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Introduction: Pharmacogenomics research has concentrated on variation in genes coding
for drug metabolizing enzymes, transporters and nuclear receptors. However, variation
affecting microRNA could also play a role in drug response. This project set out to
investigate potential microRNA target sites in 11 genes and the extent of variation in the
3′-UTR of six selected genes; CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7.

Methods: Fifteen microRNA target prediction algorithms were used to identify
microRNAs predicted to regulate 11 genes. The 3′-UTR of the 6 genes which topped
the list of potential microRNA targets was sequenced in 30 black South Africans. In
addition, genetic variants within these genes were investigated for interference with
mRNA-microRNA interactions. Potential effects of observed variants were determined
using in silico prediction tools.

Results: The 11 genes coding for DMEs, transporters and nuclear receptors were
predicted to be targets of microRNAs with CYP2B6, NR1I2 (PXR), CYP3A4, and CYP1A2,
interacting with the most microRNAs. The majority of identified genetic variants were
predicted to interfere with microRNA regulation. For example, the variant, rs1054190C
in NR1I2 was predicted to result in the presence of a binding site for the microRNA
miR-1250-5p, while the variant rs1054191G was predicted to result in the absence of a
recognition site for miR-371b-3p, miR-4258 and miR-4707-3p. Fifteen of the seventeen,
novel variants occurred within microRNA target sequences.

Conclusion: The 3′-UTR harbors variation that is likely to influence regulation of specific
genes by microRNA. In silico prediction followed by functional validation could aid in
decoding the contribution of variation in the 3′-UTR, to some unexplained heritability that
affects drug response. Understanding the specific role of each microRNA may lead to
identification of markers for targeted therapy and therefore improve personalized drug
treatment.

Keywords: bioinformatics prediction, drug metabolizing enzymes, microRNA, miRSNPs, pharmacogenomics,

polymorphisms

INTRODUCTION
Drug metabolizing enzymes (DMEs), drug transporters and
nuclear receptors, play an important role in response outcomes to
therapeutically prescribed drugs. For example, the analgesic drug
codeine is dependent on CYP2D6 metabolism to the more active
morphine metabolite (Armstrong and Cozza, 2003). However,
CYP2D6 exhibits extensive genetic polymorphism resulting in
individuals being broadly classified as poor metabolizers (PMs),
extensive metabolizers (EMs), and ultrarapid metabolizers, phe-
notypes that vary across world populations. Another example is
that of the disposition of efavirenz and nevirapine used in treat-
ment of HIV/AIDS, both of which are metabolized by CYP2B6.
The genetic variants CYP2B6 c.516T, and c.983C have been linked
to high efavirenz or nevirapine plasma levels and the develop-
ment of central nervous system side effects (Marzolini et al.,

2001; Ciccacci et al., 2013; Swart et al., 2013; Vardhanabhuti
et al., 2013). In general, many pharmacogenetics studies have con-
centrated on the effects of genetic variation in exons, introns,
and promoters of pharmacogenetically relevant genes (Batt et al.,
1994; Commandeur et al., 1995; Tukey and Strassburg, 2000;
McCarver and Hines, 2002; Hayes et al., 2005; Petzinger and
Geyer, 2006; Alnouti and Klaassen, 2008; Guengerich, 2008).
However, it is now apparent that genetic variation in the 3′-UTR,
which is a target for microRNA regulation, could also play a role
in pharmacogenomics (Xu et al., 2005).

Thus, in order to get a complete picture of the pharmaco-
genetic determinants of drug response, genetic variation in the
3′-UTR region of DMEs, drug transporters and nuclear receptors,
should also be evaluated as this is the region targeted by microR-
NAs. MicroRNAs are evolutionary conserved (Lagos-Quintana
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et al., 2001) and predicted to regulate more than 30% of pro-
tein coding genes in the human genome (Yu, 2009; Breving
and Esquela-Kerscher, 2010; Shomron, 2010; Rodrigues et al.,
2011) which include genes with pharmacogenomics relevance.
MicroRNAs regulate genes post-transcriptionally by binding to
the 3′-UTR of mRNA target sequences and facilitating degrada-
tion or translational repression (Baek et al., 2008; Mishra and
Bertino, 2009; Marin and Vanicek, 2012). MicroRNAs have been
implicated in regulation of the following pharmacogenomically
relevant genes; CYP1B1 (Tsuchiya et al., 2006), CYP2E1 (Mohri
et al., 2010), CYP3A4 (Pan et al., 2009), and PXR (Takagi et al.,
2008). Pan et al. (2009) showed that microRNA miR-27b reg-
ulates expression of CYP3A4 directly, while miR-148a regulates
CYP3A4 indirectly through regulation of PXR (Takagi et al.,
2008). SULT1A1 has also been shown to be regulated directly by
miR-631 in an allele-specific manner (Yu et al., 2010). Genes cod-
ing for CYP1A2 and CYP2B6, are predicted to be regulated by
microRNAs based solely on the length of their 3′-UTRs, but these
predictions are yet to be confirmed through functional studies
(Ingelman-Sundberg et al., 2007; Ramamoorthy and Skaar, 2011;
Singh et al., 2011; Mishra, 2012).

Genetic variation that occurs either in the sequence cod-
ing for microRNAs or in the sequence targeted by microRNA
on the mRNA, is referred to as miRSNPs. MiRSNPs potentially
alter microRNA function or interfere with microRNA-mRNA
interaction (Mishra et al., 2008; Liu et al., 2012). MiRSNPs
located in the mRNA can result in the presence or absence
of microRNA target sites and to date only a few pharmacoge-
nomics studies have included genetic variation in the 3′-UTR of
pharmacogenomically-relevant genes as possible contributors to
interindividual variability observed in drug response. In order
to evaluate the role of microRNA in drug response, predic-
tion of likely microRNA target sequences should be followed by
functional validation.

There are several algorithms to predict microRNA targets and
these algorithms are designed based on a number of different
criteria (Witkos et al., 2011). To increase the precision and power
of microRNA target prediction as well as reduce false positives,
the use of a combination of prediction algorithms is advised
(Mishra and Bertino, 2009; Marin and Vanicek, 2012). Recently,
a study by Ramamoorthy and Skaar (2011) used six algorithms
to predict microRNAs that potentially target 12 major drug
metabolizing CYPs. With more than 10 algorithms available, the
challenge is which combinations or how many algorithms should
be used to predict microRNA targets. The use of a combination of
microRNA target prediction, using different features including;
sequence complementarity, target site accessibility, binding en-
ergy, and conservation of target sites, in a complementary manner
may improve sensitivity, specificity, and consistency of microRNA
target prediction (Zhang and Verbeek, 2010). In this study, we set
out to identify microRNAs predicted to regulate genes associated
with drug metabolism and disposition using 15 in silico predic-
tion algorithms that are available online to evaluate the spectrum
of microRNA target sequences in the 3′-UTR of 11 genes.
Variation in the 3′-UTR of six genes was evaluated by sequencing
resulting in the identification of microRNA SNPs (miRSNPs)
which were predicted to potentially affect microRNA binding.

METHODS
BIOINFORMATICS ANALYSIS TO PREDICT microRNA TARGET SITES IN
GENES CODING FOR DRUG METABOLIZING ENZYMES
Fifteen different web-based bioinformatics algorithms (DIANA-
microT-CDS, DIANA-microT, MicroCosm, miR2Gene,
miRanda-MirSVR, miRBRIDGE, miRSystem, miRTar,
PACCMIT, PicTar, PITA, RegRNA, RNA22, TargetScan, and
TargetSpy) that were freely-available online were used to predict
microRNA targeting (John et al., 2004; Krek et al., 2005; Griffiths-
Jones et al., 2006; Huang et al., 2006; Miranda et al., 2006; Kertesz
et al., 2007; Sturm et al., 2010; Tsang et al., 2010; Hsu et al.,
2011; Qiu et al., 2011; Lu et al., 2012; Vlachos et al., 2012)
(Supplementary Table S1). These bioinformatics algorithms were
selected to predict microRNA targeting based on a number of
different features including; sequence complementarity, target
site accessibility, binding energy, and conservation of target sites
in order to increase precision and power.

The total number of unique microRNAs were calculated for
each gene and the percentage overlap was estimated based on
the number of microRNAs predicted by at least two algorithms.
Analysis using these prediction algorithms was performed using
the most recent version and respective default settings. Eight
datasets containing microRNA expression profiles in liver tis-
sue was obtained from mimiRNA (http://mimirna.centenary.org.
au/mep/formulaire.html) (Ritchie et al., 2010) and compared to
microRNAs predicted by the different algorithms and microR-
NAs with targeting predicted to be affected by miRSNPs, to
determine overlap between predicted and functionally relevant
microRNAs.

INVESTIGATION OF GENETIC VARIANTS WITHIN 3′-UTR AND ITS
POTENTIAL EFFECTS ON microRNA TARGET SITES
After prediction of likely microRNAs targeting genes coding
for DMEs, the top six genes (with the longest 3′-UTR, most
microRNA targets as well genes of interest in our research group)
were chosen for sequencing of the 3′-UTR among 30 Bantu-
speaking South Africans, and these genes included CYP1A2,
CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7. The assump-
tion for selection of the six genes was based on the prediction that
a gene with a longer 3′-UTR is more likely to be regulated by a
larger number of microRNAs.

STUDY PARTICIPANTS
Participants were South African HIV/AIDS patients receiving
efavirenz-based treatment for at least 6 months and recruited to
participate in pharmacogenomics research. All subjects were of
Bantu origin from Gauteng Province, South Africa. Participants
gave information on their ethnicity, age, health status (including
self-reported adherence to treatment or pill counts), dietary, and
smoking habits. Ethics and study approval (HREC REF 103/2009)
was given by the University of Cape Town, Faculty of Health
Sciences Research Ethics Committee. Written informed consent
was obtained from participants as part of a study focussing on
pharmacogenetics of HIV therapy. Patients were mostly female
(90%) and had an average age of 42 years. The research was per-
formed in accordance with guidelines of the Helsinki Declaration
of 2008.
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DNA ISOLATION AND SEQUENCING
DNA was isolated from a 5 mL blood sample using the method
adapted from Gustafson et al. (1987) or the GenEluteTM Blood
Genomic DNA kit (Sigma-Aldrich, St Louis, Missouri, USA).
Primers for each 3′-UTR were designed to flank the 3′-UTR
and were specific to the gene of interest (designed by aligning
the gene sequence with that of pseudogenes to select a region
that is unique to the gene of interest). NCBI Primer-BLAST
(Altschul et al., 1990) (http://www.ncbi.nlm.nih.gov/tools/
primer-blast/), and IDT Oligo Analyzer from Integrated DNA
Technologies (http://www.idtdna.com/analyzer/Applications/
OligoAnalyzer/) were used for primer design while synthesis was
done by Integrated DNA Technologies, Inc. (Coralville, Iowa,
USA). Primers for each gene’s 3′-UTR were as follows: CYP1A2
(two sets), F1: 5′-CGACCTGACCCCCATCTAC-3′/R2: 5′-AAGA
ATGTAAGTTAGGCTGGATGTG-3′ and F2: 5′-CGCAGGTT
CAAGCAATCC-3′/R1: 5′-AGGACTCAAGCACCAAGAGC-3′;
CYP2B6 (two sets), F1: 5′-GTGGTGCCATCTCTGTCCA-3′/R1:
5′-AGAGTTGGCATTGAGGTGAGAG-3′ and F2: 5′-GGCA
AAATACCCCCAACATA-3′/R2: 5′-GCCTGTGATACCAGCTC
CTC-3′; CYP2D6, F: 5′-GCCACCATGGTGTCTTTGCTTTCC
TGG-3′/R: 5′-ACTGAGCCCTGGGAGGTAGGTAG-3′; CYP3A4,
F: 5′-CACTGAAGGCGTGTCTCACTCACT-3′/R: 5′-CTTC
TCTACCTTAATGTGAGGGCACCA-3′; NR1I2, F: 5′-CCAGGAC
ATACACCCCTTTG-3′/R: 5′-TATTTCCACACCCCCACATT-
3′; and UGT2B7, F: 5′-AGAGAGGAGTCTTGCCGATG-3′/R:
5′-GAGAATAAAGTCAACCAGATGT-3′, respectively.

PCR amplification was performed using the following condi-
tions: initial denaturation at 94◦C for 3 min, followed by 40 cycles
of denaturation at 94◦C for 30 s, annealing at 61◦C (CYP1A2
and CYP2B6), 60◦C (CYP3A4 and NR1I2), 58◦C (UGT2B7), or
70◦C (CYP2D6) for 30 s, primer extension at 72◦C for 2 min and
final extension at 72◦C for 10 min. A “T100™ Thermal cycler”
(Bio-Rad, Hercules, USA) was used and the PCR reaction con-
tained the following reagents; 50–100 ng genomic DNA, 1X Green
GoTaq Reaction Buffer (Promega Corporation, Madison, USA),
0.2 mM of each of the deoxynucleotide triphosphates (dNTPs)
(Bioline, London, UK), 1.5 mM MgCl2 (except for CYP1A2 frag-
ment 1 where 2 mM MgCl2 was used), 40 pmol of the forward and
reverse primers (Integrated DNA Technologies, Inc., Coralville,
USA) and 2U of GoTaq DNA Polymerase (Promega Corporation,
Madison, USA).

PCR product was cleaned using FastAP (Fermentas Life
Sciences, Burlington, Canada) and ExoI (Fermentas Life Sciences,
Burlington, Canada). The reaction conditions were as reported
previously (Swart et al., 2013). The cleaned PCR product was
sequenced on a “GeneAmp® PCR System 9700 version 3.08
(Applied Biosystems, Carlsbad, CA, USA) and capillary elec-
trophoresis was performed on an ABI3130xl Genetic Analyzer
(Applied Biosystems, Carlsbad, CA, USA). Analysis of the
sequences was performed using DNAstar Lasergene Sequence
Alignment Editor V.10 (DNASTAR, Inc., Madison, WI, USA).

BIOINFORMATICS PREDICTION OF POTENTIAL EFFECTS OF SNPs
LOCATED IN THE 3′-UTR
The PolymiRTS database 3.0 (Bao et al., 2007; Ziebarth et al.,
2012; Bhattacharya et al., 2014) (http://compbio.uthsc.edu/

miRSNP/) was used to predict if SNPs located in the 3′-UTR
of genes would affect mRNA-microRNA interaction. A search in
the database was performed using the GeneID obtained from the
NCBI database (http://www.ncbi.nlm.nih.gov/) and default set-
tings. Pre-computed context+ scores were included in a recent
update of TargetScan as a measure of predicted efficacy of
microRNA targeting and down regulation of the target mRNA
(log2 fold change in mRNA abundance after microRNA transfec-
tion assays) (Grimson et al., 2007) by summing up contributions
made by individual sites using information on the site-type
contribution, 3′-pairing contribution, local AU contribution,
position contribution, target-site abundance contribution and
seed-pairing stability contribution. The PolymiRTS database use
the context+ scores from TargetScan to calculate the difference
in context+ scores between the reference and derived alleles for
each SNP. Differences in context+ scores caused by a SNP in the
microRNA target site have been included in this study and a more
negative difference in context+ scores indicates an increased like-
lihood that the target sites are either absent or present due to the
variant allele, aiding in prioritizing miRSNPs with potential effect
instead of showing miRSNPs that significantly alter microRNA
binding (Bhattacharya et al., 2014).

To assess the potential effect of novel SNPs, the mrSNP soft-
ware was used by selecting assembly hg19 of the human genome,
using default cut-offs and inserting the chromosome position
and two alleles. The prediction method applied is adapted from
Diana-microT (Maragkakis et al., 2009; Deveci et al., 2014)
(http://mrsnp.osu.edu/). Prediction is based on the ratio of bind-
ing energy and maximum binding energy of a microRNA (maxi-
mum MFE in Supplementary Table S3). The identified SNPs need
to be further characterized in terms of their differential tissue
expression as well as strength in achieving the predicted effects.

COMPARISON OF 3′-UTR GENETIC VARIATION IN DIFFERENT
POPULATIONS
Minor allele frequencies (MAF) for SNPs in the 3′-UTR of
the 6 genes sequenced among the 30 black South Africans,
were compared to those of other world population groups,
obtained from the dbSNP database (http://www.ncbi.nlm.nih.

gov/SNP/), the HapMap project (http://hapmap.ncbi.nlm.nih.

gov/), and the 1000 genomes project (http://www.1000genomes.
org/). Statistical analyses were performed using the Graphpad
Prism statistical program (Version 5, GraphPad Software Inc., San
Diego, CA). Pearson’s χ2-test and Fisher’s exact test were used to
examine differences between the population groups with regards
to distribution of minor alleles. For all statistical tests significance
was defined as P < 0.05. The novel SNPs identified in the 3′-UTR
of the six genes could not be compared to other world population
groups as they have not been reported before.

RESULTS
microRNAs PREDICTED TO TARGET
PHARMACOGENOMICALLY-RELEVANT GENES
CYP1A2, CYP2B6, CYP2D6, CYP3A4, CYP3A5, GSTP1, UGT1A1,
UGT2B7, SULT1A1, NR1I2, and NR1I3 were all predicted to
be targets of microRNAs. The genes with the highest number
of hits for microRNA target sites were CYP2B6, NR1I2 (PXR),
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CYP1A2, and CYP3A4, respectively (Table 1). CYP2B6, CYP1A2,
and CYP3A4 were also predicted to be targets of many microRNAs
by Ramamoorthy and Skaar (2011). Extensive variability in the
number of microRNAs predicted by each algorithm was observed
as expected. For example, the program miRTar estimated only
four microRNA targets in CYP1A2, whereas the program PITA,
estimated 78 microRNA targets in the same gene. The algo-
rithm TargetScan predicted the highest number of microRNA
target sites while the algorithms, PICTAR, and miRTar predicted
the least number of target sites. The overlap in the number of
microRNAs predicted by 15 algorithms ranged from 14 to 30%
and the four genes predicted to be targets of the highest num-
ber of microRNAs (CYP1A2, CYP2B6, CYP3A4, and NR1I2) had
at least 93% of their microRNAs predicted by seven algorithms
(miR2Gene—DIANA-microT v.3, miRanda-MirSVR, miRSys-
tem, PACCMIT, PITA, TargetScan, and TargetSpy). The spe-
cific microRNAs predicted to target CYP1A2, CYP2B6, CYP3A4,
and NR1I2 by most algorithms are miR-542-3p (9 algorithms),
miR-542-3p (10 algorithms), miR-548c-5p (11 algorithms), and
miR-133a (9 algorithms), respectively (Table 2). The microRNAs
predicted to target the most genes were miR-216a, miR-548a,
miR-508-5p, miR-510, miR-671-5p, miR-142-3p, miR-608, miR-
548b-5p, miR-548c-5p, miR-548d-5p, miR-548i, miR-548j, miR-
514, miR-548a-3p, miR-548a-5p, miR-548h, miR-152, miR-148b,
miR-214-3p, miR-520h, miR-520g, miR-330-5p, and miR-326.
Comparison between the number of microRNAs predicted by the
15 algorithms and microRNAs expressed in liver tissue, showed
an overlap of about 16% (240 microRNAs both expressed and
predicted/1537 predicted microRNAs). Additionally, the length
of the 3′-UTR correlated significantly (r2 = 0.764, P-value =
0.0062) with the number of microRNAs predicted to target the
specific gene. The correlation of number of microRNAs predicted
to target and the length of the 3′-UTR is similar to previous
reports (Ramamoorthy and Skaar, 2011).

GENETIC VARIANTS IDENTIFIED BY SEQUENCING OF THE 3′-UTR OF
GENES OF INTEREST
Based on the total microRNAs predicted to target the mRNA,
the top four genes CYP1A2, CYP2B6, CYP3A4, and NR1I2 were
selected for further analysis. CYP2D6 and UGT2B7 were included
as they form part of our ongoing pharmacogenomics studies. In
total six genes had their 3′-UTR sequenced among 30 individuals.
A total of 52 genetic variants were identified, including 17 novel
and 35 previously reported SNPs. Novel SNPs identified, despite
comprehensive re-sequencing of various population groups, are
potentially rare and population specific or this may be an indi-
cation of the exclusion of populations from this region in the
re-sequencing projects. CYP2B6 had the most genetic variants in
the 3′-UTR accounting for 26 of the 52. No SNPs were identi-
fied within the 75bp 3′-UTR of CYP2D6 (Table 3). Forty of the
52 genetic variants were predicted to potentially affect regulation
of 212 microRNAs by creating or abolishing microRNA target
sites depending on which of the variants is the ancestral vari-
ant (Supplementary Table S2). Based on predictions by mrSNP,
15 of the 17 novel SNPs were located within microRNA target
sites and potentially result in the creation of microRNA target
sites (Supplementary Table S3). Comparison between the number

of microRNAs potentially affected by miRSNPs and microR-
NAs expressed in liver tissue, showed an overlap of about 3%
(10 microRNAs both expressed and predicted to potentially be
affected by miRSNPs/363 expressed microRNAs).

COMPARISON OF MINOR ALLELE FREQUENCIES BETWEEN DIFFERENT
POPULATIONS
Of the 52 variants identified in sequencing the 3′-UTR of selected
genes among South African black participants, 18 SNPs which
also had information for other population groups (i.e., through
the HapMap and 1000 genomes projects) were compared to
other African groups, African-Americans, Asian, and European
population groups (Table 4). Statistically significant differences
were observed when the South African group was compared to
Asian, Caucasian and other Africa groups. For example, NR1I2
rs1054190T allele occurring at a frequency of 0.18 in the South
African group, was absent among Asians, significantly lower
among another African group the Yoruba (0.02), yet compara-
ble to that reported among Caucasians (0.15). For example, the
variant, rs1054190C in NR1I2 was predicted to result in the pres-
ence of a binding site for the microRNA miR-1250-5p, while the
variant rs1054191G was predicted to result in the absence of a
recognition site for miR-371b-3p, miR-4258, and miR-4707-3p.
A second SNP in NR1I2, rs3732359A allele showed no significant
differences when the South African group (0.56) was compared
to Asians (0.47), but showed statistically significant differences
when compared to the Caucasians (0.84) and Yoruba (0.24).
As expected, differences in allele frequencies of miRSNPs were
observed when comparing the South African Bantu population
group to both Caucasian and Asian populations as highlighted by
the CYP2B6 rs28969420T allele (20, 4, 3%, respectively).

DISCUSSION
microRNAs PREDICTED TO TARGET GENES CODING FOR DRUG
METABOLIZING ENZYMES
Pharmacogenomics studies have focussed largely on the effects of
genetic variation in genes coding for DMEs (Ingelman-Sundberg
et al., 2007) and very few have investigated the role of vari-
ation at the level of microRNA target sites. MicroRNAs affect
global gene expression, thus, including miRSNPs in pharma-
cogenomic tests, could potentially explain some of the genetics-
associated differences in drug response (Mishra and Bertino,
2009). Computational prediction analysis carried out in this study
has highlighted microRNAs that regulate some of the genes with
pharmacogenomics relevance, further confirming observations
by Ramamoorthy and Skaar (2011) with respect to CYP1A2,
CYP2B6, and CYP3A4.

At least 10% more microRNAs were predicted to target DMEs,
for example the genes CYP1A2, CYP2B6, CYP2D6, CYP3A4, and
CYP3A5 were reported to be targeted by 436, 515, 196, 429, and
176 potential microRNAs using the 15 prediction algorithms,
compared to 386, 416, 40, 333, and 32 using six algorithms
as reported by Ramamoorthy and Skaar (2011). In addition,
the number of microRNAs predicted using TargetScan v.6.2
in the current study were more than double those reported
by Ramamoorthy, using an earlier version (Ramamoorthy and
Skaar, 2011). The higher number of microRNAs predicted, is
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Table 3 | Genetic variation identified in the 3′-UTR of CYP1A2,

CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7 after sequencing of

30 black South Africans.

Gene NCBI reference

sequence

Variation

CYP1A2 NC_000015.10 Known:
rs11636419, rs56141902, rs45564134,
rs34002060, rs45599945, rs17861162
Novel:
g.74755658G>A, g.74756006G>A,
g.74756039T>A, g.74756176G>A,
g.74756438T>C

CYP2B6 NC_000019.10 Known:
rs28399502, rs3181842, rs138892132,
rs7246465, rs148726498, rs4803420,
rs35742808„ rs28969420, rs35462975,
rs28969421, rs1038376, rs3211398, rs707265,
rs70950385, rs1042389
Novel:
g.41016968T>A, g.41017103C>T,
g.41017242T>C, g.41017290A>C,
g.41017450A>T, g.41017478C>T,
g.41017486C>T, g.41017525A>T,
g.41017749C>A, g.41017763C>A,
g.41017847A>G

CYP2D6 NC_000022.11 None

CYP3A4 NC_000007.14 Known:
rs28988604, rs33972239
Novel:
g.99784127T>C

NR1I2 NC_000003.12 Known:
rs3732358, rs3732359, rs10511395,
rs3732360, rs1054190, rs6438550, rs1054191,
rs3814057, rs3814058

UGT2B7 NC_000004.12 Known:
rs6851533, rs6600893, rs150516790

rs# of SNPs are according to annotation in dbSNP.

potentially a result of using newer versions of the algorithms
compared to those used by Ramamoorthy and Skaar (2011).
The use of more algorithms was justified by the low percent-
age (14–30%) overlap between microRNAs predicted by two
or more algorithms. However, the question still remains as
to what is the appropriate minimum number or combination
of algorithms to pick most microRNAs. MicroRNA predic-
tion using 7 of the 15 algorithms (miR2Gene—DIANA-microT
v.3, miRanda-MirSVR, miRSystem, PACCMIT, PITA, TargetScan,
and TargetSpy), showed on average 83% (range 43–98%) of
all unique microRNAs, pointing toward the major contribution
of these seven algorithms (especially TargetScan) compared to
the remaining eight algorithms. The appropriate combination of
algorithms will only be apparent after confirmatory functional
validation of the predicted binding targets.

A few microRNAs have been experimentally shown to regu-
late expression of DMEs. For example, Pan et al. (2009) reported
that CYP3A4 is regulated by miR-27b directly, and by miR-
148a indirectly through the regulation of PXR (Takagi et al.,
2008). This observation is confirmed by our prediction anal-
ysis as five algorithms predicted miR-27b to target CYP3A4,
while four algorithms predicted miR-148a to target NR1I2 (cod-
ing for PXR). Two microRNAs namely; miR-590 and miR-27a
have been associated with either targeting CYP2B6 (miR-590)
or CYP3A4 (miR-27a) (Ramamoorthy et al., 2013). The find-
ing of CYP2B6, CYP3A4, and UGT1A1 being targets of miR-590,
miR-27a, miR-491-3p, respectively (Dluzen et al., 2014), is sup-
ported by our prediction analysis. However, our observations on
SULT1A1 mRNA are contradictory to those of Yu et al. (2010),
who reported targeting by miR-631, yet none of the 15 computa-
tional algorithms picked it. MiR-26b-5p is reportedly associated
with CYP2D6 expression (Gennarino et al., 2009) and miR-335-
5p with CYP3A5, but none of the two microRNAs was picked
by the 15 algorithms used in the current prediction analysis. It
appears that the prediction algorithms might have inherent weak-
nesses, for example, GSTP1 has been experimentally validated
to be affected by miR-513a-3p, miR-133a-3p, miR-26b-5p, and
miR-92a-3p, but only miR-133a-3p was picked by the use of 15
algorithms. It is important to note that computational prediction
algorithms are thought to predict microRNA-mRNA targeting
with a fraction of false positives estimated at 31% and it is, thus,
of importance to prioritize microRNAs for further studies (Lewis
et al., 2003). The overlap between microRNAs predicted by the 15
algorithms and microRNAs potentially affected by miRSNPs with
microRNAs expressed in liver tissue is very low. Prediction algo-
rithms use different criteria to rank microRNAs that potentially
target mRNA of a gene of interest, and are likely to be more lenient
in the prediction as it is mostly based on sequence complemen-
tarity, target site accessibility, binding energy and conservation of
target sites. Also on the other hand, expression is dependent on
many other factors including export and tissues involved. Further
comprehensive microRNA expression profiling in liver as well as
extrahepatic tissues would contribute toward identifying microR-
NAs that are potentially involved in regulation of DMEs. There
is also a strong need for experimental validation of predicted
microRNA targets.

GENETIC VARIANTS IDENTIFIED AFTER SEQUENCING THE 3′-UTR AND
COMPARISON OF MINOR ALLELE FREQUENCIES IN THE SOUTH
AFRICAN GROUP TO OTHER WORLD POPULATION GROUPS
A total of 52 SNPs were identified within the 3′-UTR of CYP1A2,
CYP2B6, CYP3A4, NR1I2, and UGT2B7 including 17 novel SNPs,
which is an indication of the extensive degree of genetic diversity
characteristic to African and specifically South African popu-
lations (Matimba et al., 2009; Warnich et al., 2011; Dandara
et al., 2014). SNPs (miRSNPs) identified in the South African
group and already available in the PolymiRTS database, were
predicted to alter the microRNA targeting of more than 200
microRNAs (Supplementary Table S2). As expected, differences
in allele frequencies of miRSNPs were observed when compar-
ing the South African Bantu population group to both Caucasian
and Asian populations as highlighted by the CYP2B6 rs28969420T
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allele (20% compared to 4 and 3%, respectively) and the NR1I2
rs3732359A-allele (59% compared to 84 and 47%, respectively).
Differences in the frequency of miRSNPs among population
groups as highlighted by the NR1I2 rs37372359A allele, which
results in the presence of a target site for several microRNAs
including miR-362-5p, miR-500b-5p, and miR-501-5p, could
translate into population differences in drug disposition and
response. These qualitative and quantitative differences in allele
frequencies of SNPs further support previous studies arguing
against directly inferring effects of therapeutic drugs from one
population to another (Swart et al., 2012a,b,c; Dandara et al.,
2014). The 3′-UTR variation identified in the current study
contributes to further genetic characterizing of South Africans.
However, the observed variation should be functionally validated
in order to deduce its contribution to the observed variability in
drug response.

THERAPEUTIC POTENTIAL OF microRNAs
Response to therapeutic treatment is a complex phenotype deter-
mined by genetic variation in DMEs, nuclear receptors, drug
transporters, miRSNPs, and pharmacoepigenetics (Zhang et al.,
2010). MicroRNAs have the potential to be used as therapeutic
targets through their ability to regulate expression of pharma-
cogenomically relevant genes (Singh et al., 2011; Van Rooij et al.,
2012). Creating a microRNA recognition site leads to down reg-
ulation of mRNA expression of specific genes, while disruption
of a site causes loss of down regulation of mRNA expression
(Mishra and Bertino, 2009).Caution should however be exer-
cised when developing microRNA-based therapeutics because of
unpredictable off-target effects due to microRNAs having broad
mRNA targets (Singh et al., 2011). A study by Mishra et al.
(2007) demonstrated the effect of a SNP near the miR-24 bind-
ing site in the 3′-UTR of the dihydrofolate reductase (DHFR)
gene, that interferes with miR-24 binding and resulting in DHFR
overexpression and methotrexate resistance. Resistance to the
cancer therapeutics cisplatin and 5-fluorouracil has been linked
to induced miR-148a expression and targeting of the gene KIT
(Hummel et al., 2011). MiR-148a has been shown by Takagi
et al. (2008) to regulate PXR and affect downstream expression
of CYP3A4, resulting in reduced drug metabolism. Presence of
the NR1I2 rs1054190T allele results in the absence of a miR-148a
target site, potentially leading to increased CYP3A4 expression.
It is important that future studies investigate the functional
significance of microRNAs and miRSNPs. The recently devel-
oped Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) technology could be used to create knockout cell lines
for specific microRNAs to validate their role in targeting of genes
with pharmacogenomics relevance (Dandara et al., 2014).

CONCLUSION
The integration of microRNA variation and epigenetics into phar-
macogenomics studies may provide additional insights into the
mechanisms of drug response and advance individualized ther-
apy (Welsh et al., 2009; Zhang and Dolan, 2010). Use of in silico
methods should be complimented by functional validation to
confirm the predicted effects. It is therefore possible that some of
the observed non-reproducibility of pharmacogenomics studies

could partially be due to the unexplained variation in the 3′-
UTR, thus, functional validation of microRNA targets should be
another area of research to advance pharmacogenomics.
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