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Abstract

Small molecules that bind at protein-protein interfaces may either block or stabilize protein-protein interactions in cells.
Thus, some of these binding interfaces may turn into prospective targets for drug design. Here, we collected 175 pairs of
protein-protein (PP) complexes and protein-ligand (PL) complexes with known three-dimensional structures for which (1)
one protein from the PP complex shares at least 40% sequence identity with the protein from the PL complex, and (2) the
interface regions of these proteins overlap at least partially with each other. We found that those residues of the interfaces
that may bind the other protein as well as the small molecule are evolutionary more conserved on average, have a higher
tendency of being located in pockets and expose a smaller fraction of their surface area to the solvent than the remaining
protein-protein interface region. Based on these findings we derived a statistical classifier that predicts patches at binding
interfaces that have a higher tendency to bind small molecules. We applied this new prediction method to more than 10
000 interfaces from the protein data bank. For several complexes related to apoptosis the predicted binding patches were in
direct contact to co-crystallized small molecules.
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Introduction

Protein-protein interactions play important roles in most

cellular processes [1,2]. In the yeast S. cerevisiae, for example,

interaction partners have been reported for more than 5 000 of the

6 000 yeast proteins [3]. In human cells, protein interactions are

involved, among others, in signaling processes, such as in the

MAPK cascade, and in regulatory processes, such as the G-protein

activated processes of hormone detection. Therefore, protein

interactions are of vital interest for pharmaceutical intervention.

Currently, the main approach for designing inhibitors and

modulators of protein-protein interactions aims at designing

peptidomimetics that compete with the natural partner protein

for the same interface [4]. As some of these binding interfaces can

also bind small molecule ligands, modulating the activities of

protein-protein complexes by competitive or allosteric small

molecule protein-protein inhibitors (SMPPIs) has become an area

of very active interest in current pharmaceutical research [5,6].

Although rational design of SMPPIs still presents a considerable

challenge [5], promising progress has been made in several cases

towards finding small molecules that efficiently inhibit protein-

protein interactions. A prominent example is the p53-MDM2

system that is a promising putative target for cancer therapy [7].

Our structural understanding of how proteins interact with

other proteins and with small molecule ligands is largely based on

the atomistic three-dimensional protein structures deposited in the

Protein Data Bank (PDB) [8]. Statistical analysis of these

complexes has allowed deriving some general principles about

the binding interfaces of protein complexes. For example,

permanent complexes tend to have large and hydrophobic

interfaces whereas transient interactions often involve binding

via smaller and more polar interfaces [9]. Besides, some binding

interfaces resemble an O-ring where a hydrophobic interior is

surrounded by a ring formed of polar and charged residues [10].

Protein binding interfaces are rather flat, on average, particularly

when compared to those involved in binding small ligands that

often bind into pronounced clefts on the protein surface. Yet,

binding of ligands and/or the natural conformational dynamic

fluctuations of proteins may induce the formation of binding

pockets of suitable size and polarity as shown for several systems

such as IL2-IL2-R, p53-MDM2, and Bcl-XL [5,11].

Interestingly, not all interface residues play the same role for the

stability (binding affinity) of the complex. There often exists a

subset of interface residues, the so-called hot spots, that are mainly

responsible for the binding affinity [10,12] and may be promising

locations for binding of small molecules. Moreover, these hot spot

residues are generally not spread over the entire interface but are

located in clusters [13,14]. Thus, one could expect that successful

SMPPIs preferentially bind in regions where hot spots residues are

enriched. Besides experimental information on the location of hot

spots, several fast computational prediction-algorithms are avail-

able for predicting hot spot residues at protein-protein interfaces

[15,16] with about 70% accuracy [17]. Kozakov et al. have

recently demonstrated for 15 PPI target proteins that druggable

sites comprise a cluster of binding hot spots with rather concave

topology[18]. In general, the binding pockets were formed by a

mosaic-like pattern of hydrophobic and polar amino acids so that

they could accommodate well a mixture of 16 organic probe

molecules in a procedure termed ‘computational solvent map-

ping’. Furthermore, Metz et al. selected promising configurations
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for ligand docking from an ensemble of protein conformations

[19] based on predicted hot spot residues from MM-PBSA

calculations.

Very few studies have compared the general properties of

protein-protein and protein-ligand complexes [7,20–22]. The

Timbal database contains structural data for a small number of

protein-protein complexes and their complementary protein-

ligand inhibitor complexes [23]. Davis and Sali [24] compiled a

large dataset of protein-protein and protein-ligand complexes.

They classified surface residues at the binding interface into

‘bifunctional sites’ that contain residues that bind to other proteins

as well as to small-molecule ligands, and ‘mono-functional sites’

that only interact with other proteins. Bifunctional sites can be

predicted with high accuracy by a homology transfer algorithm

termed HOMOLOBIND when homologous template binding

sites are known [25]. Koes and Camacho predicted so-called

‘small-molecule inhibitor starting points’ (SMISPs) on the surface

of the protein binding partner [26]. Their statistical classifier

achieved 70% leave-one-complex-out cross-validation accuracy.

Similar to these two works, we analyze here PP:PL pairs in which a

ligand Lj and a second protein Pi2 compete for the same binding

interface on the surface of the first protein Pi1/Pi3. For these

interfaces, our method predicts ‘where at the binding interface

small-molecule ligands will bind most likely’.

Materials and Methods

Compilation of non-redundant dataset
All interface data and features were retrieved from our

ABCsquare database [27] that is based on the structures of

biomolecular protein-protein and protein-ligand complexes taken

from the PDB database [8]. For each complex, the ABCsquare

database provides a list of interface residues that were identified

using a distance based approach. Any surface residue is considered

as interface residue if at least one residue from the binding partner

can be found within a radius of 5 Å.

The main dataset for this study (see table S1) contains a list of

PP:PL pairs where one protein may bind either a second protein

or a small molecule ligand at the same interface. At first, we

compiled a non-redundant set of tuples (Pi1, Pi2):(Pi3, Lj) where Pi1,

Pi2 and Pi3 are three proteins and Lj is a small molecule ligand.

Precisely, we considered small molecules that are defined as

‘HETATOMs’ in the PDB file except for ions and water

molecules. Valid tuples were required to fulfil the following four

conditions:

(1) Pi1 and Pi2 are members of a protein-protein complex that is

deposited in the PDB.

(2) Pi3 and Lj are members of a protein-ligand complex that is

deposited in the PDB.

(3) Pi1 and Pi3 share at least 40% sequence identity.

(4) The aligned positions in the binding interfaces of Pi1–Pi2 and

Pi3–Lj have at least two residues in common.

In the following we denote Pi1 and Pi3 as reference proteins as

they determine the relation between the tuples (Pi1, Pi2) and (Pi3,

Lj). For checking the last condition, the sequences of the reference

proteins were aligned to each other. This resulted in a mapping of

the respective interface regions. Residue pairs of proteins Pi1 and

Pi3 that belong both to the Pi1–Pi2 as well as to the Pi3–Lj interface

were termed ‘overlapping’ residues. The remaining interface

residues of Pi1 were termed ‘non-overlapping’ residues, see Fig. 1.

We did not consider PP:PL pairs that contained only one

overlapping residue as this marginal overlap was considered being

too small for deriving a meaningful statistical classifier. This

procedure resulted in a dataset of about 10 000 pairs of complexes.

However, this dataset may also contain PP:PL pairs where the

ligand does not actually compete with the second protein for the

interface on protein Pi1, but both Lj and Pi2 may bind

simultaneously, possibly in a cooperative manner. As this work

focuses on identifying competitive binders, the reference proteins

Pi3 were geometrically mapped onto the reference proteins Pi1

using structural superposition using the program VMD [28], see

Fig. 2. The resulting transformation and rotation matrices were

then applied to the ligand Lj. If any of the distances between the

heavy atoms of Lj and Pi2 was shorter than the sum of the two

atomic radii this indicated a collision. In that case, Lj and Pi2 are

not likely to bind simultaneously to the same binding region on Pi1.

All other pairs of complexes were deleted from the list. This led to

about 1 000 pairs of PP and PL interfaces in total.

In order to remove sequence redundancy among the PP:PL

pairs we clustered the reference proteins Pi1 of the remaining PP

interfaces using the CD-hit program [29] with a sequence identity

cut-off of 40%. This resulted in about 300 clusters. Every cluster

contained one or several PP:PL pairs with homologous reference

proteins. We did not want to consider short peptide fragments as

Figure 1. Schematic representation of a PP complex (left) and a PL complex (right). PP and PL share an identical or similar ‘reference
protein’. The interface areas shown in light grey were determined using a distance criterion as described in the methods section. Overlap residues
form contacts in the PP complex as well as in the PL complex whereas non-overlapping residues form contacts only in one of the complexes.
doi:10.1371/journal.pone.0058583.g001
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representatives for the proteins Pi2 as such peptides may only cover

parts of the full PP interface. Therefore, we excluded a cluster

entirely if it contained only small peptides shorter than 5 residues

as Pi2 structures. Another requirement was that the two interfaces

of a PP:PL pair should be similar to each other. To this end, we

calculated the sequence identity for the sequence stretches of

corresponding interface residues consisting of a combination of

overlapping and non-overlapping residues for the PP complex and

the PL complex, respectively. Within each cluster we selected the

representative with the highest identity of interface residues. The

final dataset comprises 175 PP:PL tuples. These are listed in the

supplementary material.

Computation of interface features
For all PP complexes of the final dataset, we computed

structural and sequence features of the interfaces that reflect the

role of individual residues in the complex (all in all 5815 residues).

(1) The evolutionary conservation score for a single residue was

obtained from Consurf-DB that provides pre-calculated normal-

ized conservation scores for all PDB structures [30]. These scores

are based on multiple sequence alignments using PSI-BLAST and

MUSCLE, respectively, and on calculating the evolutionary

conservation of each amino acid position in the alignment using

the Rate4Site algorithm. According to this score, well conserved

sequence positions have negative scores and flexible ones have

positive scores. (2) A measure for the energetic contribution of the

residues at the binding interface was obtained from a hotspot

prediction using an in-house implementation of two knowledge-

based prediction algorithms [15,16] in our ABCsquare database.

Benchmarking this approach on a representative set of protein-

protein interactions yielded a very similar accuracy (71%) as the

webserver implementation by Keskin and co-workers [15] (70%

for our test data set).

Besides, we computed several structural features of the binding

interfaces that characterize their packing density and curvature. (3)

A measure representing the level of burial or exposal of residues

was quantified by the protrusion value. For this, we used the

implementation from ref. 31 that calculates a protrusion value for

the ith atom in a molecular structure as:

protrusion(atomi)~
Vemtpy

Vatoms

Here, Vatoms denotes the volumes of the atoms within 10 Å radius

around atom i and Vempty represents the value of the remaining

empty space in this sphere. An atomic protrusion value of 0 refers

to fully buried atoms. The larger the value, the more exposed the

atom is to the solvent. The protrusion value for an entire amino

acid was computed as the average of the values over all atoms of

this residue. Figure S1 in the supporting information shows an

example of protrusion values that are visualized using different

colors.

(4) The contact density of residue i was computed following

Illingworth et al. [32] as the average contact density of its surface

accessible heavy atoms according to:

Figure 2. Identification of competitive PP:PL pairs using
structural superposition.
doi:10.1371/journal.pone.0058583.g002

Figure 3. Construction of a surface patch. (a) Shown is a pre-patch
of size n = 5, consisting of a central surface residue (dark grey) and n-
1 = 4 nearest neighbors residues (light grey). (b) Using the coordinates
of the Ca-atoms of the residues, the center of mass (COM) for this pre-
patch is calculated. For any surface residue including the central
residue, a solvent vector is defined using the coordinates of its Ca-atom
and the COM. (c) The final surface patch contains the central residue
and the closest n-1 surface residues (grey) for which the angle ai

between their solvent vector and the solvent vector for the central
residue is between 0u and 110u.
doi:10.1371/journal.pone.0058583.g003
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density(residuei)~

Pn

j~1

contacts (atomij)

totalAtomsi

where contacts(atomij) is the number of contacts between a surface

accessible heavy atom j of residue i and other heavy atoms

belonging to residues of the same chain within a radius of 5Å and

totalAtomsi denotes the number of all heavy atoms in residue i.

(5) Also, for all interface residues i the relative surface fraction

was calculated using the program Naccess [33]:

rSASA(residuei)~
SASA(residuei)

total surface (residuei)

Here, the solvent accessible surface area (SASA) was calculated

by Naccess for an individual residue i in a PP complex, whereby

the total surface is the surface area of that residue located in the

center of a tripeptide and surrounded by two alanines.

Next, we considered the direct neighbors of the residue of

interest forming a small surface patch on the interface region. This

approach was inspired by the work of Thornton et al. [34,35]. A

patch is made up of n surface residues, which consist of one central

residue and n-1 neighboring residues. Thus, a patch describes the

microenvironment for a central residue with respect to geometric

parameters or physico-chemical properties. We applied a

reimplementation of the algorithm in ref. 34 and calculated

patches for every surface residue in our dataset with sizes between

5 and 8. Fig. 3 outlines the construction of surface patches.

Training of statistical classifier
The binary statistical classification of overlapping and non-

overlapping residues was based on the random forests method [36]

using the randomForest package from Breiman and Cutler

implemented in R [37]. A random forest is a fast classifier

consisting of a collection of decision trees, where each tree classifies

a residue separately. The idea of such an ensemble classifier is to

combine a number of weak learners to create a single strong

Table 1. Confusion matrix for our prediction.

Observed overlap Observed non-overlap

Predicted overlap TP: 672 FP: 1533

Predicted non-overlap FN: 424 TN: 3186

Here, TP (true positive) and TN (true negative) denote the number of correctly
predicted overlap residues and the correctly predicted non-overlap residues
respectively. FP (false positive) and FN (false negative) refer to wrong
predictions of overlap and non-overlap residues.
doi:10.1371/journal.pone.0058583.t001

Figure 4. Pairs of protein-protein complexes and the related
protein-ligand complexes. (a) and (b) show trypsin bound to the
native protein inhibitor Bovine Pancreatic Trypsin Inhibitor (BPTI) (a,
PDB code 1BZX E:I) or to the small-molecule ligand benzamidine (b,
1MBQ A:BEN). Here, the identifiers denote the chains and ligands used.
The chain identifiers of the reference proteins are marked in bold. (c)
and (d) show insulin growth factor protein bound to an IGF-binding
protein (c, 2DSQ I:G) or to a detergent molecule (d, 1GZR B:C15). (e) and
(f) show barnase bound to the protein inhibitor barstar (e, 1X1U A:D) or
to its natural ligand RNA, in this case the tri-nucleotide GMP (f, 1GOY
A:3GP). (g) and (h) display a sugar binding protein and its natural ligand
N-acetylglucosamine (h, 1DBN A:NAG) or when it forms a quaternary
homomeric structure (g, 2DVG C:B).
doi:10.1371/journal.pone.0058583.g004

Figure 5. PP:PL pair 1BZX E:I (left) and 1MBQ A:BEN (right). The
reference proteins are marked in dark grey, the ligand and the binding
protein partner in light grey. Additionally, the overlapping residues on
the surface of the reference proteins are marked as bright spheres. The
corresponding regions are circled.
doi:10.1371/journal.pone.0058583.g005
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learner. To obtain a single prediction, a majority vote is performed

at the end. Each tree is trained using a different bootstrap sample

from the original dataset (which is obtained by random sampling

with replacement). For each node of a tree a subset of the available

features is randomly selected and the best split on these is chosen

according to the training set by using the Gini impurity criterion.

The Gini impurity is a measure of how often a randomly chosen

residue from the training set would be incorrectly classified if it

were randomly classified according to the distribution of the two

classes in the subset. Each tree is fully grown and not pruned.

Because of the bootstrap sampling, about one-third of the original

cases are left out of the training set of a specific tree and thus, they

are not used in the construction of that tree. This data is used to

get a running unbiased estimate of the classification error as trees

are added to the forest. It is also used to obtain estimates for the

importance of individual features. Because of that, there is no need

for cross-validation or a separate test set to obtain an unbiased

estimate of the test set error in random forests. In our study the

random forests were trained with the five most promising features

identified during this work (see above). The default parameters

were employed for the number of trees and the number of features

at each node.

Because of the large imbalance between the number of

overlapping and non-overlapping residues in our dataset (see

Figure 6. Interface statistics. Shown is the total number of interface residues against (a) the number of overlap residues for PP interfaces and (b)
the number of overlap residues for PL interfaces.
doi:10.1371/journal.pone.0058583.g006
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table 1), we obtained a highly unbalanced prediction error

between the two classes when using the whole dataset. In order

to balance the two class error rates, we applied a down sampling

procedure to our dataset. We randomly drew the same number of

data points from the majority class as from the minority class to

obtain training datasets. This was repeated 1 000 times.

Results and Discussion

This study aims at characterizing the nature of protein residues

at overlapping protein-protein and protein-ligand binding inter-

faces. More precisely, given the three-dimensional structure of

such a protein-protein interface, we aimed at developing a method

for predicting where small molecule ligands would most likely bind

at this interface. In a drug design project targeting a known protein

interface, such a method would allow focusing the virtual or

experimental screening efforts on ligands with physico-chemical

properties that are complementary to the predicted binding patch

at the protein interface.

Statistics of the dataset
As explained in the Materials and Methods section, we derived

a dataset of 175 tuples (Pi1, Pi2) : (Pi3, Lj), where Pi1, Pi2 and Pi3 are

three proteins and Lj is a small molecule ligand, Pi1 and Pi3 share

at least 40% sequence identity, and the aligned positions in the

binding interfaces of Pi1 – Pi2 and Pi3 – Lj have at least two

residues in common. Fig. 4 shows four representative examples of

such tuples. A list of all 175 pairs is available in supplementary

table S1. In the PP:PL complex pair 1MBQ-1BZX, for example,

the digestion enyzme trypsin is either bound to the small-molecule

ligand benzamidine in the PL complex (Fig. 4b) or to the native

protein inhibitor Bovine Pancreatic Trypsin Inhibitor (BPTI) in

the PP complex (Fig. 4a). The pair 1GZR-2DSQ refers to

interactions of the insulin growth factor protein with an IGF-

binding protein (PP, Fig. 4c) or with a detergent molecule (PL,

Fig. 4d). Here, the PP structure contains further protein chains

that are colored grey in the figure, forming a multimeric complex

with four chains. The PP:PL pair 1GOY-1X1U involves the well-

known barnase-barstar system. Here, the functional roles of ligand

and partner protein are reversed. In the PL interaction, the

ribonuclease barnase is bound to its natural ligand, the tri-

nucleotide GMP (Fig. 4f), whereas the protein binding partner

barstar acts as inhibitor in the PP complex (Fig. 4e). In the

automatic derivation of the dataset the biological function of the

ligand was not considered because we assume that, irrespective of

the functional relationship, already the mere existence of a binding

site for a small ligand provides valuable information for finding

potential drug targets.

The last example in Fig. 4, 1DBN-2DVG, illustrates another

class of PP:PL pairs in our dataset. In this case, the PL pair is

formed by a sugar binding protein and its natural ligand N-

acetylglucosamine (Fig. 4h). Additionally, the PL complex contains

a second chain of the sugar binding protein forming a homodimer

and the ligand is integrated into the binding interface of the

homodimer. The corresponding PP complex was extracted from a

quaternary homomeric structure (Fig. 4g). Both PDB files thus

contain an equivalent protein-protein complex. The collision filter

used in our workflow also picked up this kind of pairs because the

ligand is so tightly embedded in the interface area (see methods

section). Our final dataset contains about 20 of such cases.

Although we could have manually removed these structures, such

data arguably also provides valid information for the derivation of

the desired prediction approach so that we kept these structures.

The geometric relation between a PP:PL pair is illustrated in

more detail in Fig. 5 on the example of the well-known trypsin-

benzamidine complex introduced before. The left picture shows

how native BPTI binds to trypsin and blocks access to its active

site. The right picture shows how a small benzamidine molecule

binds into the active-site cavity at the trypsin-BPTI interface and

thereby blocks the binding interface for trypsin inhibitor proteins.

The paired PP and PL interfaces in our dataset involve on

average 35.5624.0 Pi1 residues (PP) and 8.766.1 Pi3 residues (PL).

On average, only 25% of the residues in a PP interface participate

in the overlapping region whereas 79% of the residues of the

corresponding PL interface belong to the overlap region. In fact,

64 PL interfaces out of the 175 PP:PL pairs (37%) were fully

Figure 7. Distribution of conservation ranges obtained from the Consurf webserver. Conservation scores are shown separately for overlap
(black line) and non-overlap (grey line) residues for PP interfaces. As a reference, the conservation of all residues on the protein surface (dotted line) is
plotted. Negative values indicate residues that are more conserved. Using the Welch t-test the two classes showed a statistically significant difference
(p-value,2.2e-16).
doi:10.1371/journal.pone.0058583.g007

Small Molecule Binding at Protein Interfaces

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e58583



covered by the overlapping area compared to none of the PP

interfaces.

Concerning the size of the ligand, we found somehow

unexpectedly that the number of ligand atoms was not related to

the size of the ligand binding interface (Pearson correlation

coefficient equals 20.07). On the other hand, Fig. 6 plots the

numbers of overlap residues relative to the total number of

interface residues for PP and PL complexes, respectively. For the

PP interfaces, no relation is found between the total number of

interface residues and the number of overlap residues (20.06

Pearson). In contrast, the number of overlap residues for PL

interfaces is strongly correlated with the total number of interface

residues (0.86 Pearson).

Distribution of interface features
For deriving the statistical classifier, we needed to identify

features of the residues at binding interfaces that display different

distributions for residues in the overlapping part of PP:PL

interfaces and for non-overlapping residues. For this, we tested

several structural and evolutionary features of the interfaces that

were discussed previously in the literature.

Due to their importance for the stability of the complex,

residues at binding interfaces generally represent essential func-

tional areas and thus may be potentially preserved during

evolution. However, it is yet an unsettled issue whether binding

interfaces are generally more conserved than the rest of the protein

surface [38–40]. Interestingly, we found that residues in the

Figure 8. Binned distribution of the protrusion index for overlap and non-overlap residues of PP interactions. Values close to zero
indicate buried residues. Using the Welch t-test the two classes showed a statistically significant difference (p-value , 2.2e-16).
doi:10.1371/journal.pone.0058583.g008

Figure 9. Distribution of surface fractions for overlap and non-overlap residues for PP interfaces. Using the Welch t-test the two classes
showed a statistically significant difference (p-value = 6.373e-11).
doi:10.1371/journal.pone.0058583.g009
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overlapping part of the protein-protein and protein-ligand

interfaces are more conserved than non-overlapping residues, see

Fig. 7. This finding differs from those reported by Davis and Sali

who observed a lower conservation for overlap residues in

comparison with non-overlap residues [24]. Davis and Sali first

removed redundant binding sites that shared more than 90% of

their corresponding alignment positions by grouping them

together and choosing randomly a representative member. This

procedure is certainly different from the one used here. Moreover,

they quantified the conservation of each alignment position using

either the number of residue types that occurred at the position or

a Shannon entropy-like score. Both approaches assigned lower

conservation to ‘bi-functional’ residues. In contrast, the rate4 site

algorithm[41] used by Consurf-DB assigns the conservation score

at a site as the evolutionary rate of this site by considering the

stochastic processes underlying sequence evolution within protein

families and the phylogenetic tree of the proteins in the family.

Thus, also the way of computing conservation differs between our

approach and that of Davis and Sali.

Also Koes and Camacho found a slight preference for predicted

SMISPs to be less conserved than the rest of the interface. [26]

These SMISP residues are defined as residues of the partner

protein Pi2 that overlap with a high-affinity ligand in a

corresponding protein:ligand structure. Obviously, the conserva-

tion of Pi2 residues may differ from that of Pi1 residues that are

considered here. As a reference point, we also computed the

conservation of the overall protein surfaces in our data set (see

Fig. 7). This distribution is highly similar to that for the non-

overlap residues at the interfaces.

Secondly, as mentioned in the introduction, there often exists a

small subset of residues, termed hot-spots, that has a larger

contribution to the binding affinity than the remaining amino

acids of the binding interface. We found that predicted hot spots

are underrepresented in the non-overlap regions of protein-protein

interfaces (37% hot-spot, 63% non hot-spot) whereas they are

equally abundant as non-hot spot residues in the overlap regions

(48% hot-spot, 52% non hot-spot). This observation can be

interpreted that due to their relatively small size, ligands are

engaged in a relatively larger number of contacts with energet-

ically important residues than corresponding protein binding

partners.

The protrusion index, computed on the basis of the Pi1–Pi2

complex structure, also shows clearly distinct distributions for

overlapping and non-overlapping residues, see Fig. 8. In agree-

ment with previous results [18,42], the comparatively smaller

values found for overlapping residues reflect that they tend to be

located in concave structural clefts at the binding interfaces. In

contrast, non-overlapping residues tend to have larger protrusion

values indicative of exposed locations.

Fig. 9 shows the relative surface fractions for overlap and non-

overlap residues. Residues in the overlapping region have a

statistically significant tendency for low surface accessibility. This

matches their higher preference of being located in pocket regions

as indicated by the protrusion index just discussed. Koes and

Camacho found on their dataset that the difference in SASA was

the most informative feature for their statistical classifier [26].

The contact density of a residue, that is the average contact

density of its solvent accessible heavy atoms, was computed

following the work of Illingworth et al.[32]. They reported that

residues within ligand binding sites tend to have a higher

frequency of contact neighbors than surface residues in general

and the density values for hot-spot residues were significantly

higher than for non hot-spot residues [16]. Also in our case, the

overlap residues show a 0.97 higher contact density than the non-

overlap residues in the dataset. The two density distributions (not

shown) were statistically significantly different (p-value,1.812e-10)

using the Welch t-test.

Performance of statistical classifier
Based on these five features (conservation score, hot spots,

protrusion index, surface fraction, contact density) we constructed

a statistical classifier using random forests [36]. In order to

improve our predictions we used the concept of surface patches as

described in the Materials and Methods section to include the

properties of neighboring residues for the prediction of a central

residue. Our final classifier utilizes the surface fraction and contact

density of the central residue, the protrusion index and conser-

vation scores of the five nearest residues (including the central

residue) and the relative frequency of predicted hot-spots in a

surface patch of size 8. Fig. 10 shows the importance of individual

features for the construction of the decision tree. Shown is the

mean decrease of the accuracy of the predictor if randomly

shuffled values were used for a particular feature in the testing

phase. For example, using shuffled values for the protrusion of the

central residue (protru1) affects the prediction accuracy by more

than 40% relative to the performance with the correct values for

Figure 10. Significance of interface features for predicting
overlap residues. MeanDecreaseAccuracy reflects the suitability of a
feature as a reliable predictor. Precisely, it reflects how much the
average prediction accuracy decreased when randomly shuffled values
were used for a particular feature in the testing phase. In the diagram,
this quality measure decreases from top to bottom. Cons#n refers to
the conservation score of the n-th nearest surface residue starting from
the central residue (n = 1: central residue itself). Analogously, protru#n
refers to the protrusion value of the n-th nearest residue starting from
the central residue (n = 1: central residue itself). Density and surface-
Fraction describe the contact density and the surface fraction of the
central residue. HsfPatch8 denotes the relative frequency of predicted
hot-spots in a surface patch of size 8.
doi:10.1371/journal.pone.0058583.g010
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this feature. In summary, the protrusion index, the conservation

score and surface fraction turned out as promising features for

distinguishing overlap (O) and non-overlap (N) residues. The

accuracy of single residues according to this O/N classification was

higher (67%) than the random value (50%) for a binary decision

between two classes of the same size (see methods). Table 1

provides an overview of the assigned classifications.

Subsequently, we tested whether the values of neighboring

individual residues can be used in a ‘patch’ analysis to boost the

accuracy of the prediction for the central residue of this patch. For

this, we measured the coherence of overlapping regions at PP

interfaces. To this end, for every PP interface, the Euclidian

distances between the heavy atoms of all residues were calculated

and assigned to clusters. A cluster consists of a set of residues in

which every residue has at least one neighboring residue in the

same set within a distance of 5 Å. We found that 82% of the

overlapping regions contained only one cluster, 13% contained

two clusters, and the remaining 5% contained three clusters. This

observation indicates that, as expected, overlap residues are not

spread out over the interface but are located close to each other.

Thus, we applied surface patches as described in the methods

section as a further means for characterizing this class of residues.

We tested patches of n = 5 to 8 residues around all central residues

that were predicted as overlap residue (‘O’). Consequently, the

patches may contain O/(O+N) fractions of 1/n to n/n ‘O’ residues.

Fig. 11 shows the frequency of 7-residue patches with different O/

(O+N) ratios and the achieved coverage. The respective statistics

Figure 11. Surface-patch based predictions. The dark grey bars indicate the fraction of positive classifications for 7-residues-patches with
increasing proportion of predicted overlap residues (1 out of 7 to 7 out of 7 predicted overlap residues). The light grey line represents the absolute
frequency for every patch, e.g. there are about 300 patches for which 5 out of 7 residues in the patch were predicted as ‘overlap’.
doi:10.1371/journal.pone.0058583.g011

Figure 12. Distribution of the number of 7-residue surface patches per protein-protein binding interface. The central residue must be
predicted as ‘overlap’ and at least 4 of the 6 remaining residues must be predicted as ‘overlap’ as well.
doi:10.1371/journal.pone.0058583.g012
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for the other patch sizes are available as supporting information

(Figs. S2–S5).

Fig. 11 shows that a large frequency of predicted overlap

residues in a patch increases the probability of true positive hits

and thus reduces the risk of misclassifications. Patches appear thus

as a suitable method to improve the accuracy of the prediction.

Examples for structures in which central residues of patches with

O/(O+N) ratio of 1 actually predict true overlap residues are 1Y48

E:I, 1OO9 A:B and 1FAK H:I. All of these pairs describe a

complex between a protein and its protein inhibitor. In the

corresponding PL complexes, the inhibiting protein is replaced by

a small molecule taking over the same role. Among the few

incorrect predictions with a O/(O+N) ratio of 1.0, the pair 2OL4

B:JPN and 1NHG B:D turned out to be a special case. Examining

the PP structure revealed that the protein chains B and D were

apparently split into two chains making it appear as a complex

because no electron density could be detected for the intervening

residue stretch. However, the protein naturally occurs as a single

chain monomer. The prediction process thus recognized four

patches with O/(O+N) ratios of 1 that were all wrong. Leaving out

this pair improves the fraction of true positives for the maximum

overlap up to 67%. For the 175 PP:PL tuples considered, 99 (or

about 60%) contained patches with 0.86 or 1.0 ratio.

Practical case study ‘apoptosis’
We then applied the prediction algorithm to the entire dataset

of 48 440 interfaces that is currently stored in our ABCsquare

database. To this end, we defined one chain for every interface as

reference protein. We then generated surface patches of size 7 for

the interface residues of the reference protein and focused on

patches where the center residue is predicted as overlap and the

total number of overlap residues is at least 5. Altogether we found

54 809 such patches belonging to 10 156 interfaces. (The entire list

is provided in supporting table S2). Note that these patches all

have different central residues but may be overlapping otherwise.

The distribution of surface patches is shown in Fig. 12.

For characterizing these interfaces with respect to their

biological role, we clustered the corresponding sequences from

all reference proteins to exclude redundancy above 30% sequence

identity and to get an overview to which sorts of proteins the ones

with overlap patches at the interface belong. The non-redundant

set of sequences was analyzed regarding the Gene Ontology (GO)-

terms for the involved proteins using the ABCsquare database. In

tables 2, S3, S4 we list the most frequent GO-terms found for the

three GO categories. The p-values reported for the GO terms

were computed in R using Fisher’s exact test against the

Table 2. GO biological process: Term frequencies of non-
redundant set and p-values against the entire dataset (Fisher’s
exact test, Benjamini-Hochberg correction).

Biological process Frequency P-value

signal transduction 39 3.212e-01

blood coagulation 32 4.789e-05

positive regulation of cell proliferation 20 1.515e-02

platelet activation 20 1.224e-02

transcription, DNA-dependent 19 2.092e-02

protein phosphorylation 18 1.0

transcription from RNA polymerase II
promoter

17 7.883e-01

apoptosis 16 3.573e-03

proteolysis 16 3.558e-06

protein homotetramerization 16 2.805e-01

doi:10.1371/journal.pone.0058583.t002

Table 3. PDB entries containing ‘overlap’ surface patches that
contain at least 3 of the terms related to ‘apoptosis’ listed in
Table S8.

PDB+chain Protein name Term frequency

1PQ1A Apoptosis regulator Bcl-X 9

1RE1B Caspase-3 9

1OLGA Tumor suppressor P53 7

2C2ZB Caspase-8 P10 subunit 7

2TNFB Tumor necrosis factor alpha 5

1DU3D apo2l/TRAIL 3

1BH5B Glyoxalase I 3

1PYOD Caspase-2 3

doi:10.1371/journal.pone.0058583.t003

Figure 13. Visualization of complexes related to apoptosis.
Predicted overlap residues are colored in dark grey whereas all other
surface residues appear in light grey. (a) 1PQ1A, (b) 1RE1B, (c) 1OLGA,
(d) 2C2ZB, (e) 2TNFB, (f) 1DU3D, (g) 1BH5B, (h) 1PYOD.
doi:10.1371/journal.pone.0058583.g013
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background of 48 440 interfaces in the entire dataset and the

Benjamini-Hochberg correction [43] was applied to account for

multiple testing.

Complete lists are available in the supporting information (table

S5-S7). Naturally, the dominating functional annotations are

‘protein binding’ and ‘protein homodimerization activity’ (see

table S3). No preference for a particular cellular compartment was

observed (see table S4). Most interesting for medical applications is

Table 2 showing the most frequently annotated biological

processes.

For a practical case study, we selected all terms from the

biological process category containing the expression ‘apoptosis’,

see table S8, as these terms may be related to cancer therapy and

collected all corresponding interfaces with their predicted overlap

residues. This term is significantly enriched (corrected p-value

0.004). Such a list may be a useful source for identifying potential

drug targets. Table 3 lists all PDB entries that contain at least three

terms related to ‘apoptosis’ and contain predicted overlap patches

on one of the protein chains. Interestingly, all but the glyoxalase

protein refer to very prominent proteins with central roles in the

apoptosis machinery. Based on the reported accuracy for 5/7

patches shown in Fig. 11, the ratio of true positive ligand binding

patches among the predicted interface residues should be at least

0.4.

Fig. 13 visualizes the predicted ‘overlap’ surface patches for the

eight complexes listed in table 3. Most of the predicted residues

form a coherent area on the surface region. Only 1PYOD exhibits

a cluster of overlap residues and a single overlap residue. The size

of the overlap region ranges from rather small and compact as in

1PQ1A to large as shown in 1OLGA. Interestingly, some of the

complexes also contain small ligands. In 1RE1B and 2C2ZB, a

small molecule binds to the predicted overlap regions supporting

the reliability of the prediction method. In the latter complex the

small molecules beyond the overlap area are located in the border

region of the protein-protein complex. In 1BH5B, the predicted

overlap region does not correspond to the binding site for the small

molecules. However, this does of course not exclude the possibility

that other ligand molecules may bind to the predicted overlap

region.

We emphasize that such predictions do not require the

availability of a crystal structure of a given protein-protein

complexes. Experimental knowledge about the binding interface,

e.g. from chemical shift mapping by NMR or from accessibility

measurements is a sufficient basis as input for a prediction by our

method.

As a caveat to this analysis we note that this analysis is of course

limited by the amount of structural data on protein-protein and

protein-ligand complexes currently available. This particularly

affects the definition of non-overlap residues. It is clearly possible

that these residues could be involved in binding alternative,

possibly larger ligands. However, the clearly distinguishable

properties of overlap and non-overlap residues derived in this

study suggest that there may be only relatively few such cases.

Concluding remarks
We have presented a new method that analyzes structural and

physiochemical features of protein-protein binding interfaces.

When given the three-dimensional structure of a protein-protein

complex or the structure of a single protein with annotated PP

interface, the method is able to identify to which parts of the PP

interface small molecules will likely bind. In this regard our

method differs from a related method recently presented by Davis

[24] that transfers observed ligand positions bound to one protein

to the surfaces of related, homologous proteins that may also bind

other proteins. We make available predictions for more than 10

000 protein-protein interfaces that can aid researchers to focus

their attention on particular portions of these interfaces.

Supporting Information

Figure S1 Protein chain surface colored according to
protrusion values. Blue colors were used for atoms that are

more exposed to the outside; red refers to atoms that are buried in

the structure.

(TIF)

Figure S2 Maximum overlap patch for patch size 5.

(TIF)

Figure S3 Maximum overlap patch for patch size 6.

(TIF)

Figure S4 Maximum overlap patch for patch size 7.

(TIF)

Figure S5 Maximum overlap patch for patch size 8.

(TIF)

Table S1 Dataset of PP:PL pairs.

(DOC)

Table S2 Dataset of predicted overlap residues (pre-
dictedOverlapResidues.txt). The first column contains the

PDB identifier and the chain name, the second column contains

the position number of the residue that represents the central

residue of the patch and is predicted as ‘overlap’.

(TXT)

Table S3 Term frequencies for GO function.

(DOC)

Table S4 Term frequencies for GO cellular component.

(DOC)

Table S5 GO function terms+frequency that are found
in the dataset of predicted overlap residues (prediction-
GOfunction.txt).

(TXT)

Table S6 GO biological process terms+frequency that
are found in the dataset of predicted overlap residues
(predictionGOprocess.txt).

(TXT)

Table S7 GO cellular component terms+frequency that
are found in the dataset of predicted overlap residues
(predictionGOcellComp.txt).

(TXT)

Table S8 Biological process GO terms referring to
apoptosis.

(DOC)
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