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A B S T R A C T   

Machine learning technology has a growing impact on radiation oncology with an increasing presence in 
research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery 
presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing 
this potential requires standardization of tools and data, and focused collaboration between fields of expertise. 
The rapid advancement of radiation oncology treatment technologies presents opportunities for machine 
learning integration with investments targeted towards data quality, data extraction, software, and engagement 
with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing 
advances in applying machine learning to radiation oncology and integrating these techniques into the radiation 
oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning 
has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and 
overall treatment outcomes. This review highlights that machine learning has key early applications in radiation 
oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data 
management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement 
in research utilizing machine learning and the ability integrate these technologies into clinical workflow to 
benefit patients. Physicists need to be part of the conversation to facilitate this technical integration.   

1. Introduction 

Recently the emergence of machine learning techniques in radiation 
oncology has led to increased interest in the future of automation in the 
field [1]. There are a number of components in the oncology patient 
pathway which may be augmented with machine learning techniques in 
order to improve efficiency, consistency and most importantly patient 
outcomes [2,3]. For an incoming patient, the initial decision following 
appropriate cancer staging is whether to treat with a treatment modality 
such as surgery, chemotherapy, radiation therapy or immunotherapy, 
either alone or in combination [4]. These decisions are typically sup
ported by clinical trial results and from outcome and/or toxicity 

modelling [5]. For radiation therapy, subsequent decisions become 
progressively detailed as to target volumes, in relation to tumour loca
tion, nodal regions and organs at risk (OARs) with the aid of segmen
tation tools. This is followed by treatment management, through 
optimizing treatment planning and compensating for motion during 
treatment. The decisions are ultimately linked by review of treatment 
details once a complete treatment strategy is derived and can lead to 
adaptive changes throughout the clinical process. Appropriate data 
management may facilitate continuous feedback and learning based on 
each new patient that enters the clinic [6,7]. 

A survey of radiation oncology medical physicists found that most 
are either using or preparing to use machine learning in the clinic (69%) 
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however they identified the need for accessing multicentre databases 
and for further training opportunities [8]. Similarly, a survey of prac
ticing radiation oncology professionals including physicists, radiation 
therapists and oncologists, found that most respondents saw the po
tential for increased automation (including machine learning) in their 
departments in the future while many also responding that they lacked 
training and tools to implement these technologies in the clinic [9]. 
Previous machine learning reviews in radiation oncology have primarily 
focused on specific aspects such as image segmentation [10], model 
quality assurance [11], radiomics [12,13], decision support systems [7]. 
A more general review focused on the key considerations for clinicians 
in applying machine learning and illustrated the ideas with only three 
case studies and algorithms [14]. Tseng et al [15], presented an over
view of machine learning with visualisations of particular algorithms 
and the applications were also discussed with single case studies. In this 
current article an overview of concepts of machine learning is presented 
together with a general workflow diagram that is broadly applicable to 
machine learning algorithms. This is followed by a review of four major 
areas of radiation oncology, as displayed in Fig. 1, each of which align 
closely with key areas identified in the surveys as current or future ap
plications of machine learning [8]. 

2. Methods and materials 

The fundamentals of machine learning are first reviewed for back
ground, this is followed by the review of applications as shown in Fig. 1 
which depicts the workflow of planning and treatment processes in ra
diation therapy. The highlighted areas that provide focus for this review 
are based on the perceived impact that machine learning can have on 
patient outcomes in these areas. We further discuss potential future 
challenges and directions relevant to medical physicists in radiation 
oncology and medical imaging. Search strategy and terms were targeted 
to each specific focus area, and was limited to radiation oncology, 
medical physics and medical imaging journals. 

3. Machine learning 

The goal of machine learning is to build systems that automatically 
improve through experience, where this experience is encoded in sta
tistical models derived from past examples of input–output data. These 
systems seek to automate the generation of outputs given future inputs 
by modelling the underlying statistical patterns that manifest in the 
input–output observations with intention of developing decision rules 
requiring minimal to no human intervention [16,17]. There are sub
stantial benefits in deploying such automation in medicine, including 
increasing the speed and efficiency of manually laborious tasks [18], 
standardizing output where subjective or human errors are a significant 

factor [19], or potentially improving accuracy where outcomes are 
definitive. There have been increased investments in machine learning 
technology by commercial and research sectors in recent years due to 
the highly practical solutions that can be obtained [17,20]. 

In the context of physics, imaging and radiation oncology, uncer
tainty exists over appropriate treatment selection, precisely where to 
apply treatment and how to adapt and manage treatments [21]. Where 
there is a lack of clarity for clinicians making decisions in these areas, 
machine learning models may provide a personalised risk analysis of 
potential scenarios based on prior data. From this perspective, the role of 
machine learning is largely an assistive one as decision support. Another 
consideration is more definitive tasks, such as those currently requiring 
manual interventions in an adaptive therapy setting or involve real-time 
tracking, which could be partially or fully automated with the aid of 
machine learning models, either reducing clinician workload or 
improving treatment techniques. 

Fundamentally, the problem needs to be defined in terms of a set of 
output or outcome values and a set of input or predictor values. If output 
values are available, the problem is considered supervised learning and 
the model is optimised or trained to match the input–output relation. 
This takes the form of a regression problem for continuous (real-valued) 
outputs and classification if the output stratifies into distinct groups or 
labels. If the set of output values are constant the problem is a one-class 
classification or anomaly detection, whereby the current data set cor
responds to ‘normal’ samples and any future significant deviation from 
this data is considered an outlier. If, however, there are no output values 
available, then the problem is by contrast referred to as unsupervised 
learning. Without outcomes to guide the model the focus is on describing 
a latent structure to the data. Success is then gauged by how useful the 
predicted structure of outputs is in future learning tasks or if a previously 
unknown structure to the data is indicated, the model can lead to further 
exploratory analyses or inform hypothesis generation. In practice, sig
nificant manual effort or extensive measurements are usually required to 
obtain output values. However, to mitigate this limitation, a semi- 
supervised approach can leverage patterns present in unlabelled input 
data towards a supervised prediction model. This is achieved by treating 
the unsupervised learning as an initialization of the model parameters 
before fine-tuning with a smaller set of complete input–output pairs. 
Recent image recognition models have employed this approach with one 
or zero-shot learning for scarce categories [22,23]. 

An important aspect of machine learning is the selection of models 
among many potential candidates and this is conducted through a 
further optimization. This entails exploring the space of potential model 
types or structures as defined by hyperparameters which control model 
complexity. Model performances are compared by testing the model on 
data unseen by the model. This is necessary to assess whether the model 
has been overfit, that is, the model has specialised on the training data 

Fig. 1. Radiation Oncology treatment pro
cess with red boxes indicating steps where 
machine learning has been applied refer
enced to relevant sections of the article. The 
green boxes refer to clinical review before 
and after treatment, the red include the 
treatment planning process and blue treat
ment. Section 4; predicting outcomes 
following radiation therapy, section 5; deci
sion support, section 6; segmentation, sec
tion 7; treatment planning, section 8; image 
guidance and motion management. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   
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and is incapable of generalising to unseen data in the same problem 
domain. If minimal data is available for independent testing, a cross- 
validation procedure can be employed whereby data is partitioned 
into alternating observed and unobserved groups for sequential evalu
ation. Alternatively, if the likelihood function for the model is tractable, 
readily sampled or can be approximated then a Bayesian model selection 
is an effective approach due to convergence properties [24]. Many 
models involve the assumption of independent and identically distrib
uted (IID) data and consequently training and validation data sets are 
often randomly shuffled ensuring this statistical property in model 
construction. However, this may not always be an appropriate 
assumption in an applied setting. The data distribution may not be 
stationary, it may change over time, in oncology due to treatment 
technique and population demographic changes, or the distribution in 
another geographical location may not match that of the model devel
opment cohort [25,26]. In recent years, to account for this situation 
attention or memory mechanisms can be embedded into the model 
development [27]. Fig. 2 provides a graphical description of the process 
of building and validating machine learning models. 

From the health epidemiology perspective, there can be concerns 
over whether the construction of these automated systems have appro
priately considered the detailed circumstances of the patient and 
whether the models suffer from unforeseen biases in data collection 
[28,29]. Many health-related statistical models are designed for highly 
selected cohorts of patients to minimise the impact of competing hazards 
that can confound predictions. Therefore, an appropriate experimental 
design considering all of these factors is key to the development of an 
effective machine learning model. 

Recent trends in machine learning have been driven by application 
challenges such as learning across distributed computer systems (termed 
federated learning), which is either for computational efficiency or 
privacy preservation [30,31]. Significant progress is also evident in the 
subfield of deep learning [32], where multilayered neural network ar
chitectures are able to couple sparsely correlated features in large data 
sets which is particularly useful for imaging applications [33]. Longer 
term trends are in formulating probabilistic model structures where the 
complexity of model is dynamically bounded by the data [34,35], which 
minimises biases in model selection. 

4. Predicting outcomes following radiation therapy 

Predicting cancer outcomes accurately for individuals given the 
heterogeneity in patient, disease and treatment characteristics is of 
significant benefit to clinicians and patients making treatment decisions, 
however achieving this is challenging. Recent modelling of clinical 
practice datasets with machine learning techniques have demonstrated 
the ability to develop models which can be updated relatively quickly, 
keeping up with changes in treatment technology and ensuring that the 
models remain relevant [36]. Many different machine learning ap
proaches have been considered for modelling cancer outcome including 
support vector machines (SVM), Bayesian networks, artificial neural 
networks, decision trees and ensemble methods [37–40]. 

Predicting normal tissue toxicity is arguably as important as tumour 
control in establishing the most appropriate radiation therapy treatment 
for patients, given the importance of quality of life for cancer patients. 
Achieving this is challenging due to the wide number of influencing 
factors and the variation in radiation dose distributions [41]. Simple 
dose metrics, such as the volume of healthy tissue receiving 20 Gy (V20) 
for lung, are commonly used clinically without including other 
contributing factors. Marks et al [41], in an overview on normal toxicity 
models in the QANTEC series of papers describe ‘machine learning’ al
gorithms as ‘sophisticated statistical methods which can support 
development of a robust multimetric approach for normal tissue toxicity 
modelling’, although at the time of that publication there were limited 
models that had been developed, validated and published using machine 
learning in this area. In a more recent publication from 2015 providing 
an overview of machine learning approaches for radiation oncology 
clinicians, Kang et al commented that ‘the overall methodology (of 
machine learning) has progressively matured, and the field is ready for 
larger-scale further investigation’ [14]. For normal tissue toxicity 
modelling support vector machines have been used to predict esopha
gitis and pneumonitis due to lung cancer radiation therapy; urinary, 
bladder and rectum complications arising from prostate radiation ther
apy, and oral mucositis and xerostomia occurring from head and neck 
radiation therapy [42–44]. 

Modelling has long benefited from imaging information [45]. The 
addition of anatomical imaging such as CT and MRI has added accurate 
volume data and the inclusion of functional imaging from PET or 

Fig. 2. Illustration of the process of building machine learning models flowing initialisation and data on the left to optimised models and applications on the right. A 
data set with known outcomes is partitioned to iteratively train models guided by performance on validation data or likelihoods until an optimal model is reached 
based on a pre-defined performance objective. The iterative process of selecting a model structures (defined by hyperparameters) is a search that can be directed by 
various methods such as a pre-defined sequence or via Bayesian optimisation. Performance is finally assessed on independent test data or external verification data 
before deploying the model in practice. 
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quantitative MRI allows for values of hypoxia, proliferation and receptor 
expression [46]. Key predictive values used for radiation oncology 
outcome models may include patient characteristics (e.g. age, weight), 
disease and clinical data (e.g. blood test results, stage of disease), image 
data (e.g. radiomics features), genomics data and treatment approach (e. 
g. prescribed radiation dose and fractionation). Published models to 
date have rarely incorporated all of these types of data within a single 
model, presumably due to two factors; availability of data and the size of 
the datasets necessary to avoid over-fitting with large numbers of pa
rameters. Interestingly, radiation dose is not always included within 
radiation oncology cancer outcome models, instead cancer outcome 
models have been developed for patients who have received the same 
radiation dose and tumour control probability models which incorpo
rate dose commonly remain separate. In contrast, for normal tissue 
toxicity models radiation dose is commonly the key predictor e.g. the use 
of lung V20 within the clinic. This apparent contradiction reflects the 
need for variation within parameters when modelling, with commonly 
large variation in normal tissue dose between patients of between 0 Gy 
and the prescription dose. Variation in dose to the target volume (within 
the uncertainty of recorded and delivered radiation doses) is small given 
the International Commission on Radiation Units (ICRU) recommenda
tions of this range being between 95% and 107% of the prescribed dose. 
Also, most departments adopt very similar treatment guidelines with 
changes in prescription only being considered within a clinical trial. As 
uncertainties in radiation dose are reduced and larger datasets are 
available there will be significant interest in the impact small changes 
has on cancer outcome models. 

Incorporation of radiomics or other imaging information has 
demonstrated potential in modelling outcome for both cancer outcomes 
[47–50] as well as normal tissue toxicity [51]. Techniques applied with 
these data have included logistic regression as well as comparison of 
multiple machine learning methods [50,52]. Inclusion of both radiomics 
and clinical factors has been assessed although confirming the benefit of 
including both factors is still an area of research [48,49]. Genetic factors 
have also been found to have predictive power in both cancer and 
normal tissue toxicity [53–56] outcome, and are being considered in 
machine learning developed models [57]. 

Given the potential impact of outcome models, validation should be 
carefully considered and adhere to accepted reporting standards. The 
TRIPOD statement provides clear guidelines on appropriate validation 
for multivariable prediction models [58]. The reporting of models with 
clear statements on the type of validation, with reference to TRIPOD, is 
increasing [59,60]. 

The clinical adoption of more complex models, e.g. including more 
variables than lung V20, will need methods for interpreting the pre
dictions to overcome the perception of models as a ‘black box’. Inter
pretability has been an issue for complex machine learning models 
especially with the use of deep learning networks for image classifica
tion [61,62], however there are techniques to visualise the focal points 
of models allowing users to review the factors involved in decision 
making [63]. Increased data availability and variation is expected to 
improve the development of outcome models and help to assess both 
changes in practice and outcome. An important factor in developing 
clinically useful models is the collection of sufficient follow up infor
mation such that outcomes involving progression-free survival, distant- 
metastases-free survival and overall survival can be assessed where 
appropriate. Features shown to have the most influence on predicting 
outcome may change as increased feedback is delivered to clinicians on 
routine patients and data collection practices improve. This is feasible 
due to both distributed learning approaches [30,31,64], publicly avail
able data [65] and a trend to recording, storing and collecting larger 
datasets. 

5. Decision support 

Decision-making in radiation oncology depends on specialists 

routinely considering myriad pieces of clinic-pathological information 
prior to arriving at a therapeutic decision. Ultimately, the foundation for 
this is their professional experience, with the benefit of seeing thousands 
of clinical cases as a reference library. This process often involves a 
complex balance of priorities including feasibility in terms of treatment 
delivery, patient preferences for balancing the expectations of treatment 
success and quality of life. However, definitive and broadly applicable 
decision rules are not always achievable. Simple staging and prognos
tication systems are limited in the amount of information they can 
reasonably be expected to capture. Clinical decision support systems 
(DSS) are designed to provide evidence-based personalised information 
on the risks of selecting between medical interventions in these situa
tions. Initial expert derived DSSs were built on a clinical knowledge 
base, termed expert systems, but could be adapted with the aid of 
electronic records. Statistical models displayed in the form of nomo
grams trained with electronic health records have been used extensively 
by clinicians. Despite the widespread adoption of established and vali
dated medical DSSs, in Otto et al. [66] a nomogram was used by 55% of 
surveyed clinicians, only a small proportion of models have undergone 
prospective comparison to independent clinician decisions [3], or 
impact analysis to demonstrate effectiveness in the clinic [67]. A broad 
systematic review in [68] found that less than 1% of articles on DSS 
models included results from randomised controlled trials in a real 
clinical setting, where a definitive result can be demonstrated, but 
generally DSS usage indicates a positive impact on outcomes. A syn
thesis of systematic reviews also indicated that the use of DSSs positively 
impacted patient outcomes [69]. In radiation oncology, DSSs are already 
in use for prostate cancer in predicting staging, survival, recurrence and 
metastatic progression [70]. An online breast cancer prognosis of sur
vival and treatment selection DSS on the inclusion of adjuvant systemic 
treatment [71] is actively updated and independently validated [72]. 
Engelhardt et al. [73] present a systematic review of DSS in metastatic 
colorectal cancer and show that the current level of evidence is limited 
by the extensive validation and reporting of the model calibration de
tails. Decision support has been extended to assess the cost effectiveness 
of treatments, such as the likely benefit of proton therapy over photon 
therapy [74]. Furthermore, DSSs are used in reducing the likelihood of 
unnecessary imaging procedures [75] in emergency departments which 
reduces costs while minimizing harm to patients. 

Beyond merely informing the clinician, some DSSs are designed to 
include the patient preferences in a shared decision-making (SDM) 
process. Risks in relation to quality of life versus life expectancy can be 
personal and an SDM tool is designed to ensure the patient is equally 
informed on their prospects and choices. Challenges ensue in the design 
of DSS to eliminate unintended bias and ensuring lay interpretability of 
the model implications [7]. Assessment of the success of SDM is also 
dependent on patient satisfaction [76], and surveys indicate that SDM 
reduces decision regret and anxiety with treatment [77]. Ultimately, 
personalised treatment involves providing a complete tailored strategy 
based on the patient and disease characteristics as informed by the latest 
evidence and priorities of the patient, and conforming to accepted and 
progressing standards for the construction and delivery of these decision 
aids is crucial to the patient-clinician confidence in the process [78]. 

6. Segmentation 

Image segmentation, whereby the voxels of tumours and normal 
tissues are identified on medical images is one of the first steps in the 
radiation therapy treatment planning process. The Dice Similarity Co
efficient (DSC) is a statistical tool first introduced to assess the similarity 
between samples [1]. In medical image segmentation the DSC represents 
a measure of overlap between two segmentations and has become the de 
facto metric used in delineation studies. A DSC above 0.7 is generally 
considered to represent good agreement, although the use of DSC alone 
is not recommended as it does not contain any location information 
[79,80]. Further, DSC can be subject to variation with volume, with 
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small changes in small volume structures resulting in larger DSC impact. 
For certain anatomical sites manual segmentation can take hours to 
complete and is plagued with multiple sources of uncertainty, [80] 
making automated approaches desirable. Currently, the most common 
automated techniques in radiation therapy planning systems are 
thresholding, deformable shape models (DSMs) and atlas based seg
mentation [81]. Thresholding is useful where there is a clear gradient 
between a structure and the surrounding tissues (i.e. lung or brain), but 
otherwise, results can be poor [82]. DSMs are representations of 
anatomical structures that are constrained by a set of parameters 
relating to the structure and the image modality [83]. These parameters 
reduce the dimensionality of the shape space for computational effi
ciency at the sacrifice of shape reliability. Atlas based segmentation uses 
a priori knowledge in the form of a reference image(s) that has been 
previously segmented. The segmented reference image is registered with 
the target image and the same image transform is applied to the image 
segmentations. The resulting image segmentation accuracy is contingent 
on the registration accuracy, reference image segmentation and image 
quality [84]. Deep learning, a subfield of machine learning has shown 
some promise of providing an automated, fast, accurate and precise 
image segmentation in radiation oncology [10]. 

Convolutional neural networks (CNNs), have become prevalent for 
deep learning image processing applications as the inputs to such net
works can be two dimensional (2D) and 3D images where the adjacency 
of pixels or voxels are encoded in the network [85]. These algorithms 
have been employed for many image based applications including 
classification, object localisation and semantic segmentation [86]. In 
biomedical imaging, CNNs have been applied to classification in the 
diagnosis of skin cancer, where they out performed experienced der
matologists [87]. Anas et al used a deep convolution neural network 
approach to delineate the prostate for low dose rate brachytherapy on 
trans-rectal ultrasound (TRUS) images [88]. Using this approach, they 
achieved a mean Dice similarity coefficient (DSC) of 0.94, mean surface 
distance error of 1.05 mm and mean Hausdorff distance error of 3.0 mm. 
The time to segment a single TRUS image (415x490 pixels) was 0.15 s. 
DeepMind Technologies, a subsidiary of Alphabet Inc and partners 
(Mountainview, California, United States of America) have published a 
protocol for head and neck tumour and normal tissue segmentation 
using deep learning [89]. Ibragimov and Xing published the first OAR 
segmentation paper using CNNs in radiation therapy [90]. The organs 
they considered included the spinal cord, mandible, parotids, subman
dibular glands, larynx, pharynx, eye globes, optic nerves and the optic 
chiasm. The DSC ranged from 0.37 (chiasm) to 0.90 (mandible). Seg
mentation took approximately 4 min in total. Since then, several other 
groups have published on deep learning segmentation on head and neck 
cancer data [91,92]. A further study by Lustberg et al [2] used a CNN 
implemented in a research version of a commercial radiation therapy 
software for thoracic segmentation of OAR. Results required manual 
correction but resulted in significant reductions in segmentation time. A 
group at Peking Medical College have published two deep learning 
segmentation papers where not only OARs but clinical target volumes 
(CTVs) have been segmented for rectal and nasopharyngeal cancer 
[85,93]. Deep learning has also been applied to multi-parametric MRI 
for localisation and segmentation of rectal cancer [94] with a DSC of 
0.68 and 0.70 compared to manual segmentations. 

Men et al trained a very deep residual network (DD-ResNet) on a 
dataset of 800 patients who received breast conserving therapy from 
2013 to 2016 [95]. They employed cross-validation and reported mean 
DSCs of 0.91 for both right and left breasts CTVs. CNNs have also been 
applied to adaptive radiation therapy for lung cancer. Wang et al used a 
longitudinal imaging dataset comprised of 9 lung cancer patients with 
6–7 weekly T2-weighted MRI scans [96]. The network utilised previous 
weekly scans to delineate current MRIs. The network was trained within 
2 h and resulted in DSC of 0.81±0.10. Overall deep learning approaches 
to image segmentation, are at least as accurate as previous methods, 
faster to segment clinical images but generally require larger training 

datasets. One of the advantages of CNNs over atlas based segmentation 
is that segmentation computation time does not scale linearly with the 
amount of training data [90], however training of CNNs is a time 
consuming process. 

7. Treatment planning 

Planning and delivery of contemporary radiation oncology treat
ments is technically challenging. Given the geometric complexity of 
tumours and their relationship to the surrounding anatomy, computa
tional techniques to determine optimal treatment geometric parameters 
are required to achieve the desired 3D dose distribution. Beam angle 
selection has been determined using genetic, evolutionary and cross- 
entropy algorithms [97-103], and to determine the optimal beam 
weights for conformal and intensity modulated treatments 
[98,104,105]. Given the increased use of arc-based intensity modulation 
these applications may be limited, and may have a role in optimisation 
of 4π treatment geometry. Further applications of machine learning for 
treatment plan automation have been in the inverse planning process, 
where an algorithm was trained to mimic human decision making to 
adjust treatment plan optimisation parameters during optimisation 
[106]. 

There has been a recent emergence in use of prior information on the 
effect of patient anatomy on achievable radiation dose distributions to 
inform current patient planning parameters. This process, so-called 
‘knowledge-based planning’, has emerged as a powerful tool to deter
mine the achievable dose distribution. Initial focus including commer
cial implementation has focused on prediction of dose-volume 
histograms (DVHs) based on geometric relationships between targets 
and OARs. Subsequently, DVHs have been used to generate optimisation 
objectives, reducing the dependence on the user and leading to more 
consistent and efficient treatment plan optimisation [107–113]. More 
recently, prediction of full 3D dose distributions has been achieved 
through deep learning approaches [114–121]. In these methods, the 
input data for training includes 3D masks of target and OAR structures 
and/or CT image data with spatially associated 3D dose grids from 
manually created treatment plans. U-Net [122], DenseNet [123] and 
Generative Adversarial Networks (GANs) [124] have been implemented 
to predict the 3D dose distribution given an anatomical input. Patient- 
specific optimisation objectives have then been derived from these 
dose distributions to create a deliverable treatment plan using conven
tional inverse planning. Along with improvements in efficiency and 
quality of radiation therapy treatment planning, prediction of dose 
distributions for a given anatomy has the potential to provide rapid 
assessment of feasibility and quality of radiation therapy for a given 
patient, in the context of multi-disciplinary decision making. 

Machine learning techniques also have a role in evaluation of radi
ation therapy treatment plan quality, given the complex interplay be
tween doses delivered to tumours and OARs and treatment side effects. 
Early work evaluated the use of a neural network to score radiation 
therapy treatment plans based on a learning set of physician-scored 
plans [125]. Knowledge-based planning has also been used for evalua
tion of treatment plan quality, as compared with that which has been 
achieved previously [126–129]. This has an application for quality 
assurance in clinical trials, where plan quality is assessed according to 
whether it has met the constraints [130,131]. Assessment based on 
whether the treatment plan is optimal for that particular patient may 
improve the overall quality of radiation therapy clinical trials. This 
process is not without challenges; given the relatively short turnaround 
times for plan submission prior to start of treatment, feedback to sub
mitting institutions should be based on estimates of clinical impact of 
any deviations in plan quality. Machine learning has also further been 
applied to prediction of treatment plan delivery fidelity, with the aim to 
automate measurement of whether a complex treatment plan is deliv
erable on a linear accelerator with sufficient agreement with the treat
ment plan [132–135]. 
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Deep learning algorithms can generate ‘synthetic’ 3D image data 
from other image types such as CT scans from MRI or cone-beam CT 
scans, or predict a 3D dose distribution from an image as demonstrated 
in Fig. 3 from [117]. Radiation dose calculations rely on the relationship 
between CT number and electron density or physical material, therefore, 
the derivation of CT scans from MRI scans with deep learning models is 
attractive, as it negates the need to acquire a CT scan for treatment 
planning purposes. With the advent of MRI-linac devices, in which an 
MRI is merged with a linear accelerator, the MRI is also the only 
available imaging modality. Fuzzy c-means clustering has been used to 
classify tissues head and neck and abdominal MRIs, which are then 
mapped based on attenuation properties into a synthetic CT represent
ing most probably Hounsfield units [136,137]. CNNs and GANs have 
proven capable of generating high accuracy synthetic CTs from brain, 
head and neck and liver MRIs for the purposes of photon and proton 
treatment planning, as shown in Fig. 5, and to provide a reference CT for 
CT based IGRT [138–142]. Further, synthetic CTs have been generated 
from MRI using a cycleGAN for the purposes of providing a ‘bridge’ 
between MR and CT for the purposes of image registration [143]. 

8. Image guidance and motion management 

Image guidance aims to use imaging prior to and during radiation 
therapy to ensure the target is accurately localised relative to the 
retreatment beam [144]. Motion management in radiation therapy 
typically refers to intervention to limit motion and monitoring of tumour 
or surrogates during radiation delivery to ensure the planned dose is 
delivered to targets that move due to physiological processes such as 
respiration [145]. Image guidance and image based motion manage
ment require localisation of the target on acquired images. Accurate and 
fast measurement of motion facilitates interventions such as gating the 
radiation beam or tracking the moving tumour with the radiation beam. 
Such interventions increase the probability of hitting the tumour, and 
may facilitate margin and OAR dose reduction [132,146]. Machine 
learning plays two key roles in this process – detection of the tumour or 
surrogate before and during treatment from imaging or otherwise, as 
well as prediction of motion based on previous measurements. 

Detection of the tumour in images acquired during radiation therapy 
suffers from a lack of contrast between the tumour and surrounding 
anatomy, as well as the speed with which information is required for 
adaptation to the tumour position. Kilovoltage x-ray imaging beams are 
ubiquitous in contemporary linear accelerators and can provide planar 
imaging prior to treatment, as well as continuous fluoroscopy during 
radiation therapy treatment. Implanted fiducial markers, visualised on 

planar kilovoltage imaging, can act as a surrogate for tumour location in 
the prostate, liver and pancreas. Mylonas et al. used CNNs to improve 
detection of these fiducials during treatment; the advantages over 
typical template matching approaches being the ability to detect arbi
trarily shaped markers with limited prior information [147]. 

Further progress has been made in so-called ‘markerless tracking’, to 
which neural networks, SVMs and Bayesian statistics have been applied 
with sufficient accuracy and efficiency for pre-treatment setup imaging 
and real-time tumour tracking for lung, pancreas and prostate cancer 
[133,148–152]. An example of lung tumour tracking is illustrated in 
Fig. 4 [150]. Given the increasing multi-modality treatment options for 
upper abdominal cancers such as pancreas and liver cancer, it is not 
uncommon for patients to present for radiation therapy with existing 
‘markers’ such as surgical clips and radiopaque gel from previous sur
gery or interventional radiology procedures. The application to machine 
learning to detection of anatomical and already existing foreign objects 
has strong potential to provide accurate tumour tracking for a large 
proportion of patients receiving radiation therapy. 

Prediction of respiratory motion is highly advantageous on the sub- 
second timescale for real-time tumour tracking. Accurate prediction of 
future positions reduces tracking uncertainty in physical devices such as 
multileaf collimators and patient positioning systems which arise from 
system latency between measurement of tumour position and positional 
adaptation [153]. Machine learning techniques are particularly well 
suited to this application due to the similarity of future breath charac
teristics with previously recorded breaths. A large body of work has 
shown neural network, SVM, manifold learning and kernel density 
estimation can efficiently predict respiratory motion based on previ
ously measured motion traces [153–159]. Other applications of machine 
learning involve prediction of motion extent based on tumour size and 
location in the lungs, automatic diaphragm motion trajectory assess
ment and incorporation of lung tumour motion into patient setup and 
prediction of tumour baseline shifts in the short term (approximately 5 
s) [160–163]. 

Cone-beam CTs, the dominant soft-tissue volumetric imaging mo
dality on linear accelerators used for image guidance, suffer from poor 
image quality due to a range of issues related to increased scatter 
contribution, beam hardening and motion artefacts [164]. Improvement 
of CBCT image quality facilitates improved IGRT accuracy through 
improved soft-tissue contrast, offline and online adaptive radiation 
therapy treatment based on CBCT imaging, and derivation of quantita
tive image metrics from CBCTs. Machine learning has been employed in 
both the projection and image domain to resolve image quality issues. 
Estimation and correction of photon scatter contribution to CBCT 

Fig. 3. The framework of the proposed system, involving images with structures (SImg), coarse dose maps (CDM), and fine dose maps (FDM). Reprinted from “A 
feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning”, by Chen X, et al., 2019, Medical 
Physics, 46(1), p56–64. 
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projections was performed using CNNs using Monte Carlo estimation of 
primary and scatter contribution as training data [165,166]. Virtual 
‘scatter free’ projections are then used for CBCT reconstruction, result
ing in improved Hounsfield unit consistency and soft tissue contrast. 
This approach has a significant advantage over Monte Carlo based 
correction methods, thereby allowing correction at time of acquisition 
and reconstruction. Finally, machine learning has also found applica
tions in generation of ventilation images from CT scans [167], deform
able image registration [168] and its subsequent quality assurance 
[169,170]. 

9. Discussion 

The applications of machine learning in radiation oncology are 
varied in scope and complexity. We have provided a review of appli
cations for this disruptive technology and future challenges. A vision for 
a fully integrated data management system with continuous feedback 
between patient outcomes and model input parameters will lead us to 
improvements in clinical decision making involving the patient, accu
rate prediction of treatment outcomes and quality of life, efficient and 
consistent treatment planning and highly targeted delivery. Significant 
challenges remain, namely highly complex, patient specific disease 
characteristics and the interplay with systemic and local therapies, this 
is often coupled with disparate methods of data recording, imaging 
acquisition methods, all of which impact on accuracy and applicability 
of any models used. Moreover, limitations in accurate and useful 

treatment outcome reporting and the prevalence of data sharing or 
distributed learning currently hinder attempts to mine existing data for 
model building. 

There are several ways in which these challenges can be addressed. 
The maintenance of a standardised clinical DICOM picture archiving and 
communication system (PACS) which handles DICOM RT objects would 
allow for future machine learning uses within the clinic and facilitate 
external research partnerships. This can be further enhanced by radia
tion oncology vendors providing batch data anonymisation and data 
exporting functionality. Physics and imaging specialists can standardise 
community-wide imaging acquisition protocols such that radiomic or 
deep learning models can have wider applicability [171,172]. Physics 
and imaging specialists should focus efforts to standardise ontology in 
emerging areas in which machine learning may play a role [173,174]. 
Research staff in radiation oncology can engage with community-wide 
efforts to participate in distributed or federated learning consortia tar
geted at building generalizable and useful models across clinics [31,64]. 
The release of research software as open source will encourage a 
research community of open collaboration. There should be safe path
ways for machine learning models to be used in the clinic to start 
benefitting patient outcomes [11]. Lastly, radiation oncology de
partments can allow physics and imaging staff to have training oppor
tunities in computer science and machine learning increasing the 
capacity to exploit these emerging technologies to benefit their patients 
[175]. 

Fig. 4. The markerless tumor tracking trajectories of cases with (a) the lowest and (b) the highest 3D tracking errors. The tracked tumor positions are highlighted in 
the blue contours. LR: left–right; SI: superior-inferior; AP: anterior-posterior. Reprinted from “A Bayesian approach for three-dimensional markerless tumor tracking 
using kV imaging during lung radiotherapy”, by Shieh CC, et al., 2017, Phys Med Biol, 2017;62:3065–80. © Institute of Physics and Engineering in Medicine. 
Reproduced by permission of IOP Publishing. All rights reserved. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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