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 CURRENT
OPINION Current perspectives on invasive nontyphoidal

Salmonella disease

Andrea H. Haselbecka,�, Ursula Panznera,�, Justin Ima, Stephen Bakerb,c,
Christian G. Meyerd,e, and Florian Marksa,c

Purpose of review

We searched PubMed for scientific literature published in the past 2 years for relevant information
regarding the burden of invasive nontyphoidal Salmonella disease and host factors associated with
nontyphoidal Salmonella infection and discuss current knowledge on vaccine development. The following
search terms were used: Salmonella, non typhoidal/nontyphoidal, NTS, disease, bloodstream infection,
invasive, sepsis/septicaemia/septicemia, bacteraemia/bacteremia, gastroenteritis, incidence, prevalence,
morbidity, mortality, case fatality, host/risk factor, vaccination, and prevention/control.

Recent findings

Estimates of the global invasive nontyphoidal Salmonella disease burden have been recently updated;
additional data from Africa, Asia, and Latin America are now available. New data bridge various
knowledge gaps, particularly with respect to host risk factors and the geographical distribution of iNTS
serovars. It has also been observed that Salmonella Typhimurium sequence type 313 is emergent in several
African countries. Available data suggest that genetic variation in the sequence type 313 strain has led to
increased pathogenicity and human host adaptation. A bivalent efficacious vaccine, targeting Salmonella
serovars Typhimurium and Enteritidis, would significantly lower the disease burden in high-risk populations.

Summary

The mobilization of surveillance networks, especially in Asia and Latin America, may provide missing data
regarding the invasive nontyphoidal Salmonella disease burden and their corresponding antimicrobial
susceptibility profiles. Efforts and resources should be directed toward invasive nontyphoidal Salmonella
disease vaccine development.
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INTRODUCTION

Salmonella enterica serovar Typhi (S. Typhi) and the
various pathovars of S. Paratyphi are commonly re-
ferred to as typhoidal Salmonella serovars. These
agents are restricted to human hosts. Salmonella sero-
vars that fall outside of this group are typically re-
ferred to as the nontyphoidal Salmonella (NTS)
serovars and are considered to have the potential
to interact with human and nonhuman hosts [1

&&

].
Poor access to improved water supplies and adequate
sanitation facilities, combined with growing urbani-
zation, favor the transmission of NTS serovars
through food or water sources and contact with
animals [2

&&

]. In addition to animal reservoirs,
humans may be a growing substantial secondary
pathogen reservoir [3]. Typical NTS disease in
immunocompetent hosts manifests as a mild, self-
limiting gastroenteritis. In contrast, invasive nonty-
phoidalSalmonella (iNTS)disease commonlypresents
as a febrile bacteremia, which can be fatal if left

untreated. Invasive NTS disease is associated with
the extremes of age, malnutrition, clinical malaria,
and HIV infections, especially in Africa [4

&

,5
&&

–7
&&

].
In this study, we review available literature published
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from 2015 to present on the global burden of iNTS
disease, host risk factors, and the implications of
these data for vaccination.

GLOBAL DISEASE BURDEN

A recent review on the global distribution of iNTS
has indicated a low number of reported cases in
South and Southeast Asia [8

&

]. The overwhelming
majority of the estimated 3.4 million annual iNTS
infections and 618 316 iNTS-related deaths occur in
Africa [4

&

,8
&

,9]. Salmonella enterica serovars Enteritidis,
Dublin, and Typhimurium are the most common
serovars associated with iNTS disease [4

&

,5
&&

]. Of
specific concern is S. Typhimurium sequence type
313 (ST313), which is more frequently associated
with bacteremia than gastrointestinal infections
[10,11], and is commonly multidrug resistant
(MDR) [2

&&

,12]. Additional data suggest that S.
Typhimurium ST313 may have a greater propensity
for transmission between humans, and an animal
reservoir has not, as yet, been well defined. Keddy
et al. [13] recently found a significant association of
an MDR phenotype in ST313 [odds ratio (OR) 6.6;
95% confidence interval (95%CI) 2.5–17.2] in com-
parison to S. Typhimurium sequence type 19 (ST19).
ST19 arises mostly in Europe and Northern America,
whereas ST313 isolates are more commonly found
in Africa [14

&&

].
A review published in 2017 assessed the occur-

rence of iNTS disease across Africa [5
&&

]. The authors
described disease incidence estimates that ranged
from 1.4 per 100 000 population/year (all ages, South
Africa, 2003–2004) to 2520 per 100000 population/
year (children<5 years old, Ghana, 2007–2009) [5

&&

],
with highest incidences in those infected with HIV,
in patients with sickle cell disease, in young children,
and in those residing in rural settings [5

&&

]. The
prevalence of NTS-related community-acquired bac-
teremia ranged from 8% in Nigeria and South Africa
to 45% in the Central African Republic [5

&&

], with an
overall case fatality rate of 20.6% (548 deaths/2656
iNTS disease cases) [5

&&

].
The emergence of iNTS organisms in Africa

exhibiting resistance to various commonly used

antimicrobials, including chloramphenicol, ampi-
cillin, and co-trimoxazole, has been reported
[2

&&

,4
&

,15,16]. These ‘baseline’ antimicrobial resis-
tance profiles have been followed by the advent of
resistance against third-generation cephalosporins;
iNTS isolates with resistance to ceftriaxone has now
been reported in the Democratic Republic of the
Congo (DRC) [17,18], Kenya [19,20], Malawi [15,21]
and South Africa [2

&&

].
The Typhoid Fever Surveillance in Africa Pro-

gram (TSAP), a population-based surveillance, con-
ducted at 13 sentinel sites in 10 countries (Burkina
Faso, Ethiopia, Ghana, Guinea-Bissau, Kenya, Mada-
gascar, Senegal, South Africa, Sudan, and Tanzania)
during 2010–2014, revealed an overall iNTS disease
prevalence of 17% (94/568) among those with bac-
teremia [22]. The serovars S. Typhimurium (40%, 38
out of 94 NTS positive cases), S. Enteritidis (12%, 11
out of 94 NTS positive cases) and S. Dublin (11%,
10/94 NTS positive cases) were the most prevalent
[22–24], which is largely concordant with findings
reported by Crump and Heyderman [4

&

] and Uche
et al. [5

&&

]. In TSAP, the adjusted incidences of iNTS
disease were highest among children aged more
than 1 year, ranging from 291 (95%CI 176–482)
per 100 000 person-years-of-observations (PYO)
(Guinea-Bissau) to 1733 (95%CI 1373–2188) per
100 000 PYO (Ghana) [22]. The iNTS disease inci-
dences among children aged 2 to 4 years ranged
from 49 (95%CI 7–348) per 100 000 PYO in Kenya to
1908 (95%CI 1469–2479) per 100 000 PYO in Ghana
[22]. In addition, several independent reports on
blood-culture-based surveillance data have shown
that iNTS disease is present in other locations in
Africa such as the DRC [18], the Gambia [25], and
Ghana [26,27]. Data from different sites in Kenya
found an incidence of 4134 per 100 000 person-years
[20] and 174 per 100 000 person-years [28] in
infants. Children under 5 years of age had an overall
incidence of 36.6 per 100 000 person-years [28,29];
incidences among children less than 5 years of age
differed considerably by setting (rural setting: 3914
per 100 000 person-years, urban setting: 997.9 per
100 000 person-years) [30]. The presence of iNTS
disease has also been reported from Mali [31],
Mozambique where two studies were conducted
[predominantly ST313 isolates [32]; infant inci-
dence: 217.7 per 100 000 child-years [33

&

]], and
South Africa [34

&&

].
In contrast to Africa, the epidemiology of iNTS

disease and corresponding antimicrobial suscepti-
bility patterns are poorly described in Asia and South
America, suggesting either a lower disease burden or
a lack of epidemiological reporting. A multicenter,
hospital-based study investigating community-
acquired bacteremia in Indonesia, Thailand, and

KEY POINTS

� Global estimates suggest 3.4 million iNTS illnesses and
618 316 iNTS disease-related deaths per year.

� The most common iNTS serovars are S. Enteritidis,
S. Dublin, S. Typhimurium; of particular concern is the
S. Typhimurium ST313 variant.

� Bivalent S. Enteritidis and S. Typhimurium vaccines may
decrease the global disease burden dramatically.
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Vietnam from 2013 to 2015 identified an overall
NTS-associated bacterial positivity rates of 27.5%
(11/40 bacteremia cases) in children and 11.7%
(7/60 bacteremia cases) in adults [35]. Limited iNTS
prevalence (20/12 940 bacteremia patients) and a
25% case fatality were reported among bacteremic
patients hospitalized from 2009 to 2013 in
Bangladesh [36]. A longitudinal study of community-
acquired bacteremia in hospitalized children con-
ducted in Malaysia from 2001 to 2011 found an
iNTS prevalence of 16.2% (36/222), with most NTS
isolated from infants below 1 year of age [37]. A
surveillance study from Colombia investigated a
sample of 4010 S. Enterica isolates collected from
blood and feces samples and found that 32.5% were
S. Typhimurium, 28.2% were S. Enteritidis, and 2.9%
were S. Dublin cases over a 6-year period [38]. These
numbers are considerably lower than those
reported from Asia and sub-Saharan Africa. Notably,
S. Typhimurium ST313 variants have been isolated
from humans and poultry in Brazil [39]. On the basis
of the investigations of Almeida et al. [39], the organ-
isms identified appear genetically distinct from the
ST313 variants isolated in sub-Saharan Africa.

HOST-ASSOCIATED FACTORS
Common factors contributing to iNTS disease
include extremes in age, the occurrence of immu-
nosuppressive conditions, and other underlying
comorbidities (e.g., diabetes, cancer, and cardiovas-
cular diseases) [40]. In addition, climatic conditions
such as increased rainfall or drought that can result
in food scarcity, leading to malnutrition and in-
creased transmission of malaria parasites are factors
that may favor the transmission of NTS organisms
[7

&&

]. Particularly in Africa, the association of iNTS
disease with malnutrition (OR 1.44–2.42) and sickle
cell disease (OR 35.6) has been described predomi-
nantly in children, whereas Plasmodium falciparum
malaria (OR 1.5–4.1), anemia, and HIV infection
(OR 3.2–48.2) are risk factors that are not generally
associated with age [2

&&

,4
&

,5
&&

,7
&&

,24,29,41
&&

].
Adjusted odds ratios of 4.0 and 5.0 were calculated
for the association of iNTS disease with moderate
and severe anemia, respectively [33

&

]. Keddy et al.
[34

&&

] found a significant association between an
increased usage of antiretroviral therapy and a de-
crease in incident iNTS disease infections (P<0.001)
in a South African province. Similar observations
were made by Lan et al. [42] in Vietnam. ST313, the
most common S. Typhimurium variant associated
with iNTS disease, was initially identified in HIV-
infected patients [2

&&

]. In comparison to other
S. Typhimurium types (e.g., ST19), the genomically
degraded ST313 may cause systemic infections and
induce a lower inflammatory reaction in the

intestine, exerted by evasion mechanisms from
the immune response [43,44]. The genomic degra-
dation includes the downregulation of gene expres-
sion involved in active cell invasion through
effector proteins [43,44]. The reduced activation
of macrophages is assumed to be caused by lower
flagellin expression [43,44]. The survival time and
replication rate were found to be more efficient in
the investigated ST313 isolates compared with ST19
[43,44]. Therefore, the ST313 phenotype appears to
become closer to that of typhoidal Salmonella, sug-
gesting analogical adaptation toward a more inva-
sive phenotype in humans [1

&&

].
In addition, an MDR phenotype may allow for

rapid ST313 dissemination throughout susceptible
populations [2

&&

]. Advanced HIV disease leads to a
reduced immune response in the gastrointestinal
mucosa and poses a higher invasion risk of iNTS
[7

&&

]. Changes in the gastrointestinal microbiota,
induced by the intake of acid blockers, gastric
surgery, and antimicrobial pretreatment, are also
suggested to favor iNTS disease [7

&&

,45,46]. Martz
et al. [46] found stabilizing effects on the gastro-
intestinal microbiome associated with the ingestion
of probiotics in mice, which may improve the func-
tionality of the intestinal barrier.

VACCINE DEVELOPMENT
Effective vaccines preventing iNTS disease are likely
to differ inherently from those protecting against
S. Typhi infections. Studies from Africa have shown
that naturally acquired antibodies against NTS cor-
respond with a reduced risk of iNTS disease [47,48].
Several vaccine candidates targeting S. Typhimurium
and S. Dublin are currently under development,
some of which may provide protection against both
serovars. The current status of iNTS vaccine consid-
erations has been described in a recent review [49

&&

]:
several potential iNTS vaccines are under develop-
ment, including live-attenuated, subunit-based, and
recombinant antigen-based substances. Both hu-
moral and cellular immunities are likely required
to achieve full protection against iNTS disease. Live-
attenuated vaccines provide both types of immune
response; however, they may pose a risk for immu-
nocompromised individuals [41

&&

]. Inactivated iNTS
vaccines may induce humoral immunity only and
suppress NTS during the acute phase of infection,
but are likely not to achieve systematic clearance
in infected individuals [41

&&

]. The lack of disease
burden data from Asia and South America, coupled
with the enormous number of NTS serovars, and the
role of alternate prevention measures (i.e., access to
improved water and sanitation and food safety)
have contributed to a delay and a lack of investment
in the development of iNTS disease vaccines.

Gastrointestinal infections
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Previously, when animals were considered to be
the only reservoir of NTS organisms, the implemen-
tation of hygiene and safety measures along a regu-
lated and appropriate food chain was thought to be
sufficient for the reduction of iNTS transmission.
However, with the speculation that humans may be
a growing alternative reservoir for ST313 [50], the
development and deployment of iNTS disease vac-
cines appear to be a more viable solution. However,
iNTS disease vaccines would not only require
considerable funding to progress existing vaccine
candidates, but also will require parallel vaccine
deployment strategies to identify appropriate target
age groups, schedules, formulations, and potential
vaccine adjuvants.

An iNTS disease vaccine would need to be ad-
ministered in infants to ensure protection before the
peak occurrence of disease. This strategy, however,
poses the challenge of combining iNTS and S. typhi
vaccines, as the peak disease incidence for typhoid
(5–8 years of age) is later than that for iNTS disease
[51], except in highly endemic areas. A potential
byproduct after the widespread use of a bivalent iNTS
vaccine conferring protection against S. Typhimurium
and S. Enteritidis would be serovar replacement by
other Salmonella variants, such as S. Dublin. Such a
serotype replacement was observed following the
MenAfriVac campaign, when large populations in
the African meningitis belt were vaccinated against
Neisseria meningitidis serotype A and other serotypes
subsequently emerged [52–54]. Another consider-
ation would be a combined iNTS disease/malaria
vaccine; this approach may be particularly prudent,
given that malaria is associated with the severity of
iNTS disease. Such a vaccine would then be tailor-
made for sub-Saharan Africa, but may be less applica-
ble for low and nonendemic malaria regions (i.e.,
Brazil) [39]. This would potentially suggest the need
to develop an independent, nonmalaria-combined
vaccine that is applicable to all iNTS endemic regions.

CONCLUSION

iNTS is a major public health issue in sub-Saharan
Africa. ST313 appears to be better adapted to
humans than other S. Typhimurium, is associated
with an increased disease severity, and has acquired
an MDR phenotype. Observations of the Brazilian
ST313 lead to some insights on this serotype that are
also relevant for Africa. First, ST313 has the ability to
arise in new locations independently and does not
appear to be confined to sub-Saharan Africa. The fact
that some Brazilian ST313 isolates exhibit different
antimicrobial susceptibility profiles in comparison
to African variants suggests that iNTS disease has the
potential to evolve de novo outside of Africa, which

may result in new and unlinked epidemics. Im-
provement in water and sanitation, a reduction in
malaria incidences and malnutrition and improved
management of HIV infections should additionally
prevent iNTS disease from becoming an even bigger
global health threat. However, the rapid emergence
of ST313, the possible de-novo occurrence and
spread of the future MDR and pathogenic variants
place iNTS disease increasingly on the vaccine de-
velopment agenda. Now is also a prime time to
invest in enhanced iNTS disease surveillance. This
enhanced surveillance is particularly important in
Asia and Latin America, and is required to assess the
actual extent of disease in these locations. Typhoid
fever should be used as an example, when, despite
the availability of vaccines, a lack of appropriate
disease burden data stalled the global commitment,
resulting in limited vaccine uptake and dampened
efforts to develop conjugated vaccines. The persis-
tence of typhoid fever culminated in the evolution
of a highly antimicrobial resistant S. Typhi genotype
(H58), which is spreading globally [55].
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