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Purpose of review: This article will briefly describe the role of

specific dietary components, mainly micronutrients, in

supporting the immune response and summarise the literature

regarding foods and dietary patterns in the context of immunity

and infectious illness. Literature on SARS-COV-2 infection and

COVID-19 is referred to where appropriate.

Recent findings: Micronutrients, other nutrients and plant

bioactives have roles in supporting the immune response. Low

status of a number of micronutrients is associated with

increased risk and severity of COVID-19. Recent studies report

associations of plant-based diets with lower risk of, and less

severe, COVID-19.

Summary: In order to support the immune response, sufficient

amounts of a range of essential and non-essential nutrients and

other bioactives, mainly from a plant-based diet should be

consumed. Further research should define cause-and-effect

relationships of intakes of individual dietary components and

foods, and of dietary patterns with susceptibility to, and

severity of, viral infections.
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Introduction and scope
Humans co-exist in an environment with other organisms

including bacteria, viruses, fungi and parasites, some of

which can be harmful, causing infectious disease. The

social, economic and health consequences of infectious

disease to humans are well known [1–3], but have been

highlighted again over the last two years due to the emer-

gence of severe acute respiratory distress syndrome
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coronavirus 2 (SARS-CoV-2) and the disease it causes,

COVID-19. The SARS-CoV-2 pandemic has focused the

attention of consumers, the health care sector, govern-

ments, regulators and industry on the importance of

immune health and on the need to develop strategies to

provide the population with the protection they require

against harmful (i.e. pathogenic) organisms. The primary

role of the immune system is to provide defence against

harmful bacteria and viruses, which together are termed

microorganisms or microbes, as well as fungi and parasites.

Importantly, the immune system also provides immuno-

logic tolerance to non-pathogenic organisms, to harmless

environmental exposures (e.g. food) and to the individual

themselves. Inorder tobeeffectiveagainst thewide arrayof

possible threatening organisms, the human immune sys-

tem has evolved to include many different cell types, many

communicating molecules and multiple functional

responses which are generally classified into innate and

acquired immunity (Figure 1) [4�]. These functional

responses may be divided into four general features:

� barrier function, preventing (micro)organisms from

entering the body;

� recognition of (micro)organisms and identification of

whether they are harmful or not;

� elimination of (micro)organisms identified as being

harmful;

� generation of memory of immunological encounters.

These complex and sophisticated actions are achieved

because the human immune system is comprised of many

cell types, each with their own individual functional

capabilities. These different cell types interact with

one another as part of the immune response to assure

effective protection from pathogens and effective toler-

ance to non-threatening exposures. There is variation in

immune parameters among individuals [5] and many

factors contribute to this variation (Figure 2) [4�,5]. These

factors include genetics, infection history, vaccination

history, illness, some medications, sex, and stage of the

life course (e.g. pregnancy, infancy, old age). Lifestyle

factors including stress, physical fitness and diet also have

an influence (Figure 2). Diet is important because it

provides the nutrients that have vital roles in supporting

the immune response [6,7�], while other ‘non-nutrient’

components of foods can also play roles in supporting the

immune system. The diet provides:

� the fuels that provide energy for the immune system to

function;
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Figure 1
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The components of the immune system and their division into innate and acquired immunity. IFN, interferon; IL, interleukin; ILCs, innate lymphoid

cells; MAIT, mucosal associated invariant T; TGF, transforming growth factor; TNF, tumor necrosis factor. Taken from Ref. [4�].
� the building blocks to support the high level of biosyn-

thesis and cell replication required during the immune

response;

� substrates for the production of some immune-active

metabolites;

� many regulators of immune cell metabolism;

� agents with direct anti-microbial properties;

� anti-oxidants and anti-inflammatories providing the

host with protection from the oxidative and inflamma-

tory stress generated during the immune response;

� substrates for the development and maintenance of the

intestinal microbiota which in turn modulates the

immune system.

The aim of this article is to briefly describe the role of

specific dietary components, mainly micronutrients, in

supporting the immune response and to survey the lit-

erature regarding foods and diets/dietary patterns in the

context of immunity and infectious illness. Literature

that is relevant to SARS-COV-2 infection and COVID-

19 will be referred to where appropriate.
www.sciencedirect.com 
Key immune-supporting nutrients
Multiple micronutrients play vital roles in supporting the

immune response [7�,8,9,10��,11] (Table 1). The roles of

vitamins A, C and D and zinc, copper and iron are well

explored and fairly widely recognized, but B vitamins,

vitamin E, vitamin K, selenium, magnesium and others

also all have roles. Insufficient intake of several of these

micronutrients impairs many aspects of both innate and

acquired immunity and increases susceptibility to infec-

tions [7�,10��]. In many cases the immune impairments

can be reversed by repletion and this reduces suscepti-

bility to infection. Many micronutrients have been dis-

cussed in the context of infection with SARS-CoV-2 and

COVID-19 but vitamins C [12,13�] and D [14�,15��] and

zinc [16��,17�] have received the most attention.

Vitamin C

Vitamin C supports the activity of many cells of the

immune system (Table 1) [18] and helps to control

oxidative stress and inflammation. People deficient in

vitamin C are susceptible to severe respiratory infections

such as pneumonia and a meta-analysis reported a
Current Opinion in Food Science 2022, 43:136–145



138 Functional foods & nutrition

Figure 2
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Factors that influence the immune response. Note that the listing is not exclusive. Taken from Ref. [4�].
significant reduction in the risk of pneumonia with vita-

min C supplementation, particularly in individuals with

low dietary intakes [19]. Vitamin C supplementation has

also been shown to decrease the duration and severity of

upper respiratory tract infections, such as the common

cold, especially in people under enhanced physical stress

[20]. Multiple studies report an association between low

vitamin C status and increased susceptibility to, and

severity of, COVID-19 (e.g. Ref. [21]). Most studies

investigating the ability of vitamin C to treat COVID-

19 have focused on intravenous infusion rather than the

oral route, as reviewed elsewhere [22].
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Vitamin D

Vitamin D has pleiotropic actions within the immune

system but does support the activity of several immune

cell types [23]. Furthermore, some immune cells (e.g.

dendritic cells, macrophages) can produce the active form

of vitamin D suggesting it is important to immunity.

Vitamin D also promotes the production of antimicrobial

proteins such as cathelicidin and b-defensins. Vitamin D

deficiency impairs the response to the seasonal influenza

vaccine [24] and meta-analyses of randomised controlled

trials of vitamin D supplementation report reduced inci-

dence of respiratory tract infections [25]. Vitamin D
www.sciencedirect.com
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Table 1

Summary of the effects of various micronutrients on different aspects of immunity

Micronutrient Role in barrier function Role in cellular aspects of

innate immunity

Role in T-cell mediated immunity Role in B-cell

mediated immunity

Vitamin A Promotes differentiation of epithelial

tissue; Promotes gut homing of B-cells

and T-cells; Promotes intestinal

immunoglobulin A+ cells; Promotes

epithelial integrity

Regulates number and function

of NK cells; Supports

phagocytic and oxidative burst

activity of macrophages

Regulates development and

differentiation of Th1 and Th2 cells;

Promotes conversion of naı̈ve T-

cells to regulatory T-cells;

Regulates IL-2, IFN-g and TNF

production

Supports function

of B-cells; Required

for immunoglobulin

A production

Vitamin B6 Promotes gut homing of T-cells Supports NK cell activity Promotes T-cell differentiation,

proliferation and function,

especially Th1-cells; Regulates

(promotes) IL-2 production

Supports antibody

production

Vitamin B9

(Folate)

Survival factor for regulatory T-cells in

the small intestine

Supports NK cell activity Promotes proliferation of T-cells

and the Th1-cell response

Supports antibody

production

Vitamin B12 Important co-factor for gut microbiota Supports NK cell activity Promotes T-cell differentiation,

proliferation and function,

especially cytotoxic T-cells;

Controls ratio of T-helper to

cytotoxic T-cells

Required for

antibody

production

Vitamin C Promotes collagen synthesis;

Promotes keratinocyte differentiation;

Protects against oxidative damage;

Promotes wound healing; Promotes

complement

Supports function of

neutrophils, monocytes and

macrophages including

phagocytosis; Supports NK cell

activity

Promotes production,

differentiation and proliferation of T-

cells especially cytotoxic T-cells;

Regulates IFN-g production

Promotes antibody

production

Vitamin D Promotes production of antimicrobial

proteins (cathelicidin, b-defensin);

Promotes gut tight junctions (via E-

cadherin, connexion 43); Promotes

homing of T cells to the skin

Promotes differentiation of

monocytes to macrophages;

Promotes macrophage

phagocytosis and oxidative

burst

Promotes antigen processing but

can inhibit antigen presentation;

Can inhibit T-cell proliferation, Th1-

cell function and cytotoxic T-cell

function; Promotes the

development of regulatory T-cells;

Inhibits differentiation and

maturation of dendritic cells;

Regulates IFN-g production

Can decrease

antibody

production

Vitamin E Protects against oxidative damage Supports NK cell activity Promotes interaction between

dendritic cells and T-cells;

Promotes T-cell proliferation and

function, especially Th1-cells;

Regulates (promotes) IL-2

production

Supports antibody

production

Zinc Maintains integrity of the skin and

mucosal membranes; Promotes

complement activity

Supports monocyte and

macrophage phagocytosis;

Supports NK cell activity

Promotes Th1-cell response;

Promotes proliferation of cytotoxic

T-cells; Promotes development of

regulatory T-cells; Regulates

(promotes) IL-2 and IFN-g

production; Reduces development

of Th9 and Th17 cells

Supports antibody

production

particularly

immunoglobulin G

Copper Promotes neutrophil, monocyte

and macrophage

phagocytosis; Supports NK cell

activity

Regulates differentiation and

proliferation of T-cells; Regulates

(promotes) IL-2 production

Iron Essential for growth and differentiation

of epithelial tissue

Promotes bacterial killing by

neutrophils; Regulates balance

of M1 and M2 macrophages;

Supports NK cell activity

Regulates differentiation and

proliferation of T-cells; Regulates

IFN-g production

Selenium Supports NK cell activity Regulates differentiation and

proliferation of T-cells; Regulates

(promotes) IFN-g production

Supports antibody

production

Abbreviations used: IFN, interferon; IL, interleukin; NK, natural killer; Th, T-helper; TNF, tumor necrosis factor. Taken from Ref. [4�].
supplements seem most effective when given regularly,

rather than as a bolus, and in individuals with low starting

vitamin D status [25]. Multiple studies report an associa-

tion between low vitamin D status and increased
www.sciencedirect.com 
susceptibility to, and severity of, COVID-19 (e.g. Ref.

[26]) and meta-analyses report that vitamin D deficiency

increases risk of severe COVID-19, hospitalisation with

COVID-19 and mortality from COVID-19 [27,28]. A
Current Opinion in Food Science 2022, 43:136–145
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study in an Italian residential care home reported that a

bolus of vitamin D reduced mortality from COVID-19

[29]. Vitamin D supplementation in patients hospitalised

with COVID-19 is reported to reduce COVID-19 severity

(e.g. need for intensive care unit admission, mortality)

[30,31].

Zinc

Zinc supports the activity of many cells of the immune

system (Table 1) [32], helps to control oxidative stress and

inflammation and has specific anti-viral actions [33]

including inhibiting the replication of coronaviruses

[34]. Zinc supplementation improves some markers of

immunity especially in older people or those with low

zinc intake [35] and improves vaccination responses [36]

and meta-analyses of randomised controlled trials of zinc

supplementation report reduced incidence of lower respi-

ratory tract infections [37,38]. Multiple studies report an

association between low zinc status and increased sus-

ceptibility to, and severity of, COVID-19 (e.g. Ref. [39]).

Zinc supplementation in patients hospitalised with

COVID-19 is reported to reduce risk of poor outcome

including mortality [40,41].

Selenium

Selenium supports the function of many immune cell

types (see Table 1) [42,43] and helps to control oxidative

stress and inflammation. Extensive research in mice has

shown that selenium deficiency impairs multiple immune

responses and increases susceptibility to viral infection

[44]. Furthermore, selenium deficiency in mice permits

viral mutation, including of influenza viruses, so allowing

normally weak viruses to become more virulent; research

on selenium and viral infections has been comprehen-

sively reviewed recently [44]. The permissive effect of

selenium deficiency on viral mutation and virulence

seems to relate the higher oxidative stress that exists in

the absence of sufficient selenium. Selenium supplemen-

tation has been shown to enhance some markers of

immunity in humans [45], although not all studies show

this. Differences in the findings of different studies might

relate to starting selenium status, and the selenium dose

and the matrix used. Several studies report an association

between low selenium status and increased susceptibility

to, and severity of, COVID-19 (e.g. Ref. [39]). The

potential for selenium to play a role in defence against

SARS-CoV-2 and COVID-19 is nicely discussed else-

where [46��,47��].

Amino acids and fatty acids

In addition to micronutrients, other essential nutrients,

including amino acids and fatty acids, play important roles

in supporting the immune system, and even non-essential

amino acids and fatty acids seem important in this regard

[48,49]. Both amino acids and fatty acids are important

biosynthetic precursors (e.g. amino acids for proteins like

antibodies and cytokines involved in the immune
Current Opinion in Food Science 2022, 43:136–145 
response and fatty acids for membrane lipid components

to support production of new immune cells) and both give

rise to specific immunologic mediators (e.g. arginine gives

rise to nitric oxide which is toxic to bacteria and omega-6

and omega-3 polyunsaturated fatty acids give rise to lipid

mediators that are important regulators of immunity and

inflammation). A recent study reported some benefits of

omega-3 fatty acids in patients hospitalised with COVID-

19 [50].

Important non-nutrient components of the
diet
In addition to the ‘classic’ nutrients described above, the

diet also provides non-nutrients that are bioactive and

some of these likely have a role in supporting the immune

system to function and in helping to control oxidative and

inflammatory stress. The effects of plant polyphenolic

compounds in promoting resilience to infection have

been discussed elsewhere recently [51��,52��,53�], as have

the possibilities of these compounds to possess direct

anti-viral activities [54,55]. Beta-glucans are another class

of compounds of plant origin that have been demon-

strated to have unique actions that result in immune

training and immune support, as reviewed elsewhere

recently [56,57�].

The importance of the gut microbiota to the
immune system
Commensal bacteria within the gastrointestinal tract play

a role in host immune defence by creating a barrier against

entry of pathogens into the body and through the pro-

duction of lactic acid and antimicrobial proteins which can

directly inhibit the growth of pathogens. Commensal

organisms also interact with the host’s gut epithelium

and gut-associated immune tissues [58]. These commu-

nications with the host occur through chemicals released

from the bacteria (e.g. short chain fatty acids) or through

direct cell-to-cell contact [58]. As a result of such actions,

it likely that nutritional strategies that promote the

growth of such commensal organisms will contribute to

supporting the immune system. Some of the dietary

components already mentioned, including vitamin D,

omega-3 fatty acids, plant polyphenolics and beta-glu-

cans, can influence the gut microbiota, but dietary fiber

and prebiotic oligosaccharides have a much greater effect

and typically promote the growth of lactobacilli and

bifidobacteria that are considered to support immunity.

In this regard, probiotic organisms are more widely stud-

ied and some lactobacilli and bifidobacteria have been

shown to enhance some aspects of immunity including

the response to vaccination [59–62]. These immune

effects suggest that modifying the gut microbiota, partic-

ularly with probiotic organisms, could protect against

infections. Systematic reviews and meta-analyses report

that some probiotics can reduce the risk or duration of

gastrointestinal infections (see Ref. [7�] for references),

but there is also evidence that they reduce the incidence
www.sciencedirect.com
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of respiratory infections and promote a better outcome,

particularly in children [63–69]. This effect is likely due

to the so-called gut-lung axis [70�], whereby altered gut

microbiota affects cells that are part of the gut-associated

immune system and these cells move to the lung-associ-

ated immune system to elicit beneficial actions.

Foods as sources of immune-supporting
nutrients and non-nutrients
It is evident that a wide range of micronutrients (vitamins

and minerals), amino acids, fatty acids and plant bioac-

tives have roles in supporting the immune response, so

contributing to host defence against pathogens, and in

controlling oxidative and inflammatory stress, which are

damaging to the individual. Therefore, in the interests of

assuring the best possible immune response if an indi-

vidual becomes infected, it would seem prudent to con-

sume sufficient amounts of a broad range of essential and

non-essential nutrients and other bioactives, although in

most cases the amounts needed are not explicitly defined

for the immune response [7�,11]. Many, although not all,

of the important dietary components come from plant

foods. Therefore, as stated elsewhere [7�] probably ‘the

best diet to support the immune system is one with a

diverse and varied intake of vegetables, fruits, berries,

nuts, seeds, grains and pulses along with some meats,

eggs, dairy products and oily fish to provide the nutrients

that are hard to get enough of from plant-based foods’.

This diet is consistent with those regarded as generally

healthy [71], is consistent with current dietary guidelines

[72] and would also promote a healthy gut microbiota [73],

particularly if some fermented foods were included.

Although a number of studies have examined the effects

of individual foods and entire diets on inflammation,

there are few such studies focussing on immune out-

comes. However, in one randomised controlled trial

researchers compared the effect of low (�2 servings

per day) and high (�5 servings per day) intakes of fruits

and vegetables on immune outcomes in older people [74].

After 12 weeks of the dietary intervention, the antibody

response to the pneumococcal vaccine was higher in the

group consuming the higher amount of fruits and vege-

tables [74]. This is good evidence that a diet richer in

fruits and vegetables supports a stronger immune

response, most likely because of the nutrients and bioac-

tives that fruits and vegetables can deliver to the body. In

this regard, studies of fruit juice and of an encapsulated

concentrate of fruits and vegetables reported improve-

ments in immune biomarkers [75–77] and a decrease in

respiratory illness [77,78]. Recent studies have reported

relationships between dietary patterns and susceptibility

to, or severity of, COVID-19 [79�,80�].

Merino et al. [79�] used data from 592 571 users of a

smartphone-based COVID-19 symptom app which also

collected dietary information via a short food frequency

questionnaire. The authors assessed diet quality using a
www.sciencedirect.com 
‘plant-based diet score’, which emphasises healthy plant

foods such as fruits and vegetables. 31 815 COVID-19

cases were reported. Compared with individuals in the

lowest quartile of the diet score, high diet quality was

associated with lower risk of COVID-19 (defied as a self-

reported positive SARS-CoV-2 test) and severe COVID-

19 (defined as self-reported hospitalisation with need for

oxygen support): the hazards ratios for highest versus

lowest quartile of diet quality were 0.91 (95% confidence

interval (CI) 0.88–0.94) and 0.59 (95% CI 0.47–0.74) for

infection and severity, respectively. The authors con-

cluded that ‘a diet characterised by healthy plant-based

foods was associated with lower risk and severity of

COVID-19’.

Kim et al. [80�] analysed data from a web-based survey of

healthcare workers from six countries (France, Germany,

Italy, Spain, UK, USA) who had substantial exposure to

COVID-19 patients. There were 568 COVID-19 cases

(138 moderate-to-severe and 430 mild-to-moderate) and

2316 controls. Participants self-reported habitual con-

sumption of one of eleven dietary types. These were

then combined to create three different dietary patterns:

plant-based, pescatarian, and low carbohydrate high pro-

tein. After adjusting for various confounders, participants

who reported following ‘plant-based diets’ and ‘plant-

based diets or pescatarian diets’ had lower odds ratios

(0.27 (95% CI 0.10–0.81) and 0.41 (95% CI 0.17–0.99)) of

moderate-to-severe COVID-19 compared with those who

did not follow these diets. The authors concluded that

‘plant-based diets or pescatarian diets were associated

with lower odds of moderate-to-severe COVID-19. These

dietary patterns may be considered for protection against

severe COVID-19’.

Summary and perspectives
The existing evidence indicates that multiple micronu-

trients, other essential and non-essential nutrients, cer-

tain bioactives and also those dietary components that

promote a diverse, healthy gut microbiota play vital roles

in supporting all aspects of the immune response. Thus,

the intake of these nutrients and non-nutrients needs to

be considered in the context of susceptibility to viral (and

other) infections and the subsequent severity of illness.

The roles of specific nutrients including vitamin D and

zinc in anti-viral immunity seem to be important.

Amongst other micronutrients, selenium may be more

important than is generally considered: the ability of

selenium to prevent viral mutation is intriguing in the

context of the emergence of SARS-CoV-2 variants. Fur-

thermore, low intakes of several micronutrients impair

vaccination responses [81] and so intakes of these must be

considered in the context of the current and future

COVID-19 and other vaccination programmes. Although

infection with SARS-CoV-2 and the resulting disease,

COVID-19, have focussed attention on the need for

individuals to have a sufficiently strong immune response
Current Opinion in Food Science 2022, 43:136–145
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to remain healthy, concern about ‘immune health’ will

remain relevant in the contexts of recovery from infec-

tion, emergence of new variants of viruses, vaccination

and possible future pandemics.

Research published over the last two years has reported

many times that low status of a number of vitamins and

minerals is associated with increased risk and severity of

COVID-19. It is important to keep in mind that such

observations do not demonstrate cause-and-effect rela-

tionships. Furthermore, although some trials providing

(often high doses of) specific micronutrients to patients

with COVID-19 report benefits, many of these trials do

not have an optimal design and not all trials do report

benefit. It is also important to differentiate protective

strategies from treatment strategies. Actions like wearing

face masks, frequent hand washing and using hand sani-

tiser, social distancing and isolation limit exposure to

pathogens and so they work to reduce infection risk.

Having a strong immune response also reduces infection

risk because it enables the individual to deal with the

pathogens that they are exposed to, keeping them in

check and even eliminating them. The result is that the

individual will be infection free or have a low level of

infection and remain asymptomatic or with low grade

symptoms. Thus, strategies to support the immune sys-

tem, including dietary strategies, can be an important

contributor to prevention (and control) of infection. Once

an individual has signs of significant infection and

requires hospitalisation their immune system still

requires support: it is well described that in individuals

hospitalised with COVID-19, those with a weaker

immune response and with exaggerated inflammation

show a poorer outcome [82–84]. However, these individ-

uals also show progressive impairments of other physio-

logical systems [82]. Hence, where specific nutrients such

as vitamin C [22], vitamin D [30,31], zinc [43,44] and

omega-3 fatty acids [50] have been used therapeutically

in patients hospitalised with COVID-19 it is unclear

whether the benefits reported are due to effects on the

immune system, on inflammation or on other systems in

the body, or indeed on all of these.

Research in this field is important to help society deal

with the continuing pandemic and to prepare for future

pandemics. Further research is needed to define cause-

and-effect relationships of intakes of individual nutrients,

other dietary components and foods, and dietary patterns

with susceptibility to, and severity of, viral infections.

Even so, although many nutrients and bioactives are

provided as part of a diverse, plant-based diet there is

a question about whether sufficient amounts of some of

the key immune active micronutrients (vitamin D, vita-

min C, vitamin E, zinc, selenium), and perhaps some of

the other bioactives, can be obtained from the diet [7�,11].
Thus, whether supplements are necessary to provide the

relevant intakes of these components and whether
Current Opinion in Food Science 2022, 43:136–145 
immune-targeting functional foods with enriched levels

of some of the key components can be developed are

important questions.

Conclusions
Multiple micronutrients, other essential and non-essen-

tial nutrients, certain bioactives and also those dietary

components that promote a diverse, healthy gut micro-

biota play important roles in supporting all aspects of the

immune response. In order to support the immune

response to help individuals deal effectively with patho-

gens should they become infected it would seem prudent

to consume sufficient amounts of these nutrients and

other bioactives, mainly from a plant-based diet. In sup-

port of this, recent studies report associations of plant-

based diets with lower risk of, and less severe, COVID-19.
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