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In vitro models, in which Candida albicans is incubated with 
one or more type of host cell, are a powerful tool for dissect-
ing the pathogenesis of infection. Using these models, investiga-
tors have elucidated important responses of both the host and 
the fungus that influence the outcome of infection. In addition, 
tissue culture models have been invaluable for discovering host 
cell receptors for C. albicans, their cognate fungal ligands, and 
downstream signaling pathways. Furthermore, in vitro models 
can serve as surrogates for in vivo infection, facilitating the dis-
covery of key host defense mechanisms and fungal virulence fac-
tors. Although tissue culture models of infection have numerous 
strengths, they also have weaknesses that preclude them from 
completely replacing animal models of infection.

C. albicans is an opportunistic pathogen that typically requires 
dysfunction of the host innate immune system to cause invasive 
infection. Because the interactions of C. albicans with the innate 
immune system are a key factor in determining the outcome of 
infection, the interactions of C. albicans with professional phago-
cytes has been modeled using macrophage cell lines. For exam-
ple, Lorenz and Fink used the J774 mouse macrophage cell line 
to discover that the glyoxylate cycle plays a key role in C. albi-
cans virulence.1 Macrophage cell lines have also been invaluable 
for identifying the receptors that enable phagocytes to recognize 
specific components of the C. albicans cell wall. Receptors for 
C. albicans that have been discovered using macrophage cell lines 
include dectin-1,2 dectin-2,3 mincle,4 galectin-3,5 the macrophage 
mannose receptor,6 and integrin α

M
β

2
.7 Notably, the importance 

of these receptors for the host defense against disseminated can-
didiasis in vivo has been confirmed using mutant strains of mice 
that lack these receptors. Furthermore, studies of humans with a 
naturally occurring stop mutation in the DECTIN-1 gene dem-
onstrate that dectin-1 is necessary for the host defense against 
mucosal candidiasis.8 This strong correlation between in vitro 
and in vivo results supports the utility of the macrophage model 
for studying the interactions between C. albicans and professional 
phagocytes.

A key issue with macrophage studies is the source of the 
cells. The mouse J774 and RAW 264.7 macrophage cell lines 
are particularly useful for in vitro studies because they are well-
characterized, numerous mutant strains are available, and they 

are relatively easy to transform. However, a limitation of these 
cell lines is that they are very poor at killing C. albicans. This 
limitation can be overcome by using primary mouse macro-
phages, either derived from bone marrow cells or elicited from 
the peritoneum. Because these macrophages are from mice, they 
are highly likely to be predictive of the interactions of C. albi-
cans with phagocytes during invasive infection in these animals. 
Nevertheless, mouse macrophages differ significantly from their 
human counterparts.9 For example, mouse macrophages pro-
duce high amounts of nitric oxide (NO), which contributes to 
microbial killing, whereas human macrophages produce much 
lower levels of NO and kill microorganisms by NO-independent 
mechanisms.10 Because of the differences between mouse and 
human macrophages, it is important to use human macrophages, 
preferably primary cells, to verify results obtained with mouse 
macrophages.

While growing on mucosal surfaces and during invasive infec-
tions, C. albicans interacts not only with professional phagocytes, 
but also with other types of host cells, including endothelial and 
epithelial cells. In vitro endothelial cell models have been used to 
dissect the pathogenesis of hematogenously disseminated candi-
diasis because, during the initiation of this disease, C. albicans 
must adhere to and invade the endothelial cell lining of the blood 
vessels to infect the deep tissues.11 The majority of studies have 
investigated the interactions of C. albicans with human umbili-
cal vein endothelial cells under static conditions. Studies with 
this model indicate that multiple members of the C. albicans ALS 
gene family mediate endothelial cell adherence.12-18 Also, C. albi-
cans invades these cells by induced endocytosis, which is triggered 
when Als3 and Ssa1 on the surface of hyphae bind to N-cadherin 
and other receptors on the endothelial cell surface.19-22 In addi-
tion, C. albicans invasion of endothelial cells is associated with 
the induction of endothelial cell damage and stimulation of a 
pro-inflammatory response.23-28

A limited number of studies examined the interactions of 
C. albicans with endothelial cells under conditions of flow. One 
such study determined that C. albicans hydrophobic proteins 
mediate endothelial cell adherence.29 Two different groups have 
investigated the relative adherence of hyphae vs. yeast–phase 
organisms under conditions of flow. Grubb et al.30 found that 
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C. albicans yeast were more adherent than hyphae to endothe-
lial cells under flow conditions. In contrast, Wilson and Hube31 
determined that hyphae were more adherent than yeast under 
these conditions. Although flow assays may mimic the interac-
tions of C. albicans with endothelial cells in vivo more accurately 
than static assays, to date no new C. albicans virulence factor has 
been discovered using flow assays.

C. albicans clearly interacts differently with endothelial cells 
from different vascular beds. For example, brain microvascular 
endothelial cells uniquely express the gp96 heat shock protein 
on their surface.32 A C. albicans vps51Δ/Δ mutant has increased 
surface exposed Als3 and increased binding to gp96. Although 
this mutant has enhanced invasion of human brain microvascu-
lar endothelial cells, it has impaired invasion of human umbili-
cal vein endothelial cells. As predicted by these in vitro results, 
the vps51Δ/Δ mutant has increased trafficking to the brain, but 
reduced trafficking to the kidneys in the mouse model of dis-
seminated candidiasis.33 Collectively, these results suggest that 
C. albicans utilizes different endothelial cell receptors to invade 
different vascular beds. Another type of endothelial cell that has 
been used for in vitro studies is the HMEC-1 cell line, which was 
developed by transfecting the simian virus 40A gene into human 
foreskin dermal microvascular endothelial cells.34 In comparison 
studies, C. albicans adheres to, invades, and damages human 
umbilical vein endothelial cells more than HMEC-1 cells. Also, 
C. albicans infection stimulates human umbilical vein endo-
thelial cells, but not HMEC-1 cells to secrete the chemokine, 
interleukin-8.35 As discussed below, the capacity of C. albicans 
mutants to invade and damage human umbilical vein endothelial 
cells is a relatively good predictor of their virulence in the mouse 
model of disseminated infection. Whether the interactions of 
C. albicans with HMEC-1 cells also correlate with virulence is 
not yet known.

In general, the capacity of C. albicans mutants to damage nor-
mally non-phagocytic cells in vitro is a fairly good indicator of 
their virulence in the mouse models of infection. The correlation 
between host cell damage and virulence has been demonstrated 
most clearly using the human umbilical vein endothelial cell 
model.19,36-38 However, some mutant strains have significantly 
impaired capacity to damage endothelial cells in vitro, yet have 
normal or even increased virulence during disseminated infec-
tion in mice. These strains include the als3Δ/Δ, tpk2Δ/Δ, and 
pra1Δ/Δ mutants.20,39-43 One explanation for these results is 
that C. albicans is exposed to different conditions in the mouse 
compared with cultured host cells in vitro. Thus, unique signal-
ing pathways may be activated in vivo that compensate for the 

absence of the gene of interest. Indeed, Fanning et al.44 found 
that the Bcr1 transcription factor has different downstream tar-
gets in vivo compared with in vitro. Another explanation is that 
the interactions of C. albicans with professional phagocytes are as 
important as its interactions with normally non-phagocytic cells 
in determining the outcome of infection. For example, although 
the pra1Δ/Δ mutant is defective in damaging endothelial cells 
in vitro, it is resistant to neutrophil killing, and this resistance 
is the likely cause of the increased virulence of this strain.7,42,43 
Furthermore, some strains of C. albicans, such as the sun41Δ/Δ 
mutant, do not have defects in damaging endothelial cells, but 
have attenuated virulence in mice.45 In this case, the cell wall 
integrity defects of the mutant likely render it susceptible to 
phagocyte killing, even though these defects do not influence its 
interactions with endothelial cells.

In the current issue, Szabo and MacCallum describe the inter-
actions of C. albicans with the M-1 mouse kidney cortical epithe-
lial cell line, which was established from a transgenic mouse that 
expressed the early region of simian virus 40.46,47 They show that 
C. albicans invades and damages these cells and induces them 
to secrete the chemokines KC and MIP-2. In addition, multiple 
clinical isolates and mutant strains of C. albicans with known 
virulence defects in the mouse model of hematogenously dissemi-
nated infection cause less damage to these renal epithelial cells 
and induce lower chemokine secretion. Based on these data, the 
authors propose that this in vitro model can be used to assess the 
virulence potential of C. albicans strains. While the authors’ data 
are compelling, it would be interesting to know how this cell line 
compares with the endothelial cell model for predicting the viru-
lence of various C. albicans strains, especially those for which in 
vitro results correlate poorly with in vivo virulence.

Nevertheless, because C. albicans is exposed to such a wide 
range of host cells and diverse microenvironments during a dis-
seminated infection, it is extremely unlikely that any in vitro 
model can predict the virulence of all C. albicans strains. Thus, 
even though in vitro models of infection are extremely useful for 
investigating host–pathogen interactions, experimental animal 
models of infection are still required to verify in vitro results.
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