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ABSTRACT: Realization of graphene-based sensors and elec-
tronic devices remains challenging, in part due to integration
challenges with current fabrication and manufacturing processes.
Thus, scalable methods for in situ fabrication of high-quality
graphene-like materials are essential. Low-cost CO2 laser engravers
can be used for site-selective conversion of polyimide under
ambient conditions to create 3-D, rotationally disordered, few-
layer, porous, graphene-like electrodes. However, the influences of
non-linear parameter terms and interactions between key
parameters on the graphitization process present challenges for
rapid, resource-efficient optimization. An iterative optimization
strategy was developed to identify promising regions in parameter
space for two key parameters, laser power and scan speed, with the goal of optimizing electrode performance while maximizing scan
speed and hence fabrication throughput. The strategy employed iterations of Design of Experiments Response Surface (DoE-RS)
methods combined with choices of readily measurable parameters to minimize measurement resources and time. The initial DoE-RS
experiment set employed visual response parameters, while subsequent iterations used sheet resistance as the optimization
parameter. The final model clearly demonstrates that laser graphitization through raster scanning is a highly non-linear process
requiring polynomial terms in scan speed and laser power up to fifth order. Two regions of interest in parameter space were
identified using this strategy: Region 1 represents the global minimum for sheet resistance for this laser (∼16 Ω/sq), found at a low
scan speed (70 mm/s) and a low average power (2.1 W) . Region 2 is a local minimum for sheet resistance (36 Ω/sq), found at
higher values for scan speed (340 mm/s) and average power (3.4 W), allowing ∼5-fold reduction in write time. Importantly, these
minima do not correspond to constant ratios of average laser power to scan speed. This highlights the benefits of DoE-RS methods
in rapid identification of optimum parameter combinations that would be difficult to discover using traditional one-factor-at-a-time
optimization. Verification data from Raman spectroscopy showed sharp 2D peaks with mean full-width-at-half-maximum intensity
values <80 cm−1 for both regions, consistent with high-quality 3D graphene-like carbon. Graphene-based electrodes fabricated using
the parameters from the respective regions yielded similar performance when employed as capacitive humidity sensors with
hygroscopic dielectric layers. Devices fabricated using Region 1 parameters (16 Ω/sq) yielded capacitance responses of 0.78 ± 0.04
pF at 0% relative humidity (RH), increasing to 31 ± 7 pF at 85.1% RH. Region 2 devices (36 Ω/sq) showed comparable responses
(0.88 ± 0.04 pF at 0% RH, 28 ± 5 pF at 85.1% RH).

■ INTRODUCTION

Graphene and graphene-like materials, since their discovery,
have been an exciting area of investigation for material science.
High carrier mobility, thermal conductivity, tensile strength,
zero band gap, and ballistic transport have been demonstrated
for the most part in micron-scale pristine monolayer graphene,
usually created by mechanical exfoliation.1−7 This slow, non-
scalable method hinders application development, such as
graphene-based sensors.8−10

Several routes have been proposed to develop graphene-like
materials with methods suited to scalable fabrication. Examples
include chemical vapor-deposited graphene, reduced graphene
oxide, and liquid-phase exfoliated graphene. Each approach can
be assessed in terms of graphene quality and throughput.
Transfer of chemical vapor deposition (CVD)-grown mono- or
few-layer graphene from metal catalyst foil substrates (∼1−100

cm lateral dimensions) typically requires long processing times
and the use of protective polymer handling layers. The residue
from these layers presents challenges including unintentional
heterogeneous doping and also tunnel barriers which can cause
large contact resistance. Typical sheet resistance values usually
exceed 500 Ω/sq for air-stable devices, consistent with the
expected reduction in sheet resistance from pristine monolayer
graphene (∼6 k Ω/sq measured in vacuum for mechanically
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exfoliated monolayers) due to adsorbate doping from ambient
water vapor or process residue.11−13

Liquid-based dispersions of graphene-derived nanomaterials
such as reduced graphene oxide or liquid-phase exfoliated
graphene offer ease of processing and compatibility with
printing methods. However, the small crystallite size (35−600
nm) and the presence of process-induced basal plane and edge
defects result in an increased sheet resistance (2 kΩ/sq) and
variability.14 Further, post-deposition curing (250−500 °C) is
usually required, which can also present challenges for some
applications.15

Although the production of graphitic materials through laser
graphitization has been awarded patents as far back as 1972,
little insight was achieved into the resulting material.16,17 Tour
and co-workers pioneered direct-write fabrication of porous
three-dimensional (3D) laser-induced graphene (LIG) electro-
des, beginning with laser graphitization of polyimide using
CO2 lasers.18 The local high-temperature and high-pressure
environment created by the laser photons breaks C−O, CO,
and C−N bonds of the polyimide, producing high-pressure gas
pockets that drive the formation of micropores, nanopores, and
other structural defects, resulting in a porous 3D structure that
could not be achieved through annealing alone.19−21

Raman spectroscopy revealed well-resolved, narrow D, G,
and 2D line shapes, consistent with the formation of graphene-
like carbon with low disorder. Significant I2D/IG ratios and a
distinct shoulder in the G line shape (corresponding to a D′
defect peak) are characteristic of high-quality graphene-like
carbon. The symmetric 2D line shape contrasts with the
asymmetric 2D peak reported for Bernal-stacked (ABAB)
multilayer graphene or graphite22,23 and suggests that laser-
fabricated graphene is more likely to comprise few-layer
graphene structures with rotational and/or vertical stacking
disorder. This distinguishes LIG from pristine monolayer or
few-layer graphene, which comprises planar single-crystal
regions with lower defect densities.
Laser graphitization thus represents an exciting technology

for direct integration of porous 3D graphene electrodes on
polymer substrates. While the most promising feedstock
material is polyimide, Tour and co-workers as well as other
groups have demonstrated the formation of graphene-like
carbon using a range of synthetic polymers and natural
materials, including wood, food, textiles, charcoal, and
anthracite coal.24−26 To achieve these conversions, multiple-
laser passes at reduced fluences, including use of defocused
lasers to enhance laser-path overlap, are used to produce
suitable quality LIG.27 For each feedstock material, optimiza-
tion of the laser graphitization process involves identification of
a suitable set (or range) of process parameters, including
(average) laser power and scan speed, that will yield direct-
write formation of 3D porous, graphene-like carbon. Non-
optimal laser parameters can lead to unwanted side effects
from over- or under-exposure. Over-exposure effects include
material ablation, redeposition, oxidation (ashing), or combi-
nations of these. Under-exposure effects include melting and/
or incomplete graphitization. This complex materials challenge
mandates optimization strategies that are both rigorous and
efficient.
This optimization challenge can be addressed using machine

learning methods,28−31 which require large data sets or
statistically-driven methods, such as design of experiments
(DoE).32 Machine learning methods have gained increased
popularity as computational resources have increased,

removing their previous analysis bottleneck. They come in
many different varieties, each depending on different
algorithms for modeling supplied data. Data sets containing
numerous potential factors that require both reduced
dimensionality and modeling may benefit from principal
component regression, while highly intricate systems may be
more easily modeled by an ensemble method like random
forests. More generic approaches could be used to facilitate
more rapid model preparation, such as neural networks. For
resource-constrained applications, the major drawback of
machine learning approaches is the requirement for large
data sets of training data to produce a model.28−31

Resource-efficient optimization mandates minimization of
resources (including time) used to generate and analyze data.
Machine learning methods reduce the analysis load but
increase the required data set size and hence the resources
required to produce those samples. DoE methods extract
maximum information from a lean, statistically significant data
set. DoE ensures that minimal samples are produced
reducing experimental costwhile ensuring that sufficient
samples are tested to account for variability. The decreased
number of samples required to be produced and tested comes
at the cost of increased analysis.
The distinction between machine learning and DoE

methods is clear: when large data sets are readily available,
then machine learning should be preferred; if sample
fabrication is resource-intensive, then DoE methods are
favored. Highly complex systems can be simplified through
iterative implementation of DoE methods. Each simplification
step screens out insignificant factors and targets parameter
ranges of interest. This stepwise process allows for dynamic
decision making and scaled resource commitment not possible
through less agile investigative tools. Similarly, DoE produces a
documented search path with explicitly defined assumptions,
not always generated with machine learning. Therefore, initial
screening experiments, followed by informed, iterative
optimization, require less resources than an equivalent mchine
learning study.
Here, we report on an iterative DoE response surface (DoE-

RS) strategy for identification of promising regions in the laser
power versus scan speed parameter space for an entry-level
CO2 laser system, which would be within the budget of many
research and teaching labs. Our goal is to optimize electrode
performance while maximizing scan speed and hence
fabrication throughput. DoE-RS optimization methods are
well recognized as significantly more efficient than traditional
one-factor-at-a-time methods. Further, DoE-RS approaches
enable rigorous optimization even when there are non-linear
interdependencies between input parameters.33−35 DoE-RS
approaches enable additional statistical efficiency by utilizing
non-rectangular regions in parameter space to avoid non-viable
regions with the added benefit of reduced experimental cost
(resources and time).
Each iteration of the strategy focused on a readily

measurable parameter to further minimize measurement
resources and time. The initial DoE-RS iteration employed
visual response parameters, while subsequent DoE-RS
iterations optimized sheet resistance. We note that optimiza-
tion strategies for graphene-based electronic or electrochemical
sensing elements often include minimizing access resistance as
a target in order to reduce iR potential drops that can diminish
sensor performance and also energy efficiency.36 Finally, we
report on an iterative DoE screening approach to identify key
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laser parameters and parameter interactions for a more
sophisticated laser system, where the user has additional
control over beam overlap within the raster pattern.
Since LIG electrodes and structures are produced by a

dynamic patterning process which involves both temporal
modulation of the laser output (through the duty cycle) and
spatial patterning (through displacement of the laser head),
optimization requires consideration of potential non-linear
contributions of user-controlled parameters, including average
laser power and scan speed, as well as potential interaction
effects between these parameters.

■ RESULTS AND DISCUSSION

In the first report of LIG, Tour and co-workers reported a
dependence of sheet resistance on laser power with a threshold
of 2.4 W at ∼90 mm/s using a Universal Laser System X-660
CO2 laser system and achieved minimum sheet resistances
(∼15 Ω/sq) at 5.4 W, ∼90 mm/s through one-factor-at-a-time
(OFAT) optimization. These authors also noted that a linear
dependence of the threshold power for graphitization on the
scan speed.18 This observed interaction of factors suggests that
both laser power and scan speed should be considered
simultaneously, since underlying mechanisms may not be
observable through OFAT methods.
DOE methods were implemented in this work to illustrate

their ability to determine relationships between factors in
materials synthesis and for rapid, iterative resource-efficient
material optimization, even with an entry-level hobbyist laser
system. Initially, visual inspection was used to identify laser
power and scan speed parameters which yielded viable or
unviable samples. Figure 1a shows an example of an unviable
sample with cracked, inhomogeneous material, while a viable
sample with homogeneous, deep black material can be seen in
Figure 1b. This visual inspection was further refined through
the response surface design of experiment (DOE-RS) process
based on qualitatively measured visual responses (fibrosity,
residue, and damage), as seen in Figure S2. The model
indicated that lower average laser powers (2.4−3.9 W for our
hobbyist laser system) and higher scan speeds (280−440 mm/
s) yielded fewer defects. A subsequent sheet resistance-based
DOE-RS (Figure S3) showed a region of low sheet resistance
at low laser powers (2.4−5.4 W) and moderate scan speeds
(200−440 mm/s) that tapers as laser power and scan speed
increase. This model suggested that the global sheet resistance
minimum for this laser system could be found at even lower
values of laser power and scan speed, which informed the
parameter ranges used in the final iteration of our DOE-RS,
shown in Figure 1d.
The response surface model is based on a polynomial fit

built from statistically significant terms (Table S4). Up to fifth-
order terms in scan speed and fourth-order terms of laser
power were seen to be significant. Lower-order terms and
cross-terms were also included. Table S5 shows the
significance of each term. The p-value (<0.0001) for the final
model confirms the statistical significance of the terms.
Further, the residual lack of fit was insignificant (a p-value of
0.44), suggesting confidence in the model chosen and its
predictions. Response surface zones colored in white could not
be fit with the model, likely indicating non-viable conditions
for graphitization or a low-quality material. Three specific
“regions of interest” are labeled on the response surface: the
predicted global minimum sheet resistance (region 1), a local

minimum at a high scan speed (region 2), and an interim point
(region 3).
Table 1 shows the predicted sheet resistances for the three

regions of interest and the corresponding experimental sheet

resistance values. Region 1 and region 2 samples yield
predicted and measured sheet resistance values that agree
within a factor 2. Importantly, the model allows identification
of region 2, where low sheet resistance can still be achieved
while increasing scan speed by a factor ∼5. The measured
sheet resistance for region 3 is over an order of magnitude
higher than the predicted model value. This discrepancy could

Figure 1. (a) Photo showing test structures (4 mm diameter discs)
fabricated using “unviable” laser parameters (80 mm/s raster scan
speed, 3.6 W average power) which yield laser-induced defects such as
cracks and delamination. (b) Photo of “viable” test structures showing
uniform, black material (200 mm/s scan speed, 2.4 W average power).
(c) Subset of the overall grid layout of test structure photos organized
by scan speed and laser power (full layout in Figure S1). The shaded
region indicates the final response surface parameter domain. (d)
DoE-RS model output for sheet resistance vs laser power and raster
scan speed factors. Arrows indicate the regions of interest for further
characterization: global minimum for sheet resistance (Reg. 1),
minimum sheet resistance at a high scan speed (Reg. 2), and a local
minimum resistance at an intermediate scan speed (Reg. 3). Inset:
Photo of an array of 20 mm × 2 mm test structures used for sheet
resistance measurements.

Table 1. Predicted and Actual Sheet Resistance Values from
Linear I−V data (−3 to 3 V) for Samples Fabricated Using
Laser Parameters for Regions 1−3

parameter
space region

laser
power
(W)

scan speed
(mm/s)

predicted sheet
res. (Ω/sq)

mean sheet
res. (Ω/sq.)

1 2.1 70 10 15.7 ± 0.7
2 3.4 340 26 36 ± 1
3 2.6 240 37 410 ± 180
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be due to the high curvature of the model in this zone of the
parameter space, where a small fluctuation of the laser
parameters could result in a large change in sheet resistance.
Figure 2 shows the morphology associated with the three

regions of interest. A hierarchical pore structure with micron-

scale and sub-micron pore diameters can be observed in
samples fabricated using parameters for Region 1 (Figure 2a,b)
and for Region 2 (Figure 2c,d). In addition, the Region 2
sample also shows a higher density of 3D extrusions. The
morphology of the Region 3 sample differs markedly from the
samples for Regions 1 and 2. There is no longer a clear
porosity; instead, the surface comprises sub-mm 3D extrusions
(Figure 2e) comprising networks of micron-scale fibers (Figure
2f).
Cross-sectional scanning electron microscopy (SEM) micro-

graphs obtained for Region 1 samples show an approximate
LIG thickness of 50 μm (Figure S6). This agrees with
thickness values observed by Duy et al., who noted LIG
thickness self-limits to <50 μm. The maximum conversion
depth is caused by the conversion beginning at the surface,
attenuating the conversion of the sub-surface material.27 As
such, it is assumed that both Region 1 and Region 2 materials
are of approximately the same thickness. However, Figure 2c
shows that the Region 2 material contains some vertical
extrusions. These structures could reduce the available lateral
charge-transfer pathways and are likely partly responsible for
the increased sheet resistance of Region 2 materials. Assuming
an LIG thickness of 50 μm, the corresponding resistivity for
Region 1 material is 7.8 × 10−4 Ω m, reflecting the expected
disorder on the device length scale (2 cm).
Stamatin et al. have reported on the morphology of laser-

graphitized polyimide in terms of a similar metric38

=
×

dynamic fluence
laser power

scan speed beam diameter

They calculated dynamic fluence values ranging from 0.3 to
4.8 J/mm2. For this work, initial rough estimates of the
dynamic fluence can be made using the raster pitch as the
beam diameter (∼90 μm for the region 1 material, see Figure
2a). In this way, the initial estimates of dynamic fluence are
0.33 J/mm2 (region 1), 0.11 J/mm2 (region 2), 0.12 J/mm2

(region 3).

However, dynamic fluence values consider only single laser
passes without accounting for beam overlap between
neighboring lines in the raster pattern, ∼85 μm (Figure S8).
Tour et al., as previously noted, demonstrated that multi-pass
lasing can produce LIG even at reduced laser intensities upon
subsequent re-exposure.27 Consequentially, a reduction of
dynamic fluence values, relative to those reported by Stamatin
et al., is expected due to the beam overlap from rastering.
Moreover, the fact that regions 1 and 2 do not lie on a line

representing a constant ratio of (average) laser power to scan
speed (Figure 1d) highlights the non-linearity of the parameter
dependencies for laser graphitization, which would not be
uncovered by traditional one-factor (OFAT) optimization.
This is especially significant as the beam profile can vary with
laser power, further convolving any laser power dependence
and any overlap dependence. This increases the complexity of
investigating the parameter space and highlights the potential
of DoE-RS methods to facilitate optimization, especially for
resource-constrained processes. It allowed us to achieve similar
sheet resistance values but with an almost 5-fold increase in
scan speed and hence throughput.
Figure 3 shows representative Raman spectra from maps

taken over samples fabricated with Region 1, 2, and 3
parameters. Table S6 shows the corresponding Lorentzian fit
results. For the Region 3 material, the D′ and D + D″ peaks

Figure 2. SEM data at low and higher magnifications, respectively, for
samples fabricated using laser power and scan speed parameters from
region 1 (a,b), region 2 (c,d), and region 3 (e,f).

Figure 3. Representative Raman spectra of the (a) region 1, (b)
region 2, and (c) region 3 LIG materials.
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could not be resolved, the D and G peaks are distinctly
broader, and the ID/IG and I2D/IG areal ratios are smaller than
those for Region 1 and Region 2 samples. This suggests
increased disorder and defect density in the Region 3 material,
consistent with the morphology (Figure 2f). In early Raman
studies of graphite, D′ peak signatures were observed in high-
quality polycrystalline graphite and also by creating defects in
natural graphite single crystals. D′ shoulders similar to the data
shown in Figure 3a, b were observed in polycrystalline graphite
with domain sizes (or scattering coherence lengths) ≈7−12
nm.39,40 The highly intense G peak of the region 1 and region
2 materials, their resolvable D′ peak, and sharp D and 2D
peaks are suggestive of a high-quality graphene-like material
with defects present.
Figure 4a,b shows fit data [Raman full width at half-

maximum (fwhm), peak area as a ratio of the area under the G

peak] from 14 random locations for samples from each region,
plotted versus peak position. Spectra from samples fabricated
with Region 1 or Region 2 parameters show similar clustering
of fit results for the first-order peaks (D, G, and D′), while
spectra from samples with Region 3 parameters present a larger
distribution of values. This clustering treatment demonstrates
that Regions 1 and 2 are similar despite the Region 2 material

being produced at 5 times the scan speed of the Region1
material. The larger fwhm (D) values for Region 3 indicate
significant disorder, in agreement with the observed sample
morphology (Figure 2e,f).
Detailed Raman spectroscopy studies by Eckmann et al. on

exfoliated monolayer graphene with deliberately introduced
defects and natural graphite established empirical relationships
between the ratios of the D to D′ peaks and the nature of the
defects:41 I(D)/I(D′) ∼ 13 for sp3 defects, I(D)/I(D′) ∼ 7 for
vacancy defects, and I(D)/I(D′) ∼ 3.5 for boundary defects in
natural graphite. Data measured for region 1 and region 2
samples showed I(D)/I(D′) values between 3.5 and 7 (Figure
4c), again consistent with low disorder. The presence of such
defects is expected give the LIG formation process: Stone−
Wales defects enable the 3D curvature, and every pore acts as a
series of edge defects. As such, the presence of boundary and
vacancy defects is expected and intrinsic to the material.
However, it may provide scope for further tuning of laser
parameters toward boundary/vacancy-dominated defects if it
proves to be a desirable parameter.
As LIG is formed in situ with the mechanical support of its

substrate, it has attracted great interest as a gas sensing
platform. Sensing devices based on electrical conductivity or
thermal conductivity changes in the presence of volatile
organic compounds have been reported.42,43 The presence of
humidity is a major challenge for volatile organic compound
sensing as water molecules can block sites or lead to spurious
responses. Therefore, due to their similarity in observed
properties (sheet resistance, morphology, and Raman data),
both Region 1 and Region 2 laser parameters were used to
produce proof-of-concept LIG humidity sensors. Interdigitated
electrode patterns were laser-fabricated (Figure 5, inset) and

functionalized with polyvinyl alcohol (PVA) as a hygroscopic
dielectric material to produce capacitive humidity sensors (six
devices for each region). Similar exponential capacitive
responses were observed for both Region 1 and Region 2
materials with over an order of magnitude increase with
increasing relative humidity (RH). Region 1 parameter devices
yielded capacitance responses of 0.78 ± 0.04 pF at 0% RH,
increasing to 31 ± 7 pF at 85.1% RH. Region 2 devices showed
comparable responses (0.88 ± 0.04 pF at 0% RH, 28 ± 5 pF at
85.1% RH).
Device time responses and reversibility were also measured

by switching between different humidity conditions (33.3%
RH to 85.5% RH and vice versa, Figure S7). The time taken to

Figure 4. a) fwhm of Raman peaks vs peak position; (b) peak area
ratios relative to the G peak vs peak position. (c) ID/IG vs ID′/IG with
lines indicating values expected for boundary defects (dashed line)
and vacancy defects (solid line).

Figure 5. Exponential dependence of capacitance at zero potential (2
kHz) on RH for PVA-functionalized LIG capacitance humidity
sensors produced under Region 1 and 2 conditions. Inset: photo of
the interdigitated PVA-LIG capacitive humidity sensor.
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reach 90% of the maximum capacitance (tAds = 37.5 min) was
significantly longer than the time taken to return to 90% of the
final capacitance (tDes = 2.0 min), suggesting an adsorption
barrier energy. This could be addressed in future work through
use of thinner films of hygroscopic dielectrics or integration of
an external heater to reduce response and recovery times,
respectively.44 The similarity of the resulting humidity sensors
highlights the ability of DoE-RS methods to determine
potentially useful regions of interest in complex material
systems.
Finally, the demonstrated ability of DoE-RS methods to

rapidly investigate interactions between factors provides a
broad scope for future work in specific device geometry
optimizations. Additional factors can be considered, especially
the interaction of raster beam overlap with laser power and
scan speed. Many-factor interactions are demonstrated in
Section S8 with proof-of-concept iterative DOE-RS methods
using a higher fidelity laser system (Universal Laser Systems
PLS 4.75 30 W CO2 10.6 μm). This laser system allows user
control of the laser scan speed and the average laser power
(achieved by varying the duty cycle of the electrical
modulation waveform). The system also allows user control
of the line−line overlap during rastering, the focus height
above the sample, the gas flow through the nose cone above
the focal plane (nitrogen or air), and the electrically gated
modulation rate of the laser along the main raster direction
(pulses per inch, PPI). Screening experiments indicated that
the laser modulation rate in the range studied (500−1000 PPI)
and gas flow were not significant factors for controlling sheet
resistance. A subsequent optimization round highlighted the
significance of line−line overlap both as a main factor and in
interactions. As discussed earlier, the multi-pass lasing methods
developed by Tour et al.25 revealed the importance of device
history effects, including raster beam overlap and laser
defocusing. Significant beam overlap between raster lines
during patterning and/or multiple-pass lasing can result in LIG
formation at reduced dynamic fluence values relative to
structures produced by single laser passes, as reported by
Stamatin et al. The complex, non-linear contributions from key
parameters (laser power, scan speed, and beam overlap)
highlight the benefits and importance of DoE-RS optimization
methods. Where application-specific device geometries are
known, further optimization may be possible by considering
the raster/vector direction, the beam profile, and time- or
history-dependent effects such as thermal relaxation of the
substrate between laser passes.

■ CONCLUSIONS

This work reported the successful use of design of experiment
methods in the determination of optima and factor interactions
in complex, novel material systems. Iterative DoE processes
were demonstrated, realizing both a global minimum for sheet
resistance and a local minimum at high scan speed. Despite
uncertainty in the LIG formation mechanism, it was possible to
determine these two non-intuitively connected regions
possessing similar material properties despite distinct for-
mation conditions. Consequentially, all-polymer humidity
sensors were successfully produced with the LIG materials
functionalized with PVA, displaying equivalent sensitivities.
This demonstration of 5× higher fabrication throughput
highlights the potential of design of experiment methods as
an investigative tool.

The employment of design of experiment methods in this
work demonstrates not only its efficiency as an optimization
strategy but also its use as a rigorous, resource-efficient
investigation tool. The use of DOE methods allows for
appropriate investment of resources at different phases of the
process, retaining higher-expense experiments, both in analysis
time and operational cost, for smaller sampling regions and
verification processes. This helps to maximize throughput and
ensure efficient experimental design. Consequentially, regions
of interest can be determined rapidly, and time can be spent
focusing on high-quality, cutting edge work instead of
screening steps. For instance, the implementation of in-depth
Raman surveys would be impractical on large parameter
spaces, while for verification processes, their added rigor can be
appropriately utilized. This work highlights the importance of
such optimization strategies for “all-carbon” sensor elements,
where use of metals or other critical raw materials is not
favored in order to minimize the environmental footprint and
economic costs.

■ METHODS
Sample Preparation and Visual Inspection. A low-cost

(∼$500) CO2 laser engraver [10.6 μm wavelength, 0−30 W
power (oscillating mirror modulation), HQ-3020B, GuangZ-
hou Amonstar Trade Co., Ltd.] was rastered under ambient
conditions to convert adhesive-backed polyimide film
(Radionics, HB830-19, thickness: 70 μm), supported by an
acrylic substrate, into a graphitic material. A parameter space of
6 values of average laser powerin the range of 2.4−8.4 W and
11 scan speed values in the range of 40−440 mm/s was
investigated by producing a series of samples on polyimide for
a subset of 60 combinations of laser power and scan speed, as
shown in Figure S1. Each sample (16 discs, each ∼4 mm
diameter) was visually inspected to determine the bounds of
the uniform, black, non-damaged materiala useful visual
indicator for LIG.

Iterative DoE Methodology. The region of interest
derived from the visual inspection was used to define a
screening DoE-RS (Design Expert 11) based on visually
graded responses (fibrosity, redeposited residue, and damage)
as assessed on a scale of 1−10 (Figure S2). Informed by this
visual screening DoE-RS, a further 18-point screening DoE-RS
using a sheet resistance response factor was constructed, as
shown in Figure S3. Transfer line measurement tracks were
produced with lengths of 1.5−6 mm and widths of 0.5−1.8
mm. The resistances were recorded using a multimeter (Fluke
179), and the corresponding sheet resistances were extracted.
The average sheet resistance from five transfer line measure-
ment structures was used for the DoE-RS. Predicted optima at
low−moderate values of laser power and scan speed were
investigated by a subsequent 30-point DoE-RS using a sheet
resistance response. Each sample for this final DoE-RS
comprised five replicates of 20 mm × 2 mm bar structures
(10:1 aspect ratio). The use of long, high-aspect-ratio bar
structures minimizes the influence of contact resistance by
ensuring that it is a small proportion of the total recorded
resistance, while retaining high throughput of measurements.
The inclusion of replicates was to account for any variability in
the contact resistance. A DoE-RS model was constructed using
an inverse transformation and fifth-order polynomial terms, as
described in Section S2 in the Supporting Information.
Three regions of interest were identified from the final

response surface experiments (Region 1, Region 2, and Region
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3). Five replicates of the 20 mm × 2 mm structures were
produced using the DoE-RS model parameters for each region.
Current−voltage sweeps (−3 to +3 V) were obtained (Desert
cryogenic probe station with an Agilent E4980A parameter
analyzer) to verify the multimeter measurements. The
associated sheet resistance values were calculated.
Raman Spectroscopy Measurements and Analysis.

Samples produced under the Region 1, Region 2, and Region 3
conditions were characterized by Raman spectroscopy
mapping (Renishaw inVia, 514.5 nm Ar laser, 20× and 50×
objectives). To account for the 3D structure and sample
inhomogeneity, numerous scans were taken as part of a Raman
map of each location. Mapping was conducted at 20× and 50×
magnifications at three spatially distinct locations across two
separate samples. A total of 228 scans were obtained for
Region 1 samples, 230 for Region 2 samples, and 219 for
Region 3 samples. All scans for Region 1 and Region 2 samples
displayed graphitic behavior. For Region 3 samples, ∼70% of
the spectra showed graphitic peaks (158 of 219); the
remaining 61 displayed only the background associated with
scattering from a highly 3D sample.
Of the scans that displayed graphitic behavior, 14 spectra

were randomly selected for detailed peak fitting. Spectra from
Region 1 and Region 2 samples were fit with six Lorentzian
peaksthree first-order Raman peaks (D, G, and D′) and
three second-order peaks (D + D″, 2D, and D + D′). Spectra
from Region 3 samples were fit with four peaks since the D′
and D + D″ peaks could not be resolved. The mm-scale and
microscale morphologies of the samples were characterized by
SEM (JSM-6700F JEOL UK Ltd.).
Proof-of-Concept Humidity Sensing. Interdigitated

electrodes were fabricated using the predicted DoE-RS
parameters for two minima: the global minimum sheet
resistance (Region 1) and minimum sheet resistance at a
high scan speed (Region 2). PVA was doctor-bladed onto the
electrodes to create a hygroscopic dielectric layer for proof-of-
concept capacitance-based humidity sensors. The capacitance
sensors (six individual devices for each region of interest) were
equilibrated for 6 h above saturated salt solutions, producing
standard humidity environments according to the E104-02
standard, that is, vacuum: 0% RH; MgCl: 33.1% RH; K2CO3:
43.2% RH; NaCl: 75.5% RH; KCl 85.1% RH.37 The
capacitance response was measured using an AC potential
sweep (Agilent E53708B LCR Meter, 2 kHz).
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