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A B S T R A C T   

Objectives: Glioma, the most common and aggressive form of brain cancer, possesses a complex 
biology, which makes elucidating its underlying mechanisms and developing effective treatment 
strategies challenging. Lactylation is a recently discovered post-translational modification and has 
emerged as a novel research target to understand its role in various biological processes and 
diseases. Herein, we explored the role of lactylation in gliomas. 
Methods: Single-cell RNA-sequencing (scRNA-seq) data were downloaded from the Tumour Im-
mune Single-Cell Hub database. The R package ‘Seurat’ was used for processing the scRNA-seq 
data. Lactylation-related genes were identified from published literature and the Molecular Sig-
natures Database. An unsupervised clustering method was used to identify glioma subtypes based 
on identified lactylation-related genes. Differences among the various clusters were examined, 
including clinical features, differentially expressed genes (DEGs), enriched pathways and immune 
cell infiltrates. A lactylation score was generated to predict the overall survival (OS) of patients 
with glioma using DEGs between the two clusters. 
Results: The lactylation-related genes were obtained from the scRNA-seq data, identifying two 
molecular subtypes, and a prognostic signature was established to stratify patients with glioma 
into high- and low-score groups. Analysis of the tumour immune microenvironment revealed that 
patients in the high-score group exhibited increased immune cell infiltration, chemokine 
expression and immune checkpoint expression but exhibited worse OS and better response to 
immunotherapy. 
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Conclusions: Altogether, we established a novel signature based on lactylation-related clusters for 
robust survival prediction and immunotherapeutic response in gliomas.   

1. Introduction 

Gliomas are the most prevalent primary brain tumour, constituting approximately 80 % of all malignant brain tumours [1]. Gli-
omas are a considerable public health concern because of their high morbidity and mortality rates, which place a substantial burden on 
healthcare systems worldwide. Primary brain tumours such as gliomas arise from glial cells and exhibit considerable heterogeneity, 
encompassing various subtypes with distinct genetic profiles and clinical behaviours. The complexity of gliomas poses challenges for 
accurate diagnosis, treatment planning and therapeutic outcomes. Despite advances in neuro-oncology, present treatment strategies 
have limitations in effectively targeting the diverse molecular characteristics of different glioma subtypes. This intricacy necessitates 
the development of innovative approaches to address the multifaceted nature of glioma management and improve patient outcomes 
[2]. 

Lactylation, a novel post-translational modification, has garnered attention in cancer research [3,4]. It involves the addition of 
lactate molecules to specific proteins, which leads to structural and functional alterations in the protein. It is an important modification 
in various cellular processes, including metabolism, signalling pathways and epigenetic regulation [5]. Recent studies have reported 
that lactylation is involved in normal cell physiology, tumourigenesis and tumour progression [6]. Aberrant lactylation occurs in 
various types of tumours, including breast [7], colorectal [8] and liver [9] cancers. Limited studies have been conducted on lactylation 
in gliomas. A study showed that histone lactylation-derived LINC01127 promotes the self-renewal of glioma stem cells via the cis--
regulation of mitogen-activated protein kinase 4 to activate the Jun N-terminal kinase pathway [10]. Another study reported that the 
inhibition of ectonucleotidases and C-C motif chemokine receptor 8 lactylation can boost the effectiveness of the chimeric antigen 
receptor T cell therapy against glioma [11]. Studies have increasingly focused on elucidating the functional implications of lactylation 
and its underlying mechanisms in cancer. Herein, we aimed to identify the subtypes of glioma using unsupervised clustering by 
conducting an in-depth analysis of lactylation-related genes, indicating the necessity for further exploration of lactylation-related 
mechanisms. Furthermore, we have compared the two clusters for their clinical characteristics, differentially expressed genes 
(DEGs), enriched pathways and immune cell infiltration. Additionally, we have developed a lactylation score to accurately predict the 
overall survival (OS) of patients with gliomas. The correlation between lactylation score and the immune microenvironment of tu-
mours, along with the potential efficacy of immunotherapy was examined in this study. 

Abbreviations 

scRNA-seq Single-cell RNA-sequencing 
DEGs differentially expressed genes 
OS overall survival 
TCGA The Cancer Genome Atlas 
GBMLGG glioblastoma and low-grade glioma 
CGGA Chinese Glioma Genome Atlas 
MsigDB Molecular Signatures Database 
GSVA Gene set variation analysis 
KEGG Kyoto Encyclopedia of Genes and Genomes 
GO Gene Ontology 
PCA principal component analysis 
IC50 50 % maximum inhibitory concentration 
DCs dendritic cells 
CD cluster of differentiation 
ECM extracellular matrix 
AGE advanced glycation end-product 
CNVs copy number variations 
SNV single nucleotide variant 
ICI immune checkpoint inhibitor 
BP biological progress 
CC cellular component 
MF molecular function 
CAN copy-number alteration  
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2. Materials and methods 

2.1. Data source and processing 

The single-cell RNA sequencing (scRNA-seq) dataset GSE162631, containing fouradult primary tumour samples and four paired 
surrounding peripheral tissues, was obtained from the Tumour Immune Single-Cell Hub database (tisch.comp-genomics.org/home/). 
Herein, we only included the four adult primary tumour samples. The messenger RNA (mRNA) expression profiles and clinical data for 
The Cancer Genome Atlas (TCGA)- glioblastoma and low-grade glioma(GBMLGG) (670 tumour tissues) were downloaded from the 
UCSC-Xena database (https://xenabrowser.net/datapages/), whereas Chinese Glioma Genome Atlas (CGGA) mRNAseq_693 (693 
tumour tissues) and CGGA mRNAseq_325 (325 tumour tissues) data were downloaded from the CGGA database (http://www.cgga. 
org.cn/). The R packages, ‘limma’ and ‘sva,’ were utilised to remove batch effects. Lactylation-related genes have not been fully 
identified. Therefore, we selected lactate metabolism-related genes and combined them with the findings of published studies on 
lactylation to identify lactylation-related genes. The gene sets for lactylation genes were acquired from the Molecular Signatures 
Database (MsigDB) (GOBP_LACTATE_METABOLIC_PROCESS: http://www.gsea/msigdb.org/gsea/msigdb/human/geneset/GOBP_ 
LACTATE_METABOLIC_PROCESS and GOBP_LACTATE_TRANSMEMBRANE_TRANSPORT: http://www.gseamsigdb.org/gsea/ 
msigdb/human/geneset/GOBP_LACTATE_TRANS MEMBRANE_TRANSPORT) and the published literature [12]. In total, 34 
lactylation-related genes were identified. 

2.2. scRNA-seq analysis 

The scRNA-seq data were screened and analysed using the R package ‘Seurat.’ First, the quality control analysis of scRNA-seq data 
was performed using the following criteria: 1) excluding genes overlapping in less than five cells; 2) eliminating cells with expression of 
<300 and >5000 genes; 3) removing cells with >5 % mitochondrial gene expression; 4) retaining cells with ribosomal gene expression 
of >3 % and 5) including cells with haemoglobin gene expression of <0.1 %. Next, the ‘harmony’ R package was used to reduce the 
batch effect between samples and the scRNA-seq data was normalised using ‘ScaleData’ to subsequently perform principal component 
analysis (PCA). The ‘UMAP’ function was used to reduce dimensionality, and ‘FindAllMarkers’ was used to identify DEGs in different 
clusters. Finally, cells were clustered at a resolution of 0.8, and cell annotation was performed using the ‘singleR’ package combined 
with manual adjustment. The R package ‘GSVA’ was used to calculate scores of lactylation in each cell based on lactylation-related 
genes. Additionally, cell communication analysis was performed using the R package ‘CellChat.’ 

2.3. Consensus clustering analysis 

A consensus clustering analysis was performed on the samples of the testing set with the R package ‘ConsensusClusterPlus’ to 
identify glioma subtypes based on lactylation-related genes. Next, the optimum cluster numbers between k = 2 and k = 10 were 
identified, following which the procedure was repeated 1000 times to ensure the robustness and reproducibility of the findings. A 
cluster map was created using the pheatmap function in the R software. 

2.4. Gene set variation analysis (GSVA) and immune cell infiltration analysis 

The differences in pathways among the various subtypes were evaluated by separately downloading the HALLMARK, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways from the MSigDB (http://www.gsea-msigdb.org/gsea/index. 
jsp) and estimating the scores using the R package, ‘GSVA.’ The immune, stromal and ESTIMATE scores of patients with glioma 
were calculated using the R package ‘ESTIMATE,’ and the fraction of immune cell infiltration was calculated using the ‘ssGSEA’ 
function of the R package ‘GSVA’ to compare the differences in immune cell infiltration among subtypes. 

2.5. Construction of the prognostic signature 

First, differential analyses were performed for each of the two subtypes, and 160 genes with a log2(fold change) of >2 and p-value 
of <0.05 were considered DEGs. These DEGs were pooled to obtain a gene set, and their functional enrichment was assessed by Gene 
Ontology (GO)/KEGG analyses using the R package ‘clusterprofiler.’ Next, all 160 DEGs were subjected to univariate Cox regression 
analysis, and the top 20 genes with the lowest prognosis-associated p-values were identified. Finally, the signature scores were 
calculated using PCA. Using principal components (PCs) 1 and 2, we obtained a lactylation score [13]. The score for each patient was 
obtained using the following formula: 

Score=
∑

(PC1i) +
∑

(PC2i)

2.6. Relationship between the prognostic signature and immunotherapeutic response 

Correlation analysis was performed to establish the association among the risk score, immune cell infiltration and 50 hallmark 
pathways to clarify the relationship between the risk score and the tumour immune microenvironment. A correlation was considered 
significant when the p-value was <0.05. Additionally, the expression of various chemokines and immune checkpoints were compared 
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Fig. 1. Quality control of the single-cell RNA sequencing data 
A-B. The nFeature_RNA and nCount_RNA value before (A) and after (B) the quality control. C-D. The percentage of mitochondrial/ribosomal/ 
haemoglobin content before (C) and after (D) the quality control. E. Correlation between the nFeature_RNA and nCount_RNA. F. The top 25 genes 
with the highest percentage of cellular expression. 

X. Lu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e30726

5

Fig. 2. Cell type identification 
A. The clusters and cell types of GSE162631. B. The number of cells in each cluster and cell type. C. The top five up-regulated and down-regulated 
differentially expressed genes of each cell type. 
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between the high- and low-score groups to determine the association between the risk score and immunotherapy response. Moreover, 
the effectiveness of the risk scores in predicting immunotherapy was confirmed in the following three cohorts: GSE78220, Riaz2017, 
and NCT02684006. 

2.7. Drug sensitivity analysis 

Focusing on targeted therapies, the 50 % maximum inhibitory concentration (IC50) of each sample to multiple anti-cancer drugs 
was estimated using the R package ‘pRRophetic.’ The differences in IC50 values between the high- and low-score groups were 
compared, with a higher IC50 indicating low treatment sensitivity, to explore the direction of treatment for immunotherapy- 
insensitive cases. 

2.8. Statistical analyses 

Data are presented as means ± standard error. Differences between groups were analysed using the student’s t-test. Statistical 
analyses were performed using the R version 4.2.2. Statistical significance was set at p < 0.05 (two-tailed). 

3. Results 

3.1. Lactylation-related genes in scRNA-seq data 

The scRNA-seq data were screened. Fig. 1 shows the range of detected gene numbers before (Fig. 1A) and after (Fig. 1B) the quality 
control, and the percentage of mitochondrial/ribosomal/haemoglobin content in each sample before (Fig. 1C) and after (Fig. 1D) the 
quality control. The nFeature_RNA value positively correlated with the nCount_RNA value (Fig. 1E). The top 25 genes with the highest 
expression are shown in Fig. 1F. 

After dimensionality reduction, 17 clusters were identified and annotated into six core cell types, namely mono, macro, microglia, 
endothelial cells, dendritic cells (DCs), fibroblasts, and cluster of differentiation (CD)8 T cells (Fig. 2A). Fig. 2B shows the number of 
cells in each cluster and the cell type. DEG analysis of each cell type revealed the top five upregulated and downregulated genes in cell 
types (Fig. 2C). 

Next, we calculated the lactylation score and 50 hallmark pathways using the scRNA-seq data. Fig. 3A shows the scores of 50 
hallmark pathways in each cell type, presenting the characteristics of each cell type. For example, the EPITHELIAL MESENCHYMAL 
TRANSITION and ANGIOGENESIS pathways were highly enriched in endothelial and fibroblast cells. We further explored the cor-
relation between lactylation and 50 hallmark pathways in each cell type (Fig. 3B). The results showed that the lactylation process was 

Fig. 3. Pathway analysis 
A. Heatmap showing the scores of 50 hallmark pathways in each cell type. B. The correlation of lactylation score with 50 hallmark pathways in each 
cell type. 
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closely associated with ADIPOGENESIS, DNA REPAIR, MTORC1 SIGNALING and OXIDATIVE PHOSPHORYLATION pathways in all 
cell types. Fig. 4A shows the expression of the lactylation-related genes in the indicated cell types. For example, lactate dehydrogenase 
A was generally expressed in all six cell types. Fig. 4B shows that microglial cells had the highest lactylation score, whereas fibroblast 
cells had the lowest. All cells were categorised into high and low lactylation score groups based on the median lactylation score 
(Fig. 4C). The high lactylation score group contained a higher percentage of microglial cells compared with the percentage in the low 
lactylation score group (Fig. 4D). Fig. 4E shows that the high lactylation score group was predominantly enriched in oncogenic ma-
lignant pathways. 

3.2. Identification of lactylation gene-related subtypes 

The expression profiles of tumour tissues from TCGA and CGGA were combined, and the prognostic significance of lactylation- 
related genes was evaluated using univariate Cox regression and Kaplan–Meier analysis. The results of univariate Cox regression 
and correlation analysis of lactylation genes are shown in Fig. 5A. Fig. 5B illustrates the association between lactylation-related genes 
and patient prognosis. Gliomas were then divided into two subtypes, namely clusters A and B, based on the expression patterns of 
lactylation-related genes (Fig. 6A). Patients in cluster B exhibited poorer survival rates than those in cluster A (Fig. 6B). The distri-
bution of clinical features and lactylation-related gene expression in each cluster is presented (Fig. 6C and D). 

The differences between the two clusters in various pathways were investigated using GSVA. The findings showed that most of the 
HALLMARK, KEGG, and Reactome pathways exhibited higher scores in cluster B, especially some immune-related pathways (Fig. 7). 
For example, IL6_JAK_STAT3_SIGNALING, INFLAMMATORY_RESPONSE and L2_STAT5_SIGNALING in Hallmark; LEUKOCYTE_-
TRANSENDOTHELIAL_MIGRATION and CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION in KEGG and INTERFERON_SIGNALING 
and INTERLEUKIN_7_SIGNALING in Reactome pathway. These findings suggest that the largest difference between the two subtypes 
was in carcinogenesis- and tumour immune microenvironment-associated pathways. 

We evaluated the presence of immune infiltrates in glioma samples and observed notable differentiation between clusters A and B 
based on the PCA plot (Fig. 8A). The stromal, immune, and ESTIMATE scores were higher in cluster B (Fig. 8B), and cluster B 

Fig. 4. Lactylation score analysis using the single-cell RNA sequencing data 
A. The expression of lactylation-related genes in each cell type. B. The lactylation score values in each cell type. C. The lactylation score and groups 
are shown using the UAMP plots. D. The percentage of six cell types in the high and low lactylation score groups. E. The scores of 50 hallmark 
pathways in the high and low lactylation score groups. 
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Fig. 5. Identification of glioma subtypes based on lactylation-related genes 
A. Correlation and prognostic values of lactylation-related genes in glioma. The line connecting the lactylation genes represents their correlation, 
with the line thickness indicating the strength of the correlation among lactylation genes. Blue and pink represent negative and positive correlations, 
respectively. B. Kaplan-Meier analysis of indicated genes. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 6. Identification of subtypes based on lactylation-related genes 
A. Consensus matrix heatmap defining various clusters and their correlation area. B. Kaplan–Meier analysis of glioma in clusters A and B. C. The 
expression of lactylation-related genes in clusters A and B. D. Distributions of clinical features and expression of lactylation-related genes between 
the two clusters. 
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demonstrated greater levels of immune cell infiltration than that of cluster A (Fig. 8C). 

3.3. Identification of gene subtypes and construction of the lactylation score 

In total, 160 DEGs were successfully identified between clusters A and B (Fig. 9A) by utilising the ‘limma’ package. In the GO 
enrichment analysis, DEGs were enriched in various biological processes such as extracellular matrix (ECM) organisation, wound 
healing, negative regulation of proteolysis and collagen fibril organisation. Cellular components were enriched in the collagen- 
containing ECM and the endoplasmic reticulum lumen. According to molecular function, these were crucial for ECM structural 
constituents (Fig. 9B). DEGs were predominantly enriched in pathways such as ECM–receptor interaction, protein digestion and ab-
sorption, focal adhesion, the advanced glycation end-product (AGE)–receptor for the AGE signalling pathway in diabetic complications 
and the phosphoinositide 3-kinase–protein kinase B signalling pathway, as evidenced by KEGG analysis (Fig. 9C). 

The univariate Cox regression analysis results identified 20 genes that were notably associated with OS to determine the prognostic 

Fig. 7. The different pathways between the two subtypes 
Scores of pathways in two clusters, namely HALLMARK (A), Kyoto Encyclopedia of Genes and Genomes (B) and Reactome pathways (C). 

Fig. 8. Immune cell infiltration analysis 
A. Principal component analysis plot of patients with glioma in the two clusters. B. The tumour microenvironment differences in the two clusters. C. 
The difference in immune cell infiltration level in the two clusters. 
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significance of the 160 DEGs (Fig. 10A, Supplementary Table 1). Unsupervised clustering results grouped the patients into two sub-
types based on the expression of the 20 prognostic genes, hereafter referred to as geneClusters A and B (Fig. 10B). Patients in gen-
eCluster B exhibited worse survival rates than those in geneCluster A (Fig. 10C). The expression of the 20 prognostic genes and the 
distribution of their clinical features are presented in Fig. 10D and E. The lactylation score, established using PCA with 20 prognostic 
genes, was used to assess the patient’s prognosis. The patients with high lactylation scores exhibited worse survival outcomes 
(Fig. 10F). The Sankey diagram represents the correlation between cluster, geneCluster, lactylation score and survival status 
(Fig. 10G). Analysis of the relationship between the lactylation score and immune cell infiltration revealed that patients with high 
lactylation scores exhibited increased levels of immune cell infiltration (Fig. 10H). 

3.4. Genetic alterations in prognostic genes 

We explored the expression and genetic alterations in 20 prognostic genes. Fig. 11A shows the copy number variations (CNVs) for 
each gene. Homeobox A5 (HOXA5) showed the highest CNV amplification frequency, and cartilage acidic protein 1 (CRTAC1) 
exhibited a considerable CNV deletion frequency. The percentages of heterozygous and homozygous CNV for each gene in gliomas, 
including heterozygous and homozygous amplifications and deletions, are shown in Fig. 11B. The linear CNV levels of epithelial 

Fig. 9. Enrichment analysis 
A. Volcanic map of differentially expressed genes (DEGs) between the two clusters. B. Gene ontology enrichment analysis of DEGs, including 
biological progress (BP), cellular component (CC), and molecular function (MF). C. The correlation of DEGs with the top five terms of the Kyoto 
Encyclopedia of Genes and Genomes results. 

Fig. 10. Construction of lactylation score 
A. Forest plot presenting results of univariate Cox regression analysis. B. Consensus matrix heatmap defining various clusters and their correlation 
area. C. Kaplan–Meier analysis of patients with glioma in the two geneClusters. D. Distributions of clinical features and expression of 20 differ-
entially expressed genes between the two geneClusters. E. The expression of indicated genes in the two geneClusters. F. Kaplan–Meier analysis of 
lactylation score in glioma. G. The Sankey diagram visualises the correlation between cluster, geneCluster, lactylation score and survival status of 
patients with glioma. H. The correlation between lactylation score and immune cell infiltration. The red colour represents a positive correlation, and 
the blue colour represents a negative correlation. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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membrane protein 3 and HOXA5 positively correlated with their corresponding mRNA expression (Fig. 11C). The expression of these 
genes was negatively correlated with DNA methylation levels (Fig. 11D). The single nucleotide variant (SNV) frequencies of these 
genes were generally low, with CRTAC1 showing the highest SNV frequency (Fig. 11E). 

3.5. Association of lactylation score with clinical features 

Live patients presented lower lactylation scores than deceased patients (Fig. 12A). The percentage of patients who survived in the 

Fig. 11. The genetic alteration of prognostic differentially expressed genes (DEGs) 
A. The copy-number alteration (CNA) percentage of DEGs in glioma. B. The homozygous and heterozygous copy number variation (CNV) of DEGs in 
glioma. C. The correlation of CNV with messenger RNA (mRNA) expression in glioma. D. The correlation of methylation level with mRNA 
expression. E. The frequency of deleterious mutations of lactylation-related genes in glioma. 

X. Lu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e30726

15

high lactylation score group (21 %) was lower than that in the low lactylation score group (71 %). Moreover, a higher lactylation score 
was significantly linked to other malignant clinical characteristics, such as a higher tumour grade (Fig. 12B), non-co-deletion of 
h1p19q (Fig. 12C), wild-type isocitrate dehydrogenase (Fig. 12D) and O6-methylguanine-DNA methyltransferase unmethylation 
(Fig. 12E). There were no significant differences in lactylation scores among patients with glioma from different data sources 
(Fig. 12F). 

3.6. Correlation of lactylation score with immune microenvironment and immunotherapeutic efficacy 

The correlation between the immune microenvironment and the lactylation score was evaluated. Chemokine and receptor 
expression were notably increased in the high lactylation score category (Fig. 13A). The lactylation score correlated favourably with 
immune-related pathways, such as INTERFERON GAMMA RESPONSE and INFLAMMATORY RESPONSE (Fig. 13B). 

The high lactylation score group presented increased expression of the immune checkpoints CD274, cytotoxic T-lymphocyte 
associated protein 4, lymphocyte activation gene 3 and programmed cell death protein 1 (Supplemental Fig. 1). Moreover, the high 

Fig. 12. The association of lactylation scores with clinical features 
A. Left: The lactylation score in alive and dead groups. Right: The percentage of alive and dead patients in the high and low lactylation score groups. 
B. Left: The lactylation score in various grades. Right: The percentage of various grade patients in the high and low lactylation score groups. C. Left: 
The lactylation score in different h1p19q co-deletion statuses. Right: The percentage of patients with different h1p19q co-deletion status in the high 
and low lactylation score groups. D. Left: The lactylation score in different isocitrate dehydrogenase (IDH) mutation status. Right: The percentage of 
patients with different IDH mutation status in the high and low lactylation score groups. E. Left: The lactylation score in different O6- 
methylguanine-DNA methyltransferase (MGMTp) methylation statuses. Right: The percentage of patients with different MGMTp methylation sta-
tus in the high and low lactylation score groups. F. Left: The lactylation score in various data sources. Right: The percentage of patients of various 
data sources in the high and low lactylation score groups. 
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Fig. 13. The association of lactylation score with immune-related genes 
A. The expression of chemokines and chemokine receptors in the high and low lactylation score groups in glioma. B. The correlation of lactylation 
score with HALLMARK pathway scores. 
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lactylation score group presented a higher frequency of gene mutations (Fig. 14A–C). Additionally, a higher level of cell–cell 
communication was observed in the high lactylation score, according to scRNA analysis (Supplementary Fig. 2). These findings further 
support the theory that patients with cancer with high lactylation scores respond well to immunotherapy. 

Further analyses were performed using immunotherapy datasets to verify our hypotheses. We confirmed that patients with high 
lactylation scores were responsive to immune checkpoint inhibitor (ICI) treatment in the GSE78220 dataset (Fig. 14D; melanoma), 
Riaz2017 cohort (Fig. 14E; melanoma), and NCT02684006 cohort (Fig. 14F; Renal clear cell carcinoma). In addition to analysing 
immunotherapeutic responses, traditional anti-tumour medications were examined. Utilising the R package ‘pRRophetic,’ six anti- 
tumour drugs that could potentially be ineffective for patients with a high lactylation score and six anti-tumour drugs that may be 
beneficial for patients with a high lactylation score were identified (Fig. 15). 

4. Discussion 

Lactylation modification is a promising field of research in cancer therapeutics. Tumour cells undergo metabolic reprogramming, 
resulting in increased lactate production and alterations in their microenvironment [14,15]. Lactate is crucial for tumour growth and 
progression because it enhances angiogenesis, immune evasion and metastasis [16]. Protein lactylation modulates 
carcinogenesis-associated cellular processes, including survival, proliferation and invasion [17,18]. These findings suggest that lac-
tylation may be a novel therapeutic target for cancer treatment. Further studies are needed to identify specific lactylation-related 
targets and investigate the underlying mechanisms in different tumour types. 

In recent years, lactylation modifications in cancer have garnered increasing attention. Various studies have investigated the role of 
lactylation in specific tumour types such as lung [19], liver [18,20] and gastric [21] cancers. Overall, emerging evidence suggests that 
lactylation is important in cancer pathogenesis and progression. Further studies are needed to explore the underlying mechanisms of 
lactylation in different tumour types and develop novel lactylation-based therapies for cancer treatment. 

Herein, we evaluated lactylation-related genes and lactylation scores in gliomas using scRNA-seq data. We identified the following 
six core cell types: mono, macro, microglia, endothelial cells, DC, fibroblasts and CD8 T cells. Additionally, we calculated the lacty-
lation score and 50 hallmark pathways using the RNA-seq data. The lactylation process was found to be closely associated with 
ADIPOGENESIS, DNA REPAIR, MTORC1 SIGNALING and OXIDATIVE PHOSPHORYLATION pathways in all cell types. The lactylation 
score was the highest in microglial cells and the lowest in fibroblast cells. The percentage of microglial cells was higher in the high 
lactylation score group than in the low lactylation score group. These results indicate that microglial cells undergo lactylation most 
frequently in gliomas. Lactylation of Yin Yang 1 in microglia promotes angiogenesis through transcriptional activation-mediated up- 

Fig. 14. Gene mutations and the role of lactylation score in predicting the efficiency of immune checkpoint inhibitor (ICI) treatment 
A-B. Distribution of top 12 mutated genes in the high- and low-score groups. C. Comparison of the gene mutations in the high and low lactylation 
score groups. D. Left: Kaplan–Meier analysis of patients in high and low lactylation score groups in the GSE78220 cohort. Right: The percentage of 
patients with different progress statuses after ICI treatment in the high and low lactylation score groups in the GSE78220 cohort. E. Left: 
Kaplan–Meier analysis of patients in the high and low lactylation score groups in the Riaz2017 cohort. Right: The percentage of patients with 
different progress statuses after ICI treatment in the high and low lactylation score groups in the Riaz2017 cohort. F. Left: Kaplan–Meier analysis of 
patients in the high and low lactylation score groups in the NCT02684006 cohort. Right: The percentage of patients with different progress statuses 
after ICI treatment in the high and low lactylation score groups in the NCT02684006 cohort. 
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regulation of fibroblast growth factor 2 [22], consistent with our results. Therefore, lactylation modifications in microglial cells must 
be explored. 

By examining the expression of lactylation-related genes, we identified two glioma subtypes (clusters A and B). Differences were 
observed between the malignant cancer-promoting and immune-related pathways between clusters A and B, including TGF BETA 
SIGNALING. Therefore, we assessed immune infiltration in glioma samples. The stromal, immune, and ESTIMATE scores were higher 
in cluster B, and most immune cells showed higher infiltration in cluster B than those in cluster A. 

A lactylation scoring that could effectively measure risk in patients was constructed. In total, 160 DEGs were examined between the 

Fig. 15. The analysis of curative effect of anti-tumour drugs 
The 50 % maximum inhibitory concentration values of the indicated antitumour drugs in the high and low lactylation score groups. A: A.443654 
senstivity. B: A.770041 sensitivity. C: ABT.888 sensitivity. D: AKT.inhibitor.VIII sensitivity. E: AP.24534 sensitivity. F: AS601245 sensitivity. G: 
ABT.263 sensitivity. H: AG.014699 sensitivity. I: AICAR sensitivity. J: Axitinib sensitivity. K: AZD8055 sensitivity. L: BAY.61.3606 sensitivity. 
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two groups. Using univariate Cox regression analysis, the predictive significance of these 160 DEGs was evaluated and 20 genes that 
were strongly associated with OS were identified. Using PCA, a lactylation scoring for these 20 genes was developed. Patients with 
higher lactylation scores exhibited lower survival rates. The association between lactylation scores and immune cell infiltration 
indicated a positive association between these two factors. 

The effectiveness of ICI treatment can be predicted by chemokines, chemokine receptors and immune checkpoints [23,24]. The 
high lactylation score group showed higher expression of chemokines, chemokine receptors and immune checkpoints, indicating that 
these patients may respond better to ICI treatment. Additionally, we observed high immune cell infiltration and cell–cell communi-
cation in the high-score group. High immune infiltration and cellular communication levels often indicate the activity of immune cells 
in the tumour microenvironment [25,26]. Therefore, we speculate that patients with high scores may be more sensitive to immu-
notherapy. The analysis of the immunotherapy datasets confirmed that patients with high lactylation scores responded positively to ICI 
treatment in the GSE78220, Riaz2017 and NCT02684006 cohorts. 

Our study has some limitations. First, owing to data limitations, immunotherapy data for large sample sizes of gliomas are lacking. 
Next, further experimental exploration is required for key genes in the lactylation scores. 

In conclusion, our comprehensive analysis of lactylation-related genes revealed their substantial effects on the immune micro-
environment and outcomes of patients with glioma. The developed lactylation scoring showed its efficacy in predicting the prognosis 
and response to ICI therapy. These results underscore the critical importance of lactylation in clinical decision-making, providing a 
novel approach for the personalised treatment of patients with glioma. 
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