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In this review, we will discuss zebrafish as a model for studying mechanisms of human fetal
alcohol spectrum disorders (FASDs). We will overview the studies on FASDs so far and will
discuss with specific focus on themechanisms by which alcohol alters cell migration during
the early embryogenesis including blastula, gastrula, and organogenesis stages which
later cause morphological defects in the brain and other tissues. FASDs are caused by an
elevated alcohol level in the pregnant mother’s body. The symptoms of FASDs include
microcephaly, holoprosencephaly, craniofacial abnormalities, and cardiac defects with
birth defect in severe cases, and in milder cases, the symptoms lead to developmental and
learning disabilities. The transparent zebrafish embryo offers an ideal model system to
investigate the genetic, cellular, and organismal responses to alcohol. In the zebrafish, the
effects of alcohol were observed in many places during the embryo development from the
stem cell gene expression at the blastula/gastrula stage, gastrulation cell movement,
morphogenesis of the central nervous system, and neuronal development. The data
revealed that ethanol suppresses convergence, extension, and epiboly cell movement at
the gastrula stage and cause the failure of normal neural plate formation. Subsequently,
other cell movements including neurulation, eye field morphogenesis, and neural crest
migration are also suppressed, leading to the malformation of the brain and spinal cord,
including microcephaly, cyclopia, spinal bifida, and craniofacial abnormalities. The testing
cell migration in zebrafish would provide convenient biomarkers for the toxicity of alcohol
and other related chemicals, and investigate themolecular link between the target signaling
pathways, following brain development.
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INTRODUCTION

Ethyl alcohol (ethanol) is the most widely used and consumed drug in humans’ daily lives. Alcohol
addiction became common in 1700s when the increased distillation of potent alcohol made vast
quantities readily accessible to the masses (Lovely et al., 2016). During that time, some noted that the
offspring of people who drank substantial quantities of distilled alcohol was sometimes small and
weak, with a higher child mortality rate. Consequently, the research field and study of fetal alcohol
spectrum disorder (FASD) syndrome were commenced. According to a survey, about 9.8% of
pregnant women consume alcohol (ethanol) globally (Popova et al., 2019). The fetus of these women
face an increased risk of lifelong fetal alcohol spectrum disorder (FASD) complications. FASD
phenotypes are quite broad, and over 400 diseases can co-occur in FASD patients (Popova et al.,
2016).
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Alcohol poses a broad range of irreversible side effects on the
human fetus. The maternal consumption of alcohol is considered
to have a highly teratogenic effect on the fetus. No studies have
reported a safe time period and quantity for alcohol intake during
pregnancy. Its consumption has been widely reported to be
teratogenic in all three trimesters of pregnancy. The higher
consumption of alcohol during the first trimester is associated
with brain and facial anomalies, whereas alcohol consumption
during the second trimester can cause sponataneous abortions,
and alcohol consumption during the third trimester is linked with
reduced weight, brain volume, and height. Therefore, it could be
concluded that the fetal exposure to alcohol at any point of
pregnancy can cause irreversible damage and potentially lead to
fetal alcohol spectrum disorders (FASD) and their related
neurobehavioral deficiencies including the developmental and
learning disorders (Easey et al., 2019; Popova et al., 2019; Reid
et al., 2019). Women older than 30 years or with genetically slow
alcohol metabolism are more likely to produce infants with FASD
complications. The detrimental effects of alcohol on the CNS
(central nervous system) are generally considered to be
irreparable as alcohol not only decreases the volume of the
brain but also damages the structures in the brain. Several
researchers have reported smaller volumes of gray and white
matter in the brains of individuals prenatally exposed to alcohol
than controls (Bjorkquist et al., 2010; Nardelli et al., 2011;
Roussotte et al., 2012). Prenatal exposure to alcohol affects the
structure of the corpus callosum that eventually contains a
smaller volume of white matter than normal (Lebel et al.,
2011). Diffusion tensor imaging studies have also revealed
disrupted white matter integrity and its relation to the
behavior of individuals with prenatal exposure to alcohol
(Riley et al., 2011). FASDs can cause craniofacial abnormalities
and impairment of the central nervous system (CNS) production
(Carvan et al., 2004; Kelly et al., 2009). The physical facial features
that can indicate the FASD symptoms in an individual include a
smooth philtrum, short palpebral fissures, and a thin vermillion
border. Structural defects in the ocular, renal, cardiovascular, and
auditory systems can also occur in children with prenatal
exposure to alcohol. Microcephaly and prenatal or postnatal
retarded growth is also quite common among children who
were exposed to alcohol at birth. Consequently, the postnatal
developmental and mental disorder are induced (Popova et al.,
2019). Due to the apparent limitations of human trials, most
research on FASD presently relies on translational animal models
to discover the toxicity of ethanol in embryonic and fetal
development, including rodent and zebrafish (Pinheiro-da-
Silva and Luchiari, 2021). Rodent models, such as mice, have
become an essential tool for investigating the effects of alcohol on
all levels of development, especially as studies in humans and
rodents show that blood alcohol content (BAC) has a similar
influence on behavior across the species (Driscoll et al., 1990). As
seen in humans, microcephaly and neuronal loss effect were
demonstrated on the lab mice with some variation depending on
strains (Bonthius et al., 2002; Ogawa et al., 2005; de Licona et al.,
2009). Mice have been widely used as a model for FASD, however
there are some disadvantages (Patten et al., 2014). Firstly, as mice
embryos develop internally, it’s difficult to observe the early

stages of development. This also makes live embryo analysis
challenging. In addition, when using mammals, it is more difficult
to determine the drug dosage and duration of exposure that will
result in specific phenotypes. This is due to the mother’s
metabolic processes needing to be considered and that the
drug’s effects can only be detected after delivery. Besides,
alcohol and drug testing are intrusive and may create stress to
the mother, which might affect the findings (Pinheiro-da-Silva
and Luchiari, 2021).

As an alternative model, zebrafish have also been used to
study. Embryo development in normal and disease conditions
due to their high fertility, size, and external development of the
transparent embryo, which can be visualized easily. These
features of zebrafish can be crucial for defining key times of
ethanol exposure and allowing easy analyses of tissue
morphogenesis, cell movement, and gene expression (Bilotta
et al., 2002). Recent work from zebrafish revealed that ethanol
can affect the early development of embryos in cell fate
specification and cell migration at the gastrula stage, far before
the stage of brain and craniofacial development and consequently
cause the severe symptom of FASD at later stages of embryos
(Blader and Strähle, 1998; Shan et al., 2015; Yelin et al., 2005;
Zhang et al., 2010).

ZEBRAFISH AS A MODEL FOR STUDYING
EMBRYONIC BRAIN DEVELOPMENT

The zebrafish brain development initiates from the process of
neural induction during the gastrula stage of the embryo. At
this stage, two neural inducers represented by chordin and
fibroblast growth factor (FGF) emanate from the dorsal
organizer and marginal mesoderm, inducing the fate of the
central nervous system (CNS) in the dorsal- and ventral-
vegetal ectoderm, respectively (Kudoh et al., 2002). At the
same time, gastrula cell movement occurs, changing the
location of progenitors for the brain and spinal cord, and
organizing the neural ectoderm to form the future neural plate
arranged along the dorsal midline (Kudoh et al., 2004). The cell
movements in gastrulation in zebrafish are categorized as
convergence, extension, and epiboly movements
(Figure 1B). Convergence is a cell movement by which
laterally located cells move toward the dorsal axis. By
extension, cells translocate the position along the animal
pole to the vegetal pole (future anterior to posterior) axis,
facilitating the elongation of the structures, including the
neural plate and axial mesoderm. Besides these movements,
there is an additional cell movement, epiboly. Epiboly is a
critical cell movement during the gastrulation stage of fish
embryos characterized by the formation and migration of
multilayers of cells. The significant steps during epiboly
include expanding enveloping and yolk syncytial layers, and
cell re-arrangement between these two layers to thin the
blastoderm and enveloping layer (e.g., Takesono et al.,
2012). Epiboly cell movement occurs in all three germ
layers (ectoderm, mesoderm, and endoderm), enveloping
layer, and the yolk syncytial layer (Roszko et al., 2009). By
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combination of these 3 cell movements, cells at the gastrula are
rearranged to locate to the final destination along the anterior
brain to the posterior spinal cord.

When the gastrulation is complete, the newly formed neural
plate is transformed to the neural tube by the process of
neurulation, folding, and intercalation neural cell movement
(Araya et al., 2016) (Figure 1C). At the same time, the eye
field is formed at the anterior end of the neural plate, but it
splits and migrates laterally to form two eyes (Figure 1C). This
movement is induced and regulated by the morphogen, Sonic
hedgehog (Shh), emanating from the underlying mesoderm
(Ekker et al., 1995). Recent research works using zebrafish and
other models revealed many of these processes are affected by
ethanol, causing severe defects in the following development of
the CNS. The details will be discussed in the following sections.

Toxicity of Ethanol in Gastrulation
It has been shown in zebrafish that ethanol alters the gene
expression and cell movement during the blastula stage and
gastrula stage (Sarmah et al., 2020). Early ethanol exposure in
zebrafish can severely affect gastrulation and epiboly cell
movements (Blader and Strähle, 1998; Yelin et al., 2005;
Zhang et al., 2010).

Sarmah et al., 2020 reported that the gene expression is already
different before the gastrula stage in the ethanol-treated embryos

they found that expression of sox2, which is a marker for stem
cells and neural progenitor cells, is reduced in the ethanol-treated
blastula stage embryos, leading to a significant delay in the
epiboly at eight hpf. Injection of sox2 mRNA rescued the
epiboly delay caused by the ethanol treatment, suggesting one
of the key mechanisms of ethanol toxicity is suppression of stem
cell factors such as sox2.

Blader and Strahle reported that ethanol exposure at the
gastrula stage suppressed the migration of the chordal
mesoderm, prechordal plate, causing failure of eye field
separation and the cyclopia (Blader and Strähle, 1998). Zhang
et al. (2010) showed that ethanol inhibited epiboly and
convergence extension in the zebrafish embryos that are
accompanied with gene expression changes: they reported that
ethanol exposure altered gene expressions at the early gastrula stage
that resulted in a scattered expression pattern of chordin, wnt11,
and eve1, and delayed themigration of gsc-positive prechordal plate
cells. The result indicates that the influence of ethanol on the
gastrula cell movement is not restricted to one tissue but rather
broadly affects the multiple cell fates and movement including the
neural ectoderm and underlying mesoderm.

Sarmah et al. (2020) also found that the dorsal forerunner cells
were closely linked to the germ ring in controls but significantly
dissociated from the germ band after ethanol treatment of
embryos, suggesting that there are differential sensitivities to

FIGURE 1 | Model suggesting multiple targets of ethanol which affect cell differentiation, cell movement, and morphogenesis during different stages in the early
embryo development. The diagram shows zebrafish embryos in normal development and compromised development in the presence of ethanol. At the onset of the
gastrula stage [shield stage, (A)], the gene expressions (e.g., sox2 crucial for stem cells and CNS development) are suppressed by ethanol (downward arrow). During
gastrulation (B), ethanol affects the cell movement of convergence (Con, red arrows), extension (Ext, green arrows), and epiboly (Epi, yellow arrows). Smaller arrows
in the ethanol-exposed embryo indicate the reduced distance of these cell movements. Subsequently, during neurulation (C), ethanol affects the neurulation cell
movement (Neu, pink arrows), by which the flat neural plate cells move to the midline and form a neutral tube. Reduced distance of the neurulation cell movement (pink
arrows) causes incomplete closure of the brain and spinal cord. At the neurulation stages, cell movement also occurs in the eye field and neural crest. The single eye field
(Eye) moves to the left and right, separating and forming two eyes. Neural crest cells which are derived from the side of the neural plate migrate anteriorly and form
craniofacial structures. These eye field and neural crest cell movement (purple and light blue arrows, respectively) are also suppressed by alcohol, causing reduction of
the distance of two eyes and craniofacial malformation. At the neurogenesis stage (D), the number of neurons (purple dots) is reduced by ethanol, and axon growth is
perturbed.
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ethanol in these tissues. It has been reported that ethanol also
disrupts the microtubule cytoskeleton of the yolk syncytial layer,
causing the suppressed microtubule filament formation, which is
important for epiboly movement (Sarmah et al., 2020).
Contractile actomyosin rings are involved in spreading of
enveloping cell layer over the yolk cell during gastrulation.
Ethanol-treated cells showed lamellipodia extension, which is a
flattened extension of the actin filament in all directions, and cells
in ethanol-treated embryos showed abnormal trajectories of
animal and vegetal pole (Sarmah et al., 2013). The EVL cells
in ethanol-treated embryos were round and not properly aligned,
whereas in controls, these cells were elongated and aligned. High
magnification images of stained control and ethanol-treated
embryos revealed that only a few YSL nuclei in ethanol-
treated embryos proceeded beyond the EVL, whereas all YSL
nuclei in controls proceeded beyond EVL. Sarmah et al., 2013
evaluated cytoskeletal distribution and cell shapes by nuclear
staining and actin. They found that actin-cytoskeleton associated
with the enveloping layer was similar to control embryos at 90%
epiboly. The data suggest that disruption of microtubule may
alter cell polarity of the actin-mediated lamellipodia. If so, the key
target of ethanol is possibly the microtubule rather than the actin
cytoskeleton.

Ethanol also reduces the cell adhesion activity and cell
directional movements during gastrulation. Cell movement at
the gastrula stage is regulated by cell adhesion molecules such as
Protocadherin 18a (pcdh18a) (Aamar and Dawid, 2008) and
E-cadherin (Morita and Heisenberg, 2013). Sarmah et al., 2013
reported that ethanol exposure changed the distribution of
E-cadherin, and it was redistributed into cytoplasmic
aggregates in blastomeres and extraembryonic yolk cells. They
further conducted the microarray analysis and showed that the
pcdh18a expression was significantly reduced after the ethanol
exposure. One possible epistatic mechanism might be that
ethanol suppresses pcdh18a, causing the reduction of cell
adhesion, altering protein localization of E-cadherin, and may
cause depolymerization of the microtubule.

Toxicity of Ethanol in CNS Morphogenesis
As discussed above, Blader and Strahle (1998) observed that the
short exposure of 2.4% ethanol (dome to 30% epiboly) resulted in
disrupted Wnt/PCP signaling resulting in the delay of anterior
migration of the gsc-positive prechordal mesoderm. Prechordal
mesoderm expresses Shh and split eye field to form two eyes.
Therefore, the delay of the migration causes fused eyes and
Cyclops phenotypes. The exposure of 3% ethanol for the same
period resulted in a split body axis that is often linked with
holoprosencephaly and cyclopia.

The ethanol exposure during zebrafish embryogenesis can also
lead to morphological malformations. The reduction of eye
diameter, body length, and pericardial edema has been
reported in zebrafish embryos after the ethanol exposure (Joya
et al., 2014), resulting in a significantly reduced eye size at 2.5%
ethanol Zhang et al. (2013) have also presented that exposure to
0.5% ethanol can disrupt the mid-hindbrain boundary. Ethanol-
induced defects in gastrulation can lead to the growth retardation
of zebrafish. A disruption in the inner ear of embryos has been

reported after treatment with 2% ethanol that may explain the
human FASD symptoms related to the hearing loss (Zamora and
Lu, 2013). Several other studies have also reported similar effects
on zebrafish morphology after both binge and chronic ethanol
treatments at 0.5–10% (Bilotta et al., 2004; Reimers et al., 2004;
Ali et al., 2011; Zhang et al., 2013). Morphometric analyses have
revealed that ethanol can change specific facial measurements,
which might be due to higher cell death in the neural crest
progenitors of the facial skeleton (Carvan et al., 2004; Flentke
et al., 2014). All of these results indicate that ethanol can also
affect cell movement and morphogenesis at the neurulation stage
(Figure 1C), resulting in malformation of the eye formation,
brain segmentation, and proper development of the neural tube.

Besides brain malformation, developmental abnormalities are
also observed in the craniofacial structures in the neurula stage of
the zebrafish embryos due to the abnormal development of the
neural crest (Mccarthy et al., 2013). The neural crest from the
mid-hindbrain area migrates anteriorly and forms the
craniofacial structures. In the ethanol-treated zebrafish
embryos, these cells fail to properly migrate to the final
destination (Mccarthy et al., 2013). Besides migration and cell
movement, it has also been reported that apoptotic cell death is
induced in the neural tube and neural crest that further enhance
the malformation of these structures (Mccarthy et al., 2013; Joya
et al., 2014).

Toxicity of Ethanol in Neurogenesis
Embryos of the transgenic zebrafish strain, Tg(HuC:KAEDE),
express fluorescent protein in a range of neurons in the central
and peripheral nervous systems. A decreased number of KAEDE-
positive neurons in the spinal cord were found when embryos
were exposed to 1% ethanol (Joya et al., 2014). Isl1 [Tg (Isl1:GFP)
line] is a marker for developing motoneurons. Though the
number of Isl1-positive motoneurons is not reduced, the study
revealed that the motoneuron length in the embryos treated with
ethanol was significantly decreased (47%) compared to the
untreated controls (Joya et al., 2014). Several research groups
have reported similar adverse effects of ethanol exposure on the
motoneuron axonal branches and revealed a varied sensitivity of
spinal motoneurons and cranial to ethanol (Sylvain et al., 2010,
2011; Coffey et al., 2013). Tg(Isl3:GFP) transgenic embryos
express GFP in sensory neurons of the spinal cord and the
sensory cranial ganglia, whereas Joya et al. depicted a
significant decrease in the number of sensory neurons per
somite (3.2 ± 1.1) as compared to the control treatment (5.8 ±
0.5). The TUNEL analysis of larval stages showed a higher
apoptosis ratio in the embryo and the central nervous system
(CNS). These results explain that ethanol exposure disturbs the
balance between proliferation and apoptosis that reduces
neuronal cell differentiation in a subset of ethanol-sensitive
neurons (Joya et al., 2014). Zhang et al. (2013) reported high
sensitivity of GABAergic and glutamatergic neuron development
in the cerebellum or forebrain of zebrafish to ethanol. The
phenotype of reduced neurogenesis was mimicked or
enhanced by the suppression of gene expression of shh, fgfs,
or agin, and the phenotype was also rescued by overexpression of
the mRNAs encoding shh or a fgf. These results suggest that these
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signaling pathways are the targets of ethanol toxicity pathways,
and modification of the pathway can reduce the ethanol toxicity.

Link to Human FASD
Multiple factors contribute toward birth defects, but FASD
caused by utero ethanol exposure has been thought to be the
most common reason for abnormalities (Joya et al., 2014). A
better understanding of the mechanisms involved in this
syndrome would allow us to learn more subtle but still
significant consequences of alcohol exposure and may also
facilitate the development of clinical therapeutic interventions.
In this regard, zebrafish has emerged as a model organism to
explore environmental toxins related to congenital disability
syndromes (Ali et al., 2011). As a vertebrate animal, zebrafish
shares significant similarities with humans in the physiology,
gene function, and organ development. FASD-related data
retrieved from this zebrafish provide mechanical insights and a
better understanding of the impacts of alcohol consumption by
pregnant mothers. Zebrafish can mimic the ethanol-
exposure–related developmental defects observed in humans,
such as neural, craniofacial, and cardiac defects (Haycock,
2009; Kelly et al., 2009; Dlugos and Rabin, 2010; Muralidharan
et al., 2013). During the early development, ethanol exposure
could disrupt the developmental signaling mechanisms and affect
the embryonic gene expression, cell movement, cell
differentiation, and morphogenesis. The works from zebrafish
have highlighted that exposure to alcohol at the early stage of
embryo development has a crucial influence on later development
of the brain. It has also been reported that even amoderate level of
alcohol consumption can lead to hippocampal atrophy (Topiwala
et al., 2017). This suggests that further research using model
animals like zebrafish with a lower dose of exposure with long-
term effects to the development and maintenance of brain would
also become important.

Advantages and Disadvantages of the
Zebrafish as a Model for Human FASDs
The zebrafish provides an ideal model for studying the effects of
alcohol as many phenotypes show similarities to human FASDs,
including microcephaly, holoprosencephaly, spinal bifida,
cyclopia, neural crest defects, craniofacial defects, and cardiac
defects. Unlike human and mammalian models, it is possible to
trace the development of living embryos being exposed to the
controlled concentration of ethanol. It is also possible to screen
drugs and mutations that can enhance/suppress the symptom of
FASDs using high throughput large-scale screening. On the other
hand, potential disadvantages may be that size and structure of
the brain are much smaller and simpler than those of mammalian

models; therefore, detailed symptom of FASDs may show some
differences (e.g., gestation period–specific differences). As
zebrafish develop externally without a gestation period, it is
not possible to investigate the influence of the transfer of
alcohol from the mother to fetus. It might also be conceivable
that genetic mechanisms for metabolizing alcohol may have some
variation between species, considering that even within the same
mouse species, different strains show different sensitivity and
symptoms to alcohol (Ogawa et al., 2005; Chen et al., 2011).

CONCLUSION

FASD is a frequent birth defect syndrome that is related to
alcohol consumption by pregnant mothers, affecting embryos
and leading to birth defects. Research on zebrafish facilitates
the investigation of ethanol-related defects during
embryogenesis. It can be concluded that ethanol produces
multifactorial defects during blastula, gastrula, and
organogenesis stages, which are the key stages of
embryogenesis. There are many target pathways of ethanol
during the development including the stem cell gene
expression, cytoskeletal regulation, and gastrulation cell
movement, neurulation, eye morphogenesis, neural crest
migration, and neurogenesis. With its sensitivity and simple
morphology, it is possible to design high throughput testing
and screening methods for assessing the dose-dependent
effects of ethanol and other toxicants on brain development
and associated human birth defects. It would also be important
to investigate long-term effects of moderate dosage using
zebrafish embryos to detect weak but significant effects to
the development, growth, and behavior in the later life stages.
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