
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 8, NUMBER 1, WINTER 2007

47 © 2007 Am. Coll. Med. Phys. 47

Comparison between measured and calculated dynamic
wedge dose distributions using the anisotropic analytic
algorithm and pencil-beam convolution

Paola Caprile,a Carlos Daniel Venencia,b and Pelayo Besa
Pontificia Universidad Católica de Chile, Centro de Cáncer “Nuestra Señora de la
Esperanza,” Santiago, Chile
pfcapril@puc.cl; venencia@med.puc.cl

Received 8 August 2006; accepted 6 October 2006

We used the two available calculation algorithms of the Varian Eclipse 7.3 three-

dimensional (3D) treatment planning system (TPS), the anisotropic analytic

algorithm (AAA) and pencil-beam convolution (PBC), to compare measured and

calculated two-dimensional enhanced dynamic wedge (2D EDW) dose distribu-

tions, plus implementation of the dynamic wedge into the TPS. Measurements

were carried out for a 6-MV photon beam produced with a Clinac 2300C/D linear

accelerator equipped with EDW, using ionization chambers for beam axis mea-

surements and films for dose distributions. Using both algorithms, the calculations

were performed by the TPS for symmetric square fields in a perpendicular configu-

ration. Accuracy of the TPS was evaluated using a gamma index, allowing 3% dose

variation and 3 mm distance to agreement (DTA) as the individual acceptance crite-

ria. Beam axis wedge factors and percentage depth dose calculation were within 1%

deviation between calculated and measured values. In the non-wedged direction,

profiles exhibit variations lower than 2% of dose or 2 mm DTA. In the wedge direc-

tion, both algorithms reproduced the measured profiles within the acceptance criteria

up to 30 degrees EDW. With larger wedge angles, the difference increased to 3%.

The gamma distribution showed that, for field sizes of 10×10 cm or larger, using an

EDW of 45 or 60 degrees, the field corners and the high-dose region of the distribu-

tion are not well modeled by PBC. For a 20×20 cm field, using a 60-degree EDW

and PBC for calculation, the percentage of pixels that do not reach the acceptance

criteria is 28.5%; but, using the AAA for the same conditions, this percentage is only

0.48% of the total distribution. Therefore, PBC is not reliable for planning a treat-

ment when using a 60-degree EDW for large field sizes. In all the cases, AAA models

wedged dose distributions more accurately than PBC did.
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I. INTRODUCTION

Wedge-shaped isodoses are required in many clinical situations. Sloping distributions can be

obtained by inserting a physical wedge in the beam. However, physical wedges have several

unfavorable functional and dosimetric characteristics(1) such as beam hardening, fixed wedge

angles, and limited field size.

b Carlos Daniel Venencia, Pontificia Universidad Católica de Chile, Centro de Cáncer “Nuestra Señora de la

Esperanza,” Diagonal Paraguay 319, Santiago, Chile; phone: +5623546831; fax: +5622472327; email:

venencia@med.puc.cl

a Corresponding author: Paola Caprile, Pontificia Universidad Católica de Chile, Centro de Cáncer “Nuestra

Señora de la Esperanza,” Diagonal Paraguay 319, Santiago, Chile; phone: +56-2-354-6901; fax: +56-2-247-2327;

email: pfcapril@puc.cl



48 Caprile et al.: Comparison between measured and calculated... 48

Journal of Applied Clinical Medical Physics, Vol. 8, No. 1, Winter 2007

With the advent of computer control, the simulation of wedge filters by movement of the

collimator jaw during the irradiation process becomes possible.(2) The dynamic wedge (DW)

has considerable advantages over the physical wedge. The use of DW requires accurate con-

figuration of the treatment planning system (TPS). Implementation of DW requires measurement

of percentage depth doses (PDDs), beam profiles, and wedge factors (WFs). Measurements must

take into account the need for integration of the dose at the measurement point for the wedged fields

during the entire exposure. The procedure has been described in previous works.(3–6)

Varian Enhanced Dynamic Wedge (EDW—Varian Medical Systems, Palo Alto, CA) pro-

vides seven wedge angles (10, 15, 20, 25, 30, 45, and 60 degrees), generating sloping dose

distributions by moving one of the jaws with variable speed while the opposite remains steady.

The relationship between jaw position and the percentage of total monitor units delivered is

described in a segmented treatment table. The segmented treatment table is used to generate

the primary intensity function matrix used by the pencil-beam convolution (PBC).(7)

The Varian Eclipse TPS (Varian Medical Systems) employs two calculation algorithms, the

anisotropic analytic algorithm (AAA) and a PBC. Even though the PBC does not consider

extrafocal radiation, it agrees well with the measurements in the field axis; however, it can

present inaccuracies in the calculation of dose distributions at the field corners, especially for

rectangular- and square-wedged fields.(8) The AAA uses pre-calculated Monte Carlo simula-

tions based on a convolution model(9) and takes into account extrafocal radiation and electron

contamination.(10)

Several works that compare measured and calculated dose in the field axis using DW, such

as Papatheodorou et al. 1998,(3) Bayouth and Steinberg 1997,(5) and Samuelsson et al. 1997(7),

conclude that the TPS accurately models the wedged dose distributions for symmetric fields,

with dose variations below 2% of the normalization or 2 mm for regions with high dose gradi-

ent. However, no reports using DW compare measured with calculated two-dimensional (2D)

dose distributions.

The present work compares EDW between measured 2D dose distributions in the plane

perpendicular to the beam axis and those generated by the TPS using the PBC and the AAA.

II. MATERIALS AND METHODS

A linear accelerator, Clinac 2300 C/D (Varian Medical Systems), was used to produce a 6-MV

photon beam and generate the EDW. The dose distributions were calculated by the three-

dimensional (3D) Eclipse 7.3 TPS using the AAA and the PBC. Measurements were carried

out for square fields, with a 100-cm source-to-surface distance (SSD) configuration, for seven

EDW angles and open field.

A. Calculation algorithms
A.1 Pencil-beam convolution
The PBC model generates the dose distribution matrix by convolution of pencil-beam kernels with

a non-uniform field function; the pencil-beam kernels are derived from open-beam measurements.(11)

The DW dose calculation(12) uses only open-field data. Dose distribution is determined by

superposition of asymmetric rectangular fields in the wedge direction. The contribution of

each asymmetric field is calculated convolving the scatter kernel with the field function, which

takes a value of 0 or 1 depending on whether it is considered to be inside or outside each field.

Depth dose is obtained by the addition of all asymmetric field contributions.

A.2 Anisotropic analytic algorithm
The AAA is a 3D pencil-beam convolution superposition algorithm that has separate modeling for

primary photons, scattered extrafocal photons, and electrons scattered from the beam-limiting devices.
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Dose calculation is based on separate convolution models for primary and extrafocal

photons, contaminating electrons, and photons scattered from the beam-limiting devices.

Clinical broad beam is divided into small, finite-sized “beamlets” to which the convolu-

tions are applied. The final open-field dose distribution is obtained by superposition of the

dose contribution calculated with the photon and electron convolutions for the individual

beamlets.(9)

The DW dose calculation is computed by using the PBC algorithm plus superposition of

asymmetric rectangular fields in the wedge direction.

B. Commissioning
The AAA and PBC require the same set of dosimetric data for commissioning. The

TG-53 protocol from the American Association of Physicists in Medicine was used to

acquire experimental data for commissioning. The measurements performed included

output factors for fields with dimensions 2, 3, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, and 40 cm

(square fields and combinations of these) and dose profiles at d
max

 (15 mm) and 50,

100, 200, and 300 mm. Relative dosimetry was performed using a PTW PinPoint 31014

ionization chamber (PTW Freiburg, Freiburg, Germany) and a Blue Phantom

(Scanditronix Wellhofer, Uppsala, Sweden). For PDD measurements, we used a

Wellhofer IC-10 (Scanditronix Wellhofer) cylindrical ionization chamber in addition

to the PinPoint.

C. Evaluation of calculations
We evaluated the TPS by comparing measurements and calculations performed under the same

conditions, based on a phantom created by the TPS with a homogeneous density of 1 g/cm3,

emulating a plastic water phantom with density of 1.013 g/cm3. The slice spacing and resolu-

tion of the phantom were 1 mm and 0.78×0.78 mm respectively. The calculation grid was

2.5×2.5 mm for the PBC and AAA calculations.

C.1 Beam axis
Measurements were performed in a water phantom MT-DDA (Med-Tec, Orange City, IA) with

a 0.125-cc Semiflex 31010 ionization chamber (PTW Freiburg), and a Keithley MK614 elec-

trometer (Keithley Instruments, Cleveland, OH).

Measurements of WF were performed for two depths (5 and 10 cm) and for square fields of

dimensions 4, 5, 6, 8, 10, 12, 15, and 20 cm. The PDDs were determined for 10×10 cm and

20×20 cm fields at depths of 1.5, 5, 10, 15, 20, 25, and 26.7 cm.

C.2 Off-axis
Dose distributions were measured using EDR2 Ready-Pack films (Eastman Kodak Com-

pany, Rochester, NY). Film irradiation was performed at 5 cm depth in a plastic water

phantom for 4×4, 10×10, 15×15, and 20×20 cm field size settings. To reduce the variabil-

ity of working conditions, the calibration(13) and dosimetry measurements were performed

in a single session.

An automatic film developer (FPM 2800: FUJI Photo Film, Tokyo, Japan) was used. The

films were scanned using a Vidar VXR-12 film scanner (Vidar Systems Corporation, Herndon,

VA) for later analysis with RIT 113 V4 software (Radiological Imaging Technology, Colorado

Springs, CO).

Measured dose distributions and the TPS-generated dose matrix were imported by RIT for

dose distribution comparison (profiles and 2D distributions). The criterion employed to evalu-

ate the accuracy of the TPS calculations was the gamma index,(14) with individual acceptance

criteria of 3% dose difference and 3 mm distance to agreement (DTA).
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III. RESULTS

During the commissioning, it was possible to verify for the open fields a better adjustment of

the penumbra region when using the AAA than when using the PBC.

The variation was less than ±1% between the WFs measured at 5 and 10 cm depth. These factors

decrease with the increase of wedge angle and field size in the wedged direction. Calculations made

with the available algorithms adjust to the beam axis measurements with less than 1% variation.

The PDD measurements for the seven wedge angles exhibited a maximum deviation of

±0.9% with respect to the open-field PDD. The difference between measured and calculated

PDDs remained under ±1% for both algorithms (comparing either open or wedged fields).

The calculated profiles in the non-wedged direction for all measured fields exhibited varia-

tions of less than 2% of the dose at the normalization point (central axis) or 2 mm in large dose

gradient regions. These results were obtained using the AAA and the PBC (Fig. 1).

In the wedged direction, the penumbra region was observed to be well modeled by the AAA

(Fig. 2). For wedge angles of 45 and 60 degrees, the PBC always underestimated the maximum

dose and slightly overestimated the dose in the “heel” region (Figs. 2 and 3).

Both algorithms reproduced the measured profiles with deviations below 2% of the nor-

malization dose for wedge angles up to 30 degrees EDW. For larger wedge angles using

large field sizes, especially in the ‘‘toe’’ region, the difference for the profiles can increase to

more than 3% for the PBC calculations (Fig. 3). In every case, the AAA modeled the beam

profiles more accurately.

Fig. 4 shows gamma distributions for different wedge angles; the measured dose distribu-

tions were compared with those calculated using the AAA and the PBC. It is important to note

that the region of the distribution in which the calculation fails grows with the wedge angle. It

is also evident that the penumbra is consistently well modeled by the AAA. However, the most

important difference between the two algorithms can be observed in the field corners and the

high-dose region, where the difference between measured and calculated dose distributions

reaches 7% or more. The difference between the methods increases for larger wedge angles

and larger field sizes.

A quantitative analysis of the dose distribution comparison confirms the differences indi-

cated previously. The plot (Fig. 5) shows the percentage of pixels in the distribution that exceed

the acceptance criteria for both calculation algorithms. In all cases, it is easy to note that the

AAA models the dose distribution more accurately than the PBC does. Both algorithms from

FIG. 1. Measured and calculated horizontal (non-wedged direction) profiles for a 60-degree enhanced dynamic wedge
(EDW) 20×20-cm field. Cyan and blue lines represent the difference between measured and calculated profiles using the
anisotropic analytic algorithm (AAA) and pencil-beam convolution (PBC) respectively. Error bars represent 2% of the
normalization dose.
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the TPS adequately model the wedged distribution dose up to 45 degrees, with a small percent-

age of pixels beyond the acceptance criterion for the gamma index: maximum of 5.33% of the

distribution for a 20×20 cm field with 45 degrees EDW. The disagreement regions correspond

almost completely to the field edges, where the penumbra is not well modeled. For large field

sizes with 60 degrees EDW, the percentage of pixels beyond the acceptance criterion is less

than 1% using the AAA, but can increase up to 28.5% of the distribution using PBC.

(a) (b)

FIG. 2. Measured and calculated wedge profiles for a 45-degree enhanced dynamic wedge (EDW). Cyan and blue lines
represent the difference between measured and calculated profiles, using the anisotropic analytic algorithm (AAA) and
pencil-beam convolution (PBC) respectively. (A) 15×15-cm field. (B) 20×20-cm field. Error bars represent 2% of the
normalization dose.

(a) (b)

FIG. 3. Measured and calculated wedge profiles for a 60-degree enhanced dynamic wedge (EDW). Cyan and blue lines
represent the difference between measured and calculated profiles, using the anisotropic analytic algorithm (AAA) and
pencil-beam convolution (PBC) respectively. (A) 15×15-cm field. (B) 20×20-cm field. Error bars represent 2% of the
normalization dose.
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IV. DISCUSSION

Consistent with previously published data, PDDs and WFs show good agreement with the TPS

calculations. Measurements of PDD reveal that the inclusion of EDW into the treatment does

not produce beam hardening.

Off-axis measurements demonstrate additional differences with the calculations from both

algorithms. Measured beam profiles in the wedge direction do not exhibit greater deviation

from those calculated, except for the penumbra region with the PBC. The difference for the

FIG. 4. Gamma distribution for a 20×20-cm field using the anisotropic analytic algorithm (AAA, left panels) and pencil-
beam convolution (PBC, right panels), for 30 degrees (upper panels) and 60 degrees (lower panels) enhanced dynamic
wedge (EDW). The upper parts of the distributions represent the low-dose region of the wedged field; green indicates
regions where gamma ≤ 1; and red indicates gamma > 1 (individual criteria: ∆%D = 3%, DTA = 3 mm).

FIG. 5. Percentage of pixels in the dose distribution comparison with gamma > 1 and individual acceptance criteria of
∆D = 3% and DTA = 3 mm, considering the penumbral zone. Blue bars correspond to the film–pencil-beam convolu-
tion (PBC) comparisons, and red bars to the film–anisotropic analytic algorithm (AAA) comparisons.
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PBC is related to the fact that pencil-beam kernels, used to generate the dose distribution ma-

trix, require open-field data measured with an ionization chamber (in this case). The chamber

integrates the dose within its cavity, resulting in a less sharp penumbra (high dose gradient

region) than the one measured with film, which has a spatial resolution limited only by the

resolution of the scanner. It is then possible to think that the width of the penumbra is more

related to the measurement method than to the algorithm itself.

Analysis of the entire dose distribution for PBC demonstrates that, apart from the difference

in the penumbra region, when the field size and wedge angles are increased, the high-dose

region and field corners of the calculated distribution do not fulfill the acceptance criteria

(maximum of 3% dose difference or 3 mm DTA deviation). The variation can be explained by

taking into account the fact that the PBC calculates the wedged distribution using a superposi-

tion of many rectangular fields without considering extrafocal radiation. The fact that many

open fields are superposed to model the DW, considering that inaccuracies are a consequence

of the open field modeling, yields greater inaccuracies for this kind of treatment.

On the other hand, the AAA calculates the open-field distribution considering primary and

extrafocal radiation from head-scatter effects. Therefore, because the open-field modeling is

better with the AAA, wedged dose distributions calculated with this algorithm (by the same

method as the PBC) are closer to measured ones.

Using both algorithms, the TPS models the dose distribution accurately up to 45 degrees

EDW, with more than 90% of the dose distribution having a gamma index below 1. However,

for large fields with 60 degrees EDW, only the AAA models the dose distribution within the

established tolerance, achieving the acceptance criteria in more than 99% of the distribution

for all the measured field sizes using the available wedge angles. For 60 degrees EDW and

large fields, the PBC does not accurately model the dose distributions.

V. SUMMARY AND CONCLUSIONS

Dynamic wedges have many advantages as compared with physical wedges, such as no beam

hardening and lower peripheral doses, but to be used in clinical treatments, they require a

complete implementation. “Complete implementation” means that, besides beam axis mea-

surements (PDDs and WFs) and beam profiles, evaluation of the calculated dose distributions

is important, especially for large field sizes when using 60 degrees EDW.

The present work shows that, for all studied conditions, the AAA models wedged dose

distributions more accurately than the PBC does; the difference between the algorithms are

more significant for large wedge angles and large field sizes. It must be emphasized that the

use of PBC for planning large-field treatments with 60 degrees EDW could lead to inaccura-

cies of clinical significance.

Future studies should evaluate TPS precision in modeling dose distributions for asymmetric

fields and parallel opposed configurations.
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