) Higher magnification, Airyscan image of the region indicated in panel (A). (C) Stage 15

embryo pre- and post-expansion. (D, E) Expanded stage 15 embryos stained for Ubx protein. The dashed line encircles a single nucleus in (E). (F, I)

Projections of summed pixel intensity over 100 s from videos of nos::GAL4, UAS::HaloTag-Ubx for either a wild-type Ubx (F) or a binding deficient Ubx

(I), imaged with JF635 dye. (G) Sixteen individual, 100 millisecond video frames of the nucleus surrounded by a dashed box in panel (F). (H, J) Temporal

traces of the signal intensity of the regions noted in panel (G) or (I). The color of each trace in (H) and (J) corresponds to the colors of the circles in

panels (G) and (I), respectively. AU indicates Arbitrary Units of fluorescence intensity.

DOI: https://doi.org/10.7554/eLife.28975.002

The following figure supplements are available for figure 1:

Figure supplement 1. Quantification of Ubx microenvironments in single nuclei.

DOI: https://doi.org/10.7554/eLife.28975.003

Figure supplement 2. Ubx distribution compared to other transcription factors.

DOI: https://doi.org/10.7554/eLife.28975.004

Figure 1 continued on next page
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HaloTag-Ubx transgene that allowed precise control of fusion protein levels (Figure 1—figure sup-

plement 4A) and coupling HaloTag-Ubx in vivo to new, strongly fluorescent dyes (Grimm et al.,

2017). The transgene we built can be expressed either from a heat-shock promoter (hsp70) or from

a 20x UAS promoter by crossing with a GAL4 driver line.

Over-expression of the HaloTag-Ubx transgene by incubating the embryos at 30˚C transformed

anterior segments to the fate of more posterior segments, indicated by the presence of additional

trichomes. This result indicates that the HaloTag-Ubx protein retains the expected Ubx behavior

(Figure 1—figure supplement 4D and E). We then expressed HaloTag-Ubx from the 20x UAS pro-

moter with the nos::GAL4 (nanos promoter driving GAL4) driver line, which drives HaloTag-Ubx

expression in all cells at early developmental stages. We injected the HaloTag ligand of Janelia Fluor

635 (JF635) (Grimm et al., 2017) into these live embryos. JF635 is minimally fluorescent in solution

but its fluorescence increases by over 100-fold when bound to a HaloTag protein, allowing the

detection of labeled Ubx molecules against a background of dim freely diffusing dyes. The fluores-

cence intensity of labeled Ubx scaled with distance from the site of dye injection (Figure 1—figure

supplement 4B and C), consistent with dye diffusion from the site of injection. To measure the time-

averaged density of HaloTag-Ubx in specific locations of nuclei in live embryos in early stage 5, we

calculated the summed intensity over 100 s (1000 frames at 100 ms per frame). We observed regions

of Ubx signal (3-10x background) similar to the high-intensity clusters observed in fixed embryos

(Figure 1F). We examined the dynamics of HaloTag-Ubx in nuclei by plotting fluorescence intensity

over time (Figure 1G and H and Figure 1—figure supplement 5). We found that fluorescence sig-

nals over time changed in discrete up or down steps, indicating that individual HaloTag-Ubx mole-

cules bind to specific nuclear domains with residence times on the order of a second before

dissociation. Most unbound Ubx molecules move too quickly to be captured with the 100 ms expo-

sure time; they move in and out of a diffraction-limited region in significantly less than 100 ms on

average. These timescales are consistent with transcription factor-DNA binding dynamics measured

in live-cell imaging experiments using mammalian cell lines (Liu et al., 2014; Izeddin et al., 2014;

Voss et al., 2011; Normanno et al., 2015; Morisaki et al., 2014; Gebhardt et al., 2013). These

repeated binding events produced the high intensities observed in the time-averaged projections

and indicate that Ubx concentrates and remains within specific nuclear regions.

Observation of embryos at late stage 6 showed that total HaloTag-Ubx concentration continued

to increase as the embryo ages (Figure 1—figure supplement 6A and B). Embryos at late stage 6

had nuclei containing high background concentrations of Ubx that masked single-molecule events,

as well as displaying larger sites (>4 � 4 pixels) that constantly remained bright, possibly indicating

the presence of multiple molecules or protein aggregation (Figure 1—figure supplement 6C and

D). In contrast, the embryos observed during stage 5 did not contain areas that remained constantly

bright, suggesting that we observed single molecule dynamics in stage 5 embryos.

To determine whether regions of high Ubx concentration depended on DNA binding, we per-

formed the same experiments with a version of the HaloTag-Ubx transgene where Arg3 and Asn51

of the homeodomain were mutated to Ala (R3A and N51A), abrogating DNA binding

(Slattery et al., 2011b). Both the wild-type and DNA-binding deficient Ubx were expressed and

imported into the nucleus (Figure 1—figure supplement 7A,B,D,E,G, and H), suggesting that the

protein is stable. In contrast, an unstable HaloTag-NLS construct (NLS from H2B) serving as a nega-

tive control, neither increased JF635 fluorescence post injection nor became enriched into the

Figure 1 continued

Figure supplement 3. Ubx distribution compared to general markers for transcriptional activity.

DOI: https://doi.org/10.7554/eLife.28975.005

Figure supplement 4. Control experiments for HaloTag-Ubx.

DOI: https://doi.org/10.7554/eLife.28975.006

Figure supplement 5. Additional nuclei from live imaging of Halo-Ubx.

DOI: https://doi.org/10.7554/eLife.28975.007

Figure supplement 6. Live imaging at higher concentrations of HaloTag-Ubx in late stage 6 embryos.

DOI: https://doi.org/10.7554/eLife.28975.008

Figure supplement 7. DNA-binding deficient Ubx is stable and localized in the nucleus.

DOI: https://doi.org/10.7554/eLife.28975.009
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nucleus (Figure 1—figure supplement 7C,F, and I). The mutant HaloTag-Ubx (R3A N51A) did not

display spatial heterogeneity and exhibited only extremely brief fluctuations in intensity inconsistent

with transcription-factor DNA-binding events (Figure 1I and J). These results suggest that binding

of Ubx to DNA is required to generate restricted nuclear distributions of Ubx.

Transcriptionally active svb loci and enhancers correlate with regions of
high Ubx concentration
The heterogeneous distributions of Ubx we observed are consistent with the hypothesis of nuclear

‘microenvironments’ (Reiter et al., 2017), whereby high local concentrations of transcription factors

may drive transcription. Therefore, we examined whether these regions of high Ubx concentration

co-localized with sites of active transcription. The svb gene is directly regulated by Ubx protein

through binding of Ubx to low-affinity sites in multiple svb enhancers (Crocker et al., 2015). We

marked sites of active svb transcription by fluorescence in situ hybridization (FISH) and compared

the localization of actively transcribed svb loci to Ubx protein concentration (Figure 2A and B). We

observed high local Ubx concentrations surrounding active svb transcription sites (Figure 2C–F). To

quantify Ubx distributions around these sites, we calculated the radially averaged Ubx intensity as a

function of distance r from the point of maximum FISH intensity for each svb transcription site

(Figure 2G–I). Ubx intensity was normalized to one at r = 0 (maximum FISH intensity) and averaged

across all sites measured. To adjust for background fluorescence, we located the minimum intensity

in the averaged Ubx distribution (r = 2–4 mm) and subtracted that value from the distribution. The

first micrometer of the radially averaged 3D distribution is shown, with the shaded area representing

the variance (Figure 2J). Within the first micrometer, svb transcription sites showed a relative enrich-

ment of Ubx. Because these sites are on average within 200 nm of a local intensity maximum, Ubx

intensity decreased monotonically away from the transcription sites, leading to a relatively constant

variance after 200 nm. The normalized Ubx intensity after background subtraction at the site of svb

transcription was 0.60 ± 0.17 (n = 59, four embryos, uncertainty is the variance of the background)

and decreased approximately 250 nm away from the site. Thus, active svb transcription sites colocal-

ized with areas of high Ubx concentration spanning approximately a few hundred nanometers.

If Ubx protein co-localizes with actively transcribed svb loci because Ubx drives svb expression,

then we would expect that transcription at a locus not regulated by Ubx should not co-localize with

high Ubx concentrations. Indeed, we observed that active transcription sites driven by a synthetic

enhancer containing binding sites for a TALEA transcription factor (Crocker et al., 2016a;

Crocker and Stern, 2013; Crocker et al., 2017) did not show Ubx enrichment on average despite

wide fluctuations in Ubx levels, with a relative enrichment of Ubx at TALEA-driven enhancers of

0.02 ± 0.63 (Figure 3A–C, n = 29, three embryos). As these transcription sites are not close to max-

ima of Ubx intensity, the variance in these distributions incresed with distance from the site of

transcription.

Transcription sites of svb and svb enhancers co-localize
In numerous nuclei actively transcribing svb on the X chromosome, we observed what appeared to

be two transcription sites within 200 nm of each other (Figure 2—figure supplement 1A and B).

This indicates that the svb locus on homologous X chromosomes often co-localizes to the same Ubx

microenvironment. There are several possible mechanisms that could explain this observation. We

consider two broad classes of mechanism. First, a unique chromosomal signature specific to the

region containing the svb locus could facilitate localization of homologous alleles to the same tran-

scriptional microenvironments. Second, microenvironments contain distinct combinations of tran-

scription factors and enhancers localize to the relevant microenvironments to enable transcription.

To distinguish between these alternative hypotheses, we examined the spatial distribution of the

native svb locus, located on the X chromosome, and a single svb enhancer driving lacZ expression

which we placed on chromosome 3.

Double-FISH experiments revealed that the native svb locus and the ectopic svb enhancer co-

localized often in nuclei in which both were transcribed (Figure 2—figure supplement 1C and D). In

contrast, the transcription sites of forkhead (fkh, also on chromosome 3) did not colocalize with the

svb locus (Figure 2—figure supplement 1E). The average distance between pairs of related tran-

scription sites (svb-svb, svb-7H, and svb-E3N) within single nuclei is approximately 250 nm, near the
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Figure 2. Transcriptionally active svb loci reside in regions of high Ubx concentration. (A) Embryos co-stained for both Ubx protein (magenta) and

shavenbaby (svb) intronic mRNA (green). Bright spots of svb intronic nascent mRNA mark actively transcribed svb loci. Regions with high levels of both

svb transcription and Ubx appear white (the sum of the two colors). (B) Higher magnification, Airyscan image of the region noted in panel (A), revealing

sites of svb transcription (green). (C, D) Higher magnification, Airyscan images of the nuclei noted in panel (B). (E, F) 3D surface plots of the images in

Figure 2 continued on next page
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resolution limit of AiryScan images (Figure 2—figure supplement 1F). On the other hand, fkh and

svb transcription sites are on average 1 mm apart. These results indicate that related enhancers co-

localize in transcriptional microenvironments independently of their chromosomal location. This sug-

gests that transcription factor microenvironments are highly differentiated and that related

enhancers often exploit the same transcriptional microenvironments.

Manipulation of binding site number and affinity inversely changes the
concentration of Ubx required to activate svb enhancers
The experiments described so far showed that the actively transcribed native svb locus co-localizes

with local concentration maxima of Ubx in the nucleus. We wondered whether the position of

actively transcribed enhancers within Ubx microenvironments depended on Ubx binding site affinity.

To address this question, we examined transcription driven by the individual svb enhancers DG3,

E3N, and 7 hr, each of which contains a cluster of low-affinity Ubx-binding sites and can indepen-

dently drive transcription of a reporter gene when moved from their native location (Crocker et al.,

2015). Transcription sites driven by these relocated enhancers also colocalized with regions of high

Ubx concentration (Figure 3D). The relative Ubx enrichment for each of the three enhancers was

0.56 ± 0.16 for DG3 (n = 61, three embryos), 0.51 ± 0.19 for E3N (n = 142, 11 embryos), and

0.68 ± 0.10 for 7 hr (n = 38, three embryos) (Figure 3E–H,M,N). These results indicate that low-affin-

ity enhancers actively transcribed far from the native svb locus also co-localize with microenviron-

ments of high Ubx concentrations.

Increasing the binding affinity of a site should increase its sensitivity to Ubx and allow transcrip-

tional activation at lower Ubx concentrations. We found previously that replacing a single low-affinity

Ubx site with one of a higher affinity led to higher levels of expression and sometimes drove promis-

cuous transcription (Crocker et al., 2015), suggesting that more stable Ubx-DNA interactions

allowed higher transcriptional activation. Consistent with these previous results, we observed that

increasing the affinity of a single low-affinity binding site in the E3N enhancer decreased Ubx enrich-

ment near transcription sites to 0.44 ± 0.27 (Figure 3I and J, E3N High Affinity, n = 36, three

embryos).

In contrast, we reported previously that deletion of low-affinity binding sites reduced transcription

(Crocker et al., 2015). Removing some Ubx-binding sites should lower the effective affinity of the

enhancer, and we hypothesized that this might result in transcription only when genes are localized

to areas of higher Ubx concentrations. Consistent with this model, when we deleted two low-affinity

sites in E3N, active transcription was observed in regions of increased Ubx enrichment (0.65 ± 0.18,

Figure 3K and L, E3N Mut23, n = 62, five embryos). Deletion of two low-affinity Ubx sites from the

7 hr enhancer did not alter Ubx enrichment around transcription sites (0.63 ± 0.37, Figure 3O and P,

7H Mut23 n = 81, six embryos). But, deletion of three Ubx-binding sites in the 7H enhancer

increased relative Ubx enrichment, consistent with the pattern we observed for the E3N enhancer

(0.91 ± 0.27, Figure 3Q and R, 7H Mut123, n = 52, eight embryos).

Across all manipulations, we observed an inverse correlation between binding site affinity and the

distribution of Ubx intensities at transcription sites (Figure 3—figure supplement 1). Thus, the num-

ber of Ubx-binding sites and their affinities determine the response of svb enhancers to local Ubx

Figure 2 continued

panels (C) and (D), centered on the sites of svb transcription (green), where height represents Ubx intensity. (G) A representative nucleus used for

quantifying Ubx distribution around a svb transcription site. (H) 3D view of the confocal stack from the nuclei in panel (G). (I) Schematic outlining the

method of Ubx quantification surrounding svb transcriptional sites. A 3D radial distribution of the average Ubx intensity on the surface of a sphere

centered at the site of svb transcription was calculated. The gray sphere and white outlines is an example of the sphere with a radius r = 1 mm. (J)

Quantification of the average relative concentration of Ubx and the distance from svb transcription sites (n = 59, see method supplements ‘settings for

extracting radially averaged distributions’ for how relative concentration is computed). The shaded region indicates the variance. A.U. indicates

Arbitrary Units of fluorescence intensity.

DOI: https://doi.org/10.7554/eLife.28975.010

The following figure supplement is available for figure 2:

Figure supplement 1. Transcription sites of minimal svb enhancers and the endogenous svb locus localize close to each other.

DOI: https://doi.org/10.7554/eLife.28975.011
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concentration. Lower affinity enhancers require higher Ubx concentrations to drive transcription.

Conversely, higher affinity enhancers can drive transcription at lower local Ubx concentrations.

Taken together, these data suggest that enhancers may be dynamically sampling local nuclear

environments. A lower fraction of nuclei showing transcription from enhancers with binding site dele-

tions (Figure 3K,O,Q) may occur because there are fewer areas of the nucleus in which peak Ubx

levels are sufficient for weakened svb elements.
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Figure 3. Manipulation of Ubx-binding site number and affinity alters the level of Ubx enrichment around svb enhancers. (A) Schematic of the synthetic

TALEA transcription network driven by the Hunchback (Hb) promoter, indicating TALEA-binding sites with green circles. (B) Early stage 15 embryos

carrying the TALEA synthetic network stained with an antibody against ß-Galactosidase. (C) Quantification of the relative concentration of Ubx based

on the distance from synthetic network transcription sites. (D) Schematic of the shavenbaby locus, indicating embryonic cis-regulatory enhancers in

boxes. The ventral embryonic enhancers DG3, E3N and 7H are highlighted in magenta, yellow and blue boxes, respectively. (E, G, I, K, M, O, Q) Early

stage 15 embryos carrying the reporter constructs DG3-lacZ (E), E3N-lacZ (G, I, K), or 7H-lacZ (M, O, Q) stained with an antibody against ß-

Galactosidase, with Ubx-Exd sites altered as indicated. (F, H, J, L, N, P, R) Quantification of the relative concentration of Ubx versus the distance from

svb transcription sites. The shaded regions in panels (C, F, H, J, L, N, P, R) indicate the variance. A.U. indicates Arbitrary Units of fluorescence intensity.

DOI: https://doi.org/10.7554/eLife.28975.012

The following figure supplement is available for figure 3:

Figure supplement 1. Background-subtracted Ubx intensity distributions at the transcription sites for E3N and 7H enhancers.

DOI: https://doi.org/10.7554/eLife.28975.013
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The Ubx cofactor Homothorax (Hth) is co-enriched around transcription
sites with Ubx
Co-factors can stabilize low-affinity binding interactions through cooperative and scaffolding interac-

tions with transcription factors. A co-factor-dependent enhancer would require sufficient concentra-

tions of both the factor and the co-factor to drive transcription. The homeodomain proteins

Extradenticle (Exd)/Pbx and Homothorax (Hth)/MEIS (Slattery et al., 2011b; Rieckhof et al., 1997;

Ryoo and Mann, 1999; Lelli et al., 2011) interact with Ubx during DNA binding, and Ubx and Hth

regulate a partially overlapping set of genes (Choo et al., 2011; Slattery et al., 2011a). In vitro,

Ubx requires Hth/Exd to bind to the low-affinity sites in 7H and E3N (Crocker et al., 2015). In vivo,

Hth deficiency led to the loss of expression for both 7H and E3N (Figure 4A–D). Consistent with this

requirement for both Ubx and Hth, Hth was co-enriched with Ubx around active transcription sites

driven by 7H or E3N (Figure 4E–T). The relative enrichment for Ubx and Hth, respectively, was

0.58 ± 0.14 and 0.41 ± 0.16 for 7H (n = 51, seven embryos) and 0.66 ± 0.13 and 0.39 ± 0.24 for E3N

(n = 74, five embryos). These results suggest that transcription from co-factor-dependent enhancers

requires microenvironments that contain high concentrations of both transcription factors and their

co-factors. This observation provides further support for the model that transcription factor microen-

vironments are present as multiple highly differentiated transcription domains containing unique

combinations of transcription factors.

Discussion
Biological systems often generate locally high concentrations of interacting molecules to increase

the efficiency of biochemical reactions (Dueber et al., 2009; Oehler and Müller-Hill, 2010). This

appears to be true also for transcription from low-affinity enhancers. Microenvironments

(Reiter et al., 2017) of high local concentrations of transcription factors and their co-factors may cir-

cumvent the instability of low-affinity interactions by promoting more frequent DNA binding and

cooperative interactions when enhancers are located within these domains (Farley et al., 2016)

(Figure 4U and V). These microenvironments may be relatively stable domains generated by rapid

dynamics of individual molecules. For example, we observed interactions between transcription fac-

tors and DNA on the timescale of seconds, with transcription factors continuously arriving to and

departing from specific loci. From the perspective of gene expression, transcription likely occurs

intermittently, switching on and off as the gene locus samples different nuclear regions. These rapid

dynamics ensure that, once the gene locus moves outside of a microenvironment, or the conditions

to form microenvironments are no longer satisfied, then the transcription factors needed to sustain

expression quickly depart from low-affinity binding sites. In contrast, the fact that svb enhancers

placed on the third chromosome often co-localized with the native svb locus on the X chromosome

suggests that unique microenvironments may have relatively long half-lives. One challenge for the

future is to determine how rapid dynamics of individual molecules generates apparently stable sub-

nuclear domains.

Many mechanisms might work in concert to create these observed microenvironments. First, clus-

tered binding sites for the same transcription factor (Crocker et al., 2016b) could lengthen the dwell

time of proteins near enhancers and increase effective local protein concentrations (Yao et al.,

2006; Zhang et al., 2006; Elf et al., 2007; Kabata et al., 1993; Leith et al., 2012; Ruusala and

Crothers, 1992). Second, cooperative and scaffolding interactions between transcription factors and

co-factors, each of which may bind independently to enhancers, can stabilize transcription factors at

low-affinity sites (Farley et al., 2016; Junion et al., 2012). Finally, clustering of enhancers could trap

transcription factors over longer length scales (Noordermeer et al., 2014; de Laat and Duboule,

2013; Symmons et al., 2016; Williamson et al., 2016; Giorgetti et al., 2016), perhaps generating

the ~200 nm microenvironments that we observed. This last model is supported by recent findings

that multiple promoters can share the same enhancer in a common local environment (Fukaya et al.,

2016).

Transcription factor microenvironments may be a general feature of eukaryotic transcription, as

supported by studies showing mouse and human cells exhibiting RNA polymerase II crowding

(Cisse et al., 2013; Cho et al., 2016), transcription factors using local clustering to efficiently find

their binding sites (Liu et al., 2014; Izeddin et al., 2014), and chromatin packaging in Drosophila

cells generating distinct chromatin environments at the kilobase-to-megabase scale
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Figure 4. Ubx and its cofactor Hth are co-enriched around transcription sites. (A–D) Early stage 15 embryos with

7H-lacz (A–B) or E3N-lacZ reporter constructs (C–D) stained with an antibody against ß-Galactosidase in either

Figure 4 continued on next page
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(Boettiger et al., 2016). Collectively, these findings are consistent with a phase-separated model of

transcriptional regulation (Hnisz et al., 2017) whereby distinct microenvironments contain different

combinations of proteins inside the nucleus. These localized regions impose a spatial constraint on

the expression of genes, allowing transcriptional activation from enhancers only when they are physi-

cally in regions with the correct combinations of transcription factors and co-factors. Multiple

enhancers acting as DNA scaffolds for protein binding could provide the anchoring interactions that

form transcriptional microenvironments. These microenvironments would, in turn, provide a mecha-

nism to allow both efficient and specific transcription from low-affinity enhancers.

Materials and methods

Preparing fixed Drosophila embryos
D. melanogaster strains were maintained under standard laboratory conditions. All enhancer con-

structs were cloned into the placZattB expression construct with a hsp70 promoter (Crocker et al.,

2015). Transgenic fly lines were made by Rainbow Transgenic Flies Inc. E3 and 7H were integrated

at the attP2 landing site. DG3 was integrated at ZH-86Fb.

Immuno-fluorescence staining of transcription factors and in situ
hybridization to mRNA
Flies were reared at 25˚C and embryos were fixed and stained according to standard protocols

(Crocker et al., 2015). Primary antibodies were detected using secondary antibodies labeled with

Alexa Fluor dyes (1:500, Invitrogen). In situ hybridizations were performed using DIG or biotin-

labeled, antisense RNA-probes against a reporter construct RNA (lacZ) or the first intron of svb or

fkh. DIG-labeled RNA products were detected with a DIG antibody: Invitrogen, 9H27L19 (1:200 dilu-

tion) and biotin-labeled RNA products are detected using a biotin antibody: Pierce, PA1-26792

(1:200).

The following primary antibodies for proteins were used at the indicated concentrations:

Ubx: Developmental Studies Hybridoma Bank, FP3.38-C (1:20)

Hth: Santa Cruz Biotechnology (dN-19), sc-26186 (1:50)

Eve: Developmental Studies Hybridoma Bank, 2B8-C (1:20)

AbdA: Santa Cruz Biotechnology (dN-17), sc-27063 (1:50)

En: Santa Cruz Biotechnology (d-300), sc-28640 (1:50)

RNA PolII RPB1 (Ser5 phosphorylated): BioLegend, (920304), (1:200)

Histone H3K27me3: Active Motif, 39157 (1:200)

Histone H3K4me3: Cell-signaling technology C42D8 (1:200)

LacZ: Promega anti-ß-Gal antibody (1:1000)

Imaging fixed embryos with Airyscan
Fixed Drosophila embryos mounted in ProLong Gold mounting media (Molecular Probes, Eugene,

OR) were imaged on a Zeiss LSM 880 confocal microscope with Airyscan (Carl Zeiss Microscopy,

Figure 4 continued

wild-type (WT) (A and C) or hthP2 mutant embryos (B and D). (E–H) A nucleus displaying active transcription of the

7H-lacZ reporter construct denoted by a bounding box (E–H) and co-stained for Ubx protein (F), Hth protein (G),

or both Ubx and Hth proteins (H). (I–L) A nucleus displaying active transcription of the E3N-lacZ reporter construct

denoted by a bounding box (I–L) and co-stained for Ubx protein (J), Hth protein (K), or both Ubx and Hth proteins

(L). (M–P) 3D surface plots of the images in panels (F, G, J, K), centered on the sites of enhancer activity (yellow).

The height of the plot is Ubx intensity in panels (M) and (O) and Hth intensity in panels (N) and (P). (Q–T)

Quantification of the relative concentration of Ubx (Q, S) and Hth (R, T) versus distance from active enhancer sites.

The shaded regions indicate the variance. A.U. indicates Arbitrary Units of fluorescence intensity. (U, V) A

conceptual model showing nuclei with multiple regions of high local concentrations of Ubx or Hth (U) and high

local concentrations of both Ubx and Hth that allow rapid ON rates (V, grey arrows) and collectively may recruit

RNA pol II complexes.

DOI: https://doi.org/10.7554/eLife.28975.014
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Jena, Germany) using 3D Airyscan in SR mode to obtain images with 1.7-fold higher resolution com-

pared to diffraction-limited confocal imaging (Sheppard et al., 2013) (method supplements: imag-

ing setup for Airyscan). Images presented in the figures were processed with ImageJ

(Schindelin et al., 2015).

Expanding fixed embryos
To expand embryos, after fixation and staining, embryos were embedded into poly-acrylate gels

and expended according to a previously published protocol (Tillberg et al., 2016) (method supple-

ments: handling expansion gels).

Imaging expanded embryos
Expanded gels containing embryos were imaged in 6-well glass bottom plates (Cellvis, Mountain

View, CA) using a Zeiss LSM 800 confocal microscope (Carl Zeiss Microscopy, Jena, Germany) using

standard settings (method supplements: imaging setup for expanded embryos).

HaloTag-Ubx transgene construct for live imaging and overexpression
assay
Transgenic fly lines containing HaloTag-Ubx under the control of both a hsp70 and a 20x UAS pro-

moter was made by Rainbow Transgenic Flies Inc. The lines were made homozygous for the

transgene.

Preparing embryos for live imaging
Embryos resulting from crossing the homozygous line with the HaloTag-Ubx transgene with a nos::

GAL4 driver line were injected following previously established protocols (Rubin and Spradling,

1982) with the HaloTag ligand of JF635. Briefly, embryos were collected for 30 min at 25˚C and

placed in oxygen permeable Halocarbon 27 oil. The stock dye solution of 1 mM JF635 with a HaloTag

ligand in DMSO was diluted 1:100 into fly injection buffer and injected into the posterior end of the

embryos. The embryos were then aged to stage 5 or late stage 6 and imaged in oxygen permeable

Halocarbon 27 oil.

Live imaging of Drosophila embryos
Injected embryos were imaged on a customized inverted Nikon Ti-Eclipse (Nikon Instruments,

Tokyo, Japan) with the appropriate settings (method supplements: imaging setup for live embryos).

Embryos for HaloTag-Ubx overexpression assay
Embryos from the homozygous HaloTag-Ubx transgene line were exposed to 30˚C to induce the

heat shock promoter and cuticle preps were prepared following previously established protocols

(Crocker et al., 2015).

Radially averaged distributions centered around transcription sites
To obtain the distributions of Ubx and Hth around a transcription site, the processed Airyscan stacks

obtained from the Zeiss LSM 880 confocal microscope were analyzed in Fiji (Schindelin et al., 2012)

using native functions and the 3D ImageJ Suite plugin (Schmid et al., 2010). Radially averaged dis-

tributions for individual transcription sites were computed using the 3D ImageJ Suite Plugin. Distri-

butions for all sites were averaged and background offset in Matlab (MathWorks, Natick, MA) using

a custom script (method supplements: settings for extracting radially averaged distributions).

Method supplements
Imaging setup for Airyscan
All Airyscan images were acquired using a Zeiss Plan-Apochromat 63x/1.4 Oil DIC M27 objective

due to its well-characterized point spread function. First an embryo at the appropriate developmen-

tal stage (stage 15 for most embryos) and proper orientation was located. The band of mRNA

expression in high Ubx regions of the first abdominal (A1) segment was then found. Within that

band, areas containing transcription sites in nuclei of high Ubx expression were imaged. Images with

both Ubx and Hth were acquired in the same manner by locating the proper area using the mRNA
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and Ubx. When Ubx was imaged together with RNA polymerase II, a histone marker, or other tran-

scription factors, Ubx expression levels were used to locate the region of interest.

The optimal setting suggested by Zeiss for the number of pixels in the x-y direction (40 nm per

pixel) and displacement in the z-stack (190 nm) were used for all Airyscan images. The images from

different fluorophores were acquired sequentially with the appropriate laser lines (405 nm, 488 nm,

561 nm, or 633 nm) and spectral filters. The laser power and gain were adjusted to maximize the sig-

nal to noise ratio within the dynamic range of the Airyscan detector. The acquired stacks were proc-

essed with Zen 2.3 SP1 (Carl Zeiss Microscopy GmbH, Jena, Germany) in 3D mode to obtain super-

resolved images.

Handling expansion gels
To allow easier handling of expanded gels, the gels containing embryos were cast into eight-well sili-

cone isolators without adhesives (eight round chambers with a diameter of 9 mm and a thickness of

0.5 mm, Grace Bio-Labs (Bend, OR)) and allowed to polymerize. The gels were transferred into a six-

well glass-bottom cell culture plate (Cellvis, Mountain View, CA) and expanded using ultrapure water

containing 500 nM DAPI. Before imaging, the water was removed and the gel encased in 3% low

melting temperature agarose (NuSieve GTG Agarose, Lonza Group Ltd, Basel, Switzerland), taking

care not to allow the agarose to flow under the gel and float the gel away from the cover glass bot-

tom. Water was then added back into the wells to prevent drying.

Imaging setup for expanded embryos
A long working-distance water immersion objective, the Zeiss LCI Plan-Neofluar 25x/0.8 Imm Korr

DIC M27, was selected for index-matching with the gel and its ability to image up to 400 mm above

the surface of the coverslip. Stage 15 embryos in the correct orientation were located using the

DAPI and Ubx staining. Regions of low to high Ubx expression were imaged sequentially using the

appropriate laser lines (405 nm, 488 nm, or 561 nm) with the proper spectral filters. The laser power

settings and the gain were selected to maximize signal to noise within the dynamic range of the

detector. The full field of view of the microscope was imaged with 2048 � 2048 pixels and with a

z-step of 1 mm. The final images presented were processed in ImageJ (Schindelin et al., 2015).

Imaging setup for live embryos
All videos were collected under a Nikon CFI Plan Apo NCG 100X Oil NA 1.41 objective with an

Andor iXon 897 EMCCD camera (Andor Technology Ltd., Belfast, UK). Embryos at stage 5 and late

stage 6 in the correct orientation were found and imaged. We selected an area in the middle of the

embryo with enough dye-labeled Ubx molecules to observe single molecules and we avoided

regions close to the injection site to avoid oversaturating the camera (compare with Figure S5A-D

where there are too many labeled Ubx). The samples were illuminated with a 633 nm laser to image

the JF635 tagged Halo-Ubx molecules with laser power and camera gain set to maximize signal from

individual Ubx molecules without oversaturating the EMCCD detector. The 512 � 512 pixel videos

were acquired at an exposure time of 100 ms per frame for up to 200 s. Images were processed

using ImageJ to generate the time-averaged images and the intensity-over-time traces presented in

the figures.

Settings for extracting radially averaged distributions
To extract radially averaged protein distributions, we used Fiji to identify transcription sites inside

nuclei by thresholding at a level that is roughly 50-fold above the background intensity. The center

of a transcription site was defined as the pixel of maximum intensity in 3D in the mRNA channel

inside a nucleus with high levels of Ubx expression. The radially averaged distribution out to a radius

of 4 mm from transcription site for the transcription factor in 3D was computed using the 3D ImageJ

Suite. The suite generates the distribution by computing the average intensity on the surface of a

sphere with a radius r from the center in three dimensions for all the values of r ranging from zero to

a desired outer limit (4 mm in this case).

The individual distributions from each transcription site were normalized to have the intensity at

the center (r = 0) equal to 1. The distributions were averaged and background offset in Matlab. To

adjust for background Ubx intensity outside of the nucleus, the entire averaged distribution was
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offset by a constant value to bring the minimum intensity present in the distribution to zero to gen-

erate the distribution plots. The shaded area around the line represents the variance. The first mm of

the distributions, where contributions from outside of the nucleus were minimal, are shown in the

figures. The relative enrichment of Ubx or Hth for each enhancer variant is the intensity at r = 0 in

the distribution and the cited uncertainty is the variance at the location of zero Ubx or Hth intensity

(the site of minimum intensity before offsetting, between 2 and 4 mm from the transcription site).

The initial dataset for 7H enhancers contained only a part of the deletion series. A subsequent

dataset contained all the 7H deletion mutants. The 7H mutants present in both sets were compared

and the distributions of Ubx intensity between the sets were found to differ by a multiplicative fac-

tor. When such factor was computed for each overlapping 7H mutant present in both datasets, the

results were similar, indicating that there was a systematic shift in background noise. This could have

resulted from differences in embryo handling during fixation, antibody staining, and other steps in

sample preparation. Other characteristics such as the functional form of the distributions between

the two sets and the trends between 7H mutants within each set remained unchanged after correct-

ing for the difference in intensity. The wild-type 7H data from the first set with a correction factor

and the rest of the deletion series uncorrected from the second set were used to minimize the nor-

malization employed.
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