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ABSTRACT Acinetobacter baumannii is a successful nosocomial pathogen due to its
genomic plasticity. Homologous recombination allows genetic exchange and allelic vari-
ation among different clonal lineages and is one of the mechanisms associated with
horizontal gene transfer (HGT) of resistance determinants. The main mechanism of coli-
stin resistance in A. baumannii is mediated through mutations in the pmrCAB operon.
Here, we describe two A. baumannii clinical isolates belonging to International Clone 7
(IC7) that have undergone recombination in the pmrCAB operon and evaluate the con-
tribution of mobile genetic elements (MGE) to this phenomenon. Isolates 67569 and
72554 were colistin susceptible and resistant, respectively, and were submitted for
short- and long-read genome sequencing using Illumina MiSeq and MinION platforms.
Hybrid assemblies were built with Unicycler, and the assembled genomes were com-
pared to reference genomes using NUCmer, Cortex, and SplitsTree. Genomes were
annotated using Prokka, and MGEs were identified with ISfinder and repeat match.
Both isolates presented a 21.5-kb recombining region encompassing pmrCAB. In isolate
67659, this region originated from IC5, while in isolate 72554 multiple recombination
events might have happened, with the 5-kb recombining region encompassing pmrCAB
associated with an isolate representing IC4. We could not identify MGEs involved in the
mobilization of pmrCAB in these isolates. In summary, A. baumannii belonging to IC7
can present additional sequence divergence due to homologous recombination across
clonal lineages. Such variation does not seem to be driven by antibiotic pressure but
could contribute to HGT mediating colistin resistance.

IMPORTANCE Colistin resistance rates among Acinetobacter baumannii clinical isolates
have increased over the last 20 years. Despite reports of the spread of plasmid-medi-
ated colistin resistance among Enterobacterales, the presence of mcr-type genes in
Acinetobacter spp. remains rare, and reduced colistin susceptibility is mainly associ-
ated with the acquisition of nonsynonymous mutations in pmrCAB. We have recently
demonstrated that distinct pmrCAB sequences are associated with different A. bau-
mannii International Clones (IC). In this study, we identified the presence of homolo-
gous recombination as an additional cause of genetic variation in this operon, which,
to the best of our knowledge, was not mediated by mobile genetic elements. Even
though this phenomenon was observed in both colistin-susceptible and -resistant
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isolates, it has the potential to contribute to the spread of resistance-conferring al-
leles, leading to reduced susceptibility to this last-resort antimicrobial agent.

KEYWORDS polymyxins, colistin resistance, mobile genetic elements, insertion
sequences, Gram-negative bacilli

A cinetobacter baumannii is an opportunistic pathogen causing a variety of difficult-
to-treat infections owing to their high incidence of antimicrobial resistance. One

of the reasons for this is its high genomic plasticity and its ability to acquire resistance
determinants (1, 2). The A. baumannii population can be grouped into nine interna-
tional clonal lineages (3), which differ from each other in at least 1,800 alleles, as shown
by core genome multilocus sequence typing (cgMLST) (4). Furthermore, each lineage
has distinct alleles associated with them, such as the intrinsic blaOXA-51-like (5).

Homologous recombination allows foreign DNA to be integrated into the chromo-
some, and in A. baumannii it has already been associated with the acquisition of resist-
ance determinants to aminoglycosides (6, 7). Additionally, other studies have shown
that homologous recombination contributes to the allelic variation of intrinsic resist-
ance determinants, such as the outer membrane protein CarO (8) and the chromo-
some-encoded Acinetobacter-derived cephalosporinase (ADC) (9).

Mutations in the pmrCAB operon are the main mechanism causing reduced suscep-
tibility to colistin among A. baumannii strains (10). We have recently demonstrated the
allelic variation of pmrCAB between distinct International Clones (ICs) and that colistin-
susceptible isolates belonging to the same clonal lineage should be used as reference
strains when investigating point mutations potentially associated with colistin resist-
ance (11, 12). Interestingly, some of the IC2 isolates described in the study by Gerson
and colleagues (11) presented pmrCAB sequences that are associated with IC4, sug-
gesting homologous recombination between these clonal lineages. Kim and Ko (13)
have also suggested that pmrCAB genetic variation between distinct species belonging
to the A. baumannii-A. calcoaceticus complex was due to recombination.

Here, we describe two A. baumannii clinical isolates belonging to IC7 with distinct
colistin susceptibility profiles and presenting recombined pmrCAB operons and evalu-
ate the contribution of mobile genetic elements (MGE) to this phenomenon.

(This work was presented in part at the 12th International Symposium on the
Biology of Acinetobacter in Frankfurt, Germany, 2019)

RESULTS AND DISCUSSION

Some divergence was observed when the PmrCAB protein sequences of the IC7 iso-
lates 67659 and 72554 were aligned against MC1 (IC7 reference genome). The colistin-
susceptible isolate 67659 showed one amino acid substitution in both PmrA and PmrB as
well as five in PmrC. In contrast, isolate 72554 presented 4, 18, and 71 amino acid substi-
tutions in PmrA, PmrB, and PmrC, respectively (Fig. 1A to C). The k-mer sharing analysis of
pmrCAB and its flanking regions demonstrated that sequence similarities were increased
when isolates 67659 and 72554 were compared to those belonging to IC5 and IC4,
respectively (Fig. 2). Furthermore, no amino acid substitutions were observed in PmrC or
PmrA when isolates 67659 and 72554 were compared against isolate 67098 (IC5) and iso-
late 71813 (IC4), respectively. Higher sequence similarity was also observed in PmrB, with
only a single substitution (Arg389Gln) identified when isolates 71813 and 72554 were com-
pared, as well as two substitutions (Pro187Thr and Asn256Ile) in the comparison between
isolates 67098 and 67659 (Fig. 1A to C). The representativeness of the included reference
genomes was also explored in an additional set of isolates as well as in a larger genomic
region (see Fig. S1 to S5 in the supplemental material).

The presence of regions with such high polymorphism rates suggests that horizon-
tal transfer through recombination, rather than the accumulation of multiple point
mutations over time, is involved in the variability of these specific DNA fragments. This
is particularly important and more frequent in naturally transformable species, such as
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FIG 1 (A to D) Protein sequence alignment of PmrC (A), PmrA (B), and PmrB (C) and SplitsTree-based neighbor-net of a 23.6-kb genomic region
encompassing pmrCAB (D) between isolates MC1 (IC7), 72554 (IC7), 71813 (IC4), 67659 (IC7), 67098 (IC5), AYE (IC1), and ACICU (IC2). Sequences
belonging to isolate MC1 were used as references for sequence alignment. Amino acid differences are highlighted in colors (panels A to C).
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A. baumannii (1, 2). Based on the large number of nonsynonymous mutations observed
in pmrCAB, with PmrC protein sequences presenting up to 13% divergence from what is
expected for their lineage, we can infer that this operon has been transferred across clo-
nal lineages through homologous recombination. The likely presence of recombination
around the pmrCAB operon was confirmed by a SplitsTree analysis, also including refer-
ence genomes for IC1 and IC2 (Fig. 1D; phi test for recombination, P = 0.0). Considering
that IC4 and IC5, together with IC7, are the most frequent lineages observed in South
America (3) and were already described in the same hospital (12, 14), it comes as no sur-
prise that horizontal gene transfer occurred among those lineages.

Using a k-mer-based analysis, it was noticed that the length of the region present-
ing high sequence divergence surrounding pmrCAB was similar between the two eval-
uated isolates and extended to at least 8 kb up- and downstream of pmrCAB (Fig. 2A
and B, top). However, when using the same approach to compare those isolates to the
reference genomes belonging to IC4 and IC5, which presumably acted as donors of
the recombining regions, some differences were observed. While k-mer sharing pro-
portion between isolates 67659 and 67098 was close to 1 through the whole extension
of the recombining region (Fig. 2A, bottom), the similarities between isolates 72554
and 71813 were restricted to only 700 bp upstream of pmrC as well as 1,000 bp down-
stream of pmrB (Fig. 2B, bottom). This finding suggests that additional recombination
events have taken place and that the pmrCAB allele belonging to IC4 went through
some other intermediary host before making it into 72554, consistent with SplitsTree
results. Boinett and colleagues (15) have previously suggested that a 700-kb genomic
region that included pmrCAB had undergone homologous recombination in labora-
tory-induced colistin-resistant isolates. Those isolates, however, belonged to IC2, sug-
gesting that recombining regions vary depending on their genetic background. This

FIG 1 (Continued)
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observation would be in agreement to the phenomenon described by Kim and Ko (13),
where the authors reported that recombination could happen within pmrC, generating
mosaic alleles. Such variation, however, was not observed in either of the two isolates
evaluated in this study.

FIG 1 (Continued)
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MGEs are often involved in horizontal gene transfer and, in A. baumannii, are fre-
quently related to insertion sequences (ISs) and/or composite transposons (7, 16).
Despite multiple copies of distinct IS elements being identified in the genomes of iso-
lates 67659 and 72554 (data not shown), none of them was observed within or flanking
the recombining region encompassing pmrCAB. In fact, the nearest IS detected was a
copy of ISAba125 that was ;14 kb upstream of pmrC in both isolates, while in the
other direction the closest IS element identified (a copy of IS17) was located .120 kb
downstream of pmrB, suggesting that recombination was not mediated by DNA mobi-
lization either through an IS or a composite transposon. Phage-related structures were
also observed through the genome of both isolates. However, similar to the IS ele-
ments, none of them was found flanking the recombining regions, and the closest
intact phage was observed .300 kb downstream of pmrB.

Considering that IS elements are self-transposable structures (17), we investigated
the presence of inverted repeats flanking the recombining region, since they indicate
that MGEs were lost postrecombination. A large number of repeats was observed
within and flanking the recombining region in both isolates, with an average of 44
repeats per 1,000 bp. However, sequence analysis revealed that none of them were
part of or constituted an insertion site for known IS elements. Moreover, they were
also found at the same position in isolates 67098 and 71813, suggesting that they
were translocated from IC5 and IC4 to IC7 during recombination, respectively, rather
than being responsible for the DNA mobilization. Therefore, the mechanisms involved
in the mobilization of pmrCAB into IC7 isolates remain to be elucidated.

Allelic variation in the pmrCAB operon is associated with natural polymorphisms
within each A. baumannii IC. In our study, we demonstrated that IC7 isolates can pres-
ent additional sequence divergence as a consequence of homologous recombination
of regions with variable lengths across distinct clonal lineages. Interestingly, the
recombination appears not to be driven by antibiotic pressure, since it was observed
in both colistin-susceptible and -resistant isolates, and a variety of clonal lineages can
act as donors of the recombining region. Additionally, we observed that MGEs were
not required for the transfer of pmrCAB in our isolates, since neither IS elements nor

FIG 1 (Continued)
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other MGEs were detected flanking the recombining region. Further studies are
required to determine the mechanisms driving the mobilization of pmrCAB and to eval-
uate the presence of this phenomenon in other ICs as well as its frequency in the A.
baumannii population.

FIG 2 (A and B) Spatial k-mer sharing plots of a 23.6-kb genomic region encompassing pmrCAB and flanking genes of isolate 67659 against isolates MC1
(IC7, top) and 67098 (IC5, bottom) (A) and 72554 against MC1 (IC7, top) and 71813 (IC4, bottom) (B). The plots show spatial variations in the proportion of
k-mers present in the genomes described on the x axis also present in the genome of the different references described on the y axis, calculated in sliding
windows of 40 bases along the genome of the first isolate and for k = 19. Plots are based on k-mer counts computed with Cortex and a custom R
visualization script. pmrCAB coding regions are highlighted in red, and flanking genes are indicated in green.
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MATERIALS ANDMETHODS
Bacterial isolates. A. baumannii clinical isolates 67659 and 72554 were recovered from the same ter-

tiary hospital in the city of São Paulo, Brazil, 2 years apart (2015 and 2017, respectively). Their antimicro-
bial susceptibility profile was previously determined (14), and they were found to be colistin susceptible
(MIC, 1 mg/liter) and resistant (MIC, .128 mg/liter), respectively. Their genomes were previously
sequenced using the Illumina MiSeq platform, and cgMLST analysis revealed that the isolates had 28 al-
lele differences and were grouped under IC7 (14). Additionally, previously described colistin-susceptible
isolates belonging to IC4 (71813), IC5 (67098), and IC7 (MC1) were included as reference genomes for
each IC (14, 18).

Long-read WGS using MinION platform. Genomic DNA of isolates 67659 and 72554 was extracted
using the Genomic-Tips 100/G kit and genomic DNA buffers kit (Qiagen, Hilden, Germany). Libraries
were prepared using the ligation sequencing kit (SQK-LSK109), combined with a native barcoding kit
(EXP-NBD104) and the rapid barcoding kit (SQK-RBK004) (Oxford Nanopore Technologies, Oxford,
United Kingdom), and were loaded onto an R9.4 flow cell (Oxford Nanopore Technologies). Genomes
were assembled with a hybrid approach using Unicycler version 0.4.4 (19) with default parameters.

Genome alignment and identification of the recombining region including pmrCAB. The exact
position of the pmrCAB operon was identified by aligning the pmrCAB sequence from A. baumannii
ATCC 19606 (GenBank accession number NZ_CP045110.1) against the hybrid assemblies using the
NUCmer tool of the MUMmer package, version 4.0.0beta2 (20), with default parameters. K-mer sharing
plots were used for the robust identification of sequence homologies and recombination boundaries
between lineages by visualizing spatial variation in the proportion of k-mers from one isolate (X) also
present in another isolate (Y), calculated in sliding windows of 40 bases along the genome of X. In con-
trast to other alignment approaches, k-mer sharing plots do not require full assembly of genome Y but
can be created based on short-read-derived k-mer counts. For a given region in isolate X, k-mer sharing
values close to 1 indicate the likely presence of a homologous region in Y, whereas lower values indicate
reduced similarity or the absence of the corresponding region from Y. The k-mer sharing plots were
used to determine sequence homology patterns between different isolates around the pmrCAB operon
and were created with a custom R script executed in RStudio (version 1.3.1093) (21). k-mer presence or
absence was determined with Cortex (version 1.0.5.21; options “–mem_height 25,” “–mem_width 100,”
and “–kmer_size 19”) (22), employing a minimum k-mer coverage threshold of 10 for the analysis of
short-read data. A neighbor-net analysis of the pmrCAB region was carried out with SplitsTree (23) with
default settings, based on a MUSCLE (24) multiple-sequence alignment of identified pmrCAB sequences
plus 10 kb of adjacent sequence from either side of pmrCAB. The phi test implemented in SplitsTree
(null hypothesis: no recombination) was used to test for recombination.

Characterization of the mobile structures involved in pmrCAB recombination. To fully annotate
the hybrid assemblies and to search for MGEs, Prokka version 1.14.5 (25) was used with default parame-
ters. Putative IS elements and phage-related structures were further identified with the blast tools of IS-
finder (https://isfinder.biotoul.fr/) and Phaster (https://phaster.ca/), respectively, using default parame-
ters. Inverted repeats (IR) were identified using the repeat-match tool of the MUMmer package version
4.0.0beta2 (20) with a minimum repeat length of 10 bases.

Data availability. Short and long raw reads generated for IC7 isolates 67659 and 72554, as well as
the reference isolates 67098 and 71813, were submitted to the Sequence Read Archive (https://www
.ncbi.nlm.nih.gov/sra/) of the National Center for Biotechnology Information (NCBI) under BioProject
number PRJNA632943. Genome data from isolate MC1 are available under GenBank accession number
NZ_QXPV00000000.1. Additional isolates presented in the supplemental material had their short raw
reads submitted to the European Nucleotide Archive (http://www.ebi.ac.uk/ena/) of EMBL European
Bioinformatics Institute (EBI) under the study accession numbers PRJEB12082 and PRJEB27899.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.9 MB.
FIG S2, PDF file, 0.5 MB.
FIG S3, PDF file, 0.9 MB.
FIG S4, PDF file, 0.1 MB.
FIG S5, PDF file, 0.1 MB.
TABLE S1, PDF file, 0.02 MB.
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