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Abstract: Wearable sensors are gaining attention in human health monitoring applications, even if
their usability is limited due to battery need. Flexible nanogenerators (NGs) converting biomechanical
energy into electrical energy offer an interesting solution, as they can supply the sensors or extend
the battery lifetime. Herein, flexible generators based on lead-free barium titanate (BaTiO3) and a
polydimethylsiloxane (PDMS) polymer have been developed. A comparative study was performed
to investigate the impact of multiwalled carbon nanotubes (MWCNTs) via structural, morphological,
electrical, and electromechanical measurements. This study demonstrated that MWCNTs boosts the
performance of the NG at the percolation threshold. This enhancement is attributed to the enhanced
conductivity that promotes charge transfer and enhanced mechanical property and piezoceramics
particles distribution. The nanogenerator delivers a maximum open-circuit voltage (VOC) up to 1.5 V
and output power of 40 nW, which is two times higher than NG without MWCNTs. Additionally,
the performance can be tuned by controlling the composite thickness and the applied frequency.
Thicker NG shows a better performance, which enlarges their potential use for harvesting biome-
chanical energy efficiently up to 11.22 V under palm striking. The voltage output dependency on
temperature was also investigated. The results show that the output voltage changes enormously
with the temperature.

Keywords: PDMS/BaTiO3 nanocomposite; MWCNTs; flexible piezoelectric nanogenerators;
biomechanical energy harvesting; temperature dependency

1. Introduction

Nowadays, energy harvesting technologies are facing an immense breakthrough ow-
ing to the increase of sophistication of our society using Internet of Things (IoT) technology.
Therefore, millions of sensors are used that require continuous charging [1–3].

To this aim, the replacement of batteries with a continuous power source is be-
coming inevitable and indispensable in providing continuous environment and human
health monitoring.

Additionally, the environmental concern has also pushed for efficient and eco-friendly
generating energy sources. Therefore, the demand for energy harvesting technologies that
can collect ambient energy such as wind energy, solar energy, and mechanical energy is
growing [1–3]. Among all these sources, the ambient energy of mechanical vibrations is

Sensors 2022, 22, 4181. https://doi.org/10.3390/s22114181 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114181
https://doi.org/10.3390/s22114181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2537-6920
https://orcid.org/0000-0002-1351-5623
https://orcid.org/0000-0002-7166-1266
https://doi.org/10.3390/s22114181
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114181?type=check_update&version=1


Sensors 2022, 22, 4181 2 of 13

one of the most abundant sources that can be converted to usable electrical energy [4–6].
Various principles exist to harvest wasted mechanical energy as electricity, including the
piezoelectric and triboelectric principles [7,8]. Both principles can efficiently harvest energy
in low-frequency environments and can be lightweight. However, a triboelectric energy
harvester has some limitations, such as lower durability caused by structural changes over
time and post-stress conditions [9]. For this reason, piezoelectric energy harvesters are
more preferred.

Among piezoelectric energy harvesters, polymer nanocomposite based piezoelectric
energy harvesters attract great attention because of the possibility to convert vibrational and
mechanical energy sources from human activities, such as pressure, bending, and stretching
motions into electrical energy. Recently, different piezoelectric nanomaterials have been
used to develop flexible nanogenerators (NGs) such as lead zirconate titanate (PZT), zinc
oxide (ZnO), barium titanate (BaTiO3), or in poly (vinylidene fluoride) (PVDF) [10–12].
Between all these materials, PZTs have been frequently used, owing to their high piezoelec-
tric properties and thermal stability [13]. However, the toxicity of lead led researchers to
consider and use lead-free piezoceramic with comparable piezoelectric properties to PZT.
Recently, BaTiO3 is explored for the realization of nanogenerators for different applications,
including medical [14].

In fact, BaTiO3 is one of the promising lead-free piezoceramic due to its very high
piezoelectric constant d33 > 200 pC/N, their perovskite crystal structure that leads to a high
dielectric constant (100–11,000), and biocompatibility. BaTiO3 piezoelectric nanoparticles
are preferred to be embedded into a soft polymer matrix to fabricate simple, scalable, and
wearable piezoelectric nanogenerators [14].

For example, Shin et al. [15] reported about a highly performant flexible piezoelectric
composite composed of BaTiO3 and poly-(vinylidene fluoride-co-hexafluoropropylene)
(PVDF-HFP), which could achieve a maximum output voltage and current under cyclic
bending in the range of 5 V to 750 nA, respectively. In another work, Yan and Jeong [16]
developed flexible composites with different orientations of BaTiO3 nanofibers in a poly-
dimethylsiloxane (PDMS) polymer. The nanogenerator with vertically aligned BaTiO3
nanofibers exhibited a high piezoelectric performance with an output power of 0.1841 µW
under very low mechanical stress around 0.002 MPa.

Several works have illustrated that the performances of nanogenerators can be signifi-
cantly improved by keeping them under a high electric voltage field of several kV for a
very long period of time in order to orient the crystal domains of the piezoelectric material
and to align the piezoelectric dipoles into an identical direction. Lin et al. [17] fabricated a
stretchable piezoelectric nanogenerator using BaTiO3 /PDMS, which was polarized at an
ambient temperature by applying an electric field of 80 kV/cm for 12 h. The nanogenerator
delivered an open-circuit voltage and short-circuit current of 5.5 V and 350 nA, respectively.
However, this process is long and unsafe. Intensive efforts have been made to improve the
performance by introducing different carbon materials, such as carbon black, graphene,
and carbon nanotubes (CNTs) [18–21].

Luo et al. [18] developed high-performance flexible piezoelectric nanogenerators con-
taining a 30 wt.% BaTiO3/PDMS/3.2 wt.% carbon black composite film. The performance
was enhanced by 143% compared to the nanocomposite without carbon black.

Additionally, many other studies have doped CNTs within the BaTiO3/PDMS com-
posite. In general, the use of CNTs as filler leads to improving the output voltage, as
they serve as nano-electrical bridges. Yan et al. [22] reported that the addition of 2 wt.%
multiwalled carbon nanotubes (MWCNTs) to a nanogenerator with 40 wt.% BaTiO3 leads
to an enhanced output performance of the nanogenerators due to the improvement of both
the electrical and dielectric properties. Park et al. [12] demonstrated that the addition of
single-walled carbon nanotubes (SW-CNTs) to PDMS/BaTiO3 can lead to a higher output
voltage of ~3.2 V compared to the one containing both SW-CNTs and reduced graphene
(rGO) oxide. This can be explained with the enhanced electrical properties of SW-CNT
that can significantly influence the output performance. Furthermore, the NG with rGO
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shows less performance caused by the difference in the degree of mixing of both kinds of
reinforcements, which leads to geometrical difference between the SW-CNT networks and
the laminated rGO structures.

Importantly, the highest performance of nanogenerator filled with conductive particles
were found to be at a critical loading of the filler known by the percolation threshold,
where there was a sudden increase on the electrical conductivity in the nanocomposites.
The percolation threshold depends greatly on the filler geometry and state of the filler
dispersion in the polymer matrix. For a polymer composite containing spherical conductive
particles, e.g., carbon black, the percolation thresholds were usually found to be very high,
which enormously minimized the flexibility and increased the cost of the final composite.
In order to tackle this problem, several approaches have been proposed by including
conductive fillers with a higher dimension, such as one-dimensional (1D) fibers as MWCNTs
or two-dimensional (2D) plates as graphene nanoplates were employed to ensure lower
percolation thresholds [23].

A low percolation threshold can be achieved, usually with use of one-dimensional
(1D) carbonaceous fibers such as MWCNTs. However, the main challenge is to avoid their
agglomeration caused by their high surface area and Van der Wall attractive forces.

Therefore, efforts were devoted towards minimizing the percolation threshold by
optimizing the processing conditions.

Several approaches have been followed by researchers to optimize the electrical con-
ductivity and reduce the percolation threshold in polymer composites, including optimiza-
tion of the processing conditions such as mixing temperature and speed or by involving
powerful processes that are able to unbundle the agglomeration of nanoparticles, such as
sonication or the calendaring process [24,25].

In this work, we explored the potential of polymer composites based on lead-free
ceramics BaTiO3 to realize a wearable and flexible piezoelectric nanogenerator with less
piezoceramics concentrations and enhanced performance without any additional poling
processes. To achieve a cost-effective NG with improved performance, composite films
containing different ratios of BaTiO3 piezoelectric nanoparticles in a polydimethylsiloxane
(PDMS) polymer matrix were investigated through electromechanical measurements using
a vibration shaker. Then, MWCNTs were dispersed into the BaTiO3/PDMS composite with
a low concentration ranging from 0.3 wt.% to 1 wt.% to boost its performance. The distribu-
tion of nanoparticles was also examined via scanning electron microscope (SEM) and X-ray
diffraction (XRD). The impact of the addition of MWCNTs was also addressed by evalu-
ating and comparing the piezoelectric performance, as well the electrical and mechanical
properties of the nanocomposites. The effects of layer thickness on the performance of the
nanogenerator were also examined, and the potential of the realized NG for biomechanical
energy harvesting was verified in ambient conditions and at different temperatures.

2. Materials and Methods
2.1. Materials

In this study, two different reinforcements were used: BaTiO3 and MWCNTs. The
BaTiO3 particles have a high purity and 99.5% trace metals basis. They were purchased
from Sigma Aldrich with a dimension less than 2 µm. As well, MWCNTs were purchased
from Sigma Aldrich with an outer diameter of 6–9 nm and length of 1 µm. Concerning the
polymer matrix, it consists of a soft polymer polydimethylsiloxane (PDMS—Sylgard 184)
that was purchased from Dow Corning, GmbH.

2.2. Fabrication Process of the Piezoelectric Nanogenerator

To realize a flexible piezoelectric nanogenerator based on the BaTiO3/PDMS composite,
two layers of Kapton polyimide (PI) flexible substrate were used, in which the copper
layer was coated in it to serve as an electrode. A laminate flexible composite was placed
between the two sides. This laminate composite consisted of three layers composed of two
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dielectric layers of PDMS and a composite layer, which was deposited in between to form a
sandwiched structure, as shown in Figure 1.
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about the structure of the final nanogenerator.

To produce the sandwiched structure, we start first by the fabrication of piezoelectric
composites. Different composite compositions were made in this work, as summarized in
Table 1. To prepare the composites, BaTiO3 was mixed in different ratios from 10 wt.% to
40 wt.% with tetrahydrofuran (THF) using a magnetic stirrer for 1 h, as shown in Figure 1.
Then, the required amount of soft polymer polydimethylsiloxane (PDMS—Sylgard 184)
was added and mixed for 2 h at 70 ◦C.

Table 1. Summary of the composites compositions and dimensions realized in this work.

Type of Composite BaTiO3 Concentration MWCNTs Concentration Composite Thickness

Without MWCNTs

10 wt.% -

500 µm
15 wt.% -
20 wt.% -
30 wt.% -
40 wt.% -

With MWCNTs 15 wt.%

0.3 wt.% 500 µm
0.5 wt.% 300, 500, 800 µm

0.75 wt.% 500 µm
1 wt.% 500 µm

As the effect of the addition of MWCNTs on the nanogenerator performance is also
addressed in this work. The preparation of the hybrid nanocomposite was approximately
similar to the process used before, as shown in Figure 1. Due to their small size and large
surface area, MWCNTs was firstly dispersed in THF using a horn sonicator Sonoplus HD
7300 for 15 min at 30% amplitude to unbundle the MWCNT agglomerations. To form the
hybrid composite, the process presented in Figure 1 was followed.

After mixing, all dispersions were kept for the degassing process in the vacuum
chamber before deposition. In meanwhile, the first PDMS layer was prepared and deposited
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in a glass mold to be cured for 10 min at 150 ◦C. Subsequently, nanocomposite material was
deposited and cured at 80 ◦C for 1 h, followed by the deposition of the second PDMS layer.

In fact, these two dielectric layers are made to avoid charging in the electrodes, as well
as to protect the composite layer during peeling from the mold to be damaged.

2.3. Nanocomposites and Nanogenerators Characterizations

The performances of the nanogenerators were investigated by means of an experi-
mental setup consisting of a voltage generator, a shaker, and a digital oscilloscope for the
acquisition of the output signal.

A fixed and harmonically distorted mechanical load of a 30 Hz frequency and having
an RMS value of around 0.1 N were used to determine the optimal material composition.

To determine the generated output power, variable load resistances ranging from kilo
Ohms to Mega Ohms were used to characterize the output power of the nanogenerator. To
that end, the power output (P) of the piezoceramic composite was determined by measuring
the voltage across a variable resistance placed in parallel to the nanogenerator, where the
consumed power could be calculated as the result of the square of the output voltage
divided by the value of the load resistance, as demonstrated in Equation (1):

P =
V2

out
Rext

(1)

To investigate deeply the uniformity of piezoceramics particles distribution and the
influence of the addition of carbon nanotubes on the quality of the nanocomposite layers,
scanning electron microscopy measurements were conducted on the cross-section using
Zeiss Auriga 40. To prepare the samples for cross-sectional SEM observation, small samples
of 0.5 × 0.5 cm were cut using a lever cutter tool. Then, all the samples were coated with a
very thin Au layer in order to avoid the charging effect. The images were taken at 30 kV
with a working distance of 2 mm using the InLens SE-Detector (secondary electrons).

In parallel, tensile tests were conducted for some samples using the universal tensile
testing machine Instron ElectroPuls E10000 at a rate of 3 mm/min in order to determine the
mechanical properties of the composites. To this aim, the specimens were prepared with
a standard dog bone of ISO37 and had a very small size with an overall length of 35 mm,
gauge length l0 of 10 mm, and width of 2 mm.

As well, the crystalline structure of the different prepared composites was examined
using X-ray diffractometer Rigaku SmartLab with Cu-Kα radiation (wavelength 0.154 nm)
operated at 45 kV and 200 mA in Bragg-Brentano geometry using a Kβ filter for Cu.

The scanning was in the 2θ range of 10◦ to 90◦, with a step interval of 0.25◦ and scan
speed 10◦/min.

As well, the influence of a conductive nanofillers addition on the nanocomposite
electrical properties was investigated using a Keithley 2636 source meter.

3. Results and Discussion
3.1. Influence of BaTiO3 Concentration on the Nanogenerator Performance

Upon a repetitive cyclic load, impacting and releasing the NG using a vibration
mechanical shaker at 30 Hz, an open output voltage was detected, as illustrated in Figure 2a.
The composite material made out of BaTiO3/PDMS exhibits typical piezoelectric signals.
In fact, when the NG is compressed, a positive voltage pulse is detected where a flow of
electrons from the bottom electrode to the upper electrode will be created. Then, when the
NG is released, an opposite pulse signal is observed, owing to the recovering of electrons
to the original state.

In fact, the piezoelectric voltage output can be expressed by Equation (2):

V =
d33

ε33
σt (2)
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where d33, ε33, σ, and t are the piezoelectric coefficient, effective electrical permittivity,
mechanical stress change, and film thickness, respectively.
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According to Figure 2, the content of BaTiO3 greatly affects the output voltage. The
nanogenerators containing 20 wt.% BaTiO3 exhibit a high output voltage around 1.7 V, as
well as a high output power of 72 nW, which is around three times higher than the sample
prepared with 10 wt.%.

This can be attributed to the enhanced piezoelectric coefficient of the composite
material due to the increased content of piezoelectric particles within the polymer matrix.

Additionally, this enhancement can be also related to the improved young modulus of
the composite materials owing to the integration of more ceramic particles.

Kim et al. [26] found that the electric power output of a piezoelectric nanogenerator
depends on various physical parameters of the constituent materials, including the piezo-
electric coefficient, Young’s modulus, and dielectric constant, where the Young’s modulus
plays a crucial role.

In addition, it was noted that, by increasing the amount of BaTiO3, the output per-
formance increased first and then reduced after 20 wt.% BaTiO3. This reduction is mainly
related to the agglomeration of BaTiO3 within the polymer matrix and ineffective contact
surface area leading to a decreased material mechanical property, as well as piezoelectric
property, as demonstrated in Table 2. In fact, the Young’s modulus was increased by doping
BaTiO3 with PDMS; then, it was reduced at 40 wt.% BaTiO3, caused by the inhomogeneous
particle’s distribution within the polymer matrix.

Table 2. Young’s modulus for different composites.

Composite Composition Young’s Modulus (MPa)

15 wt.% 0.08
20 wt.% 0.18
30 wt.% 0.24
40 wt.% 0.19

15 wt.% + 0.3 wt.% MWCNTs 0.09
15 wt.% + 0.75 wt.% MWCNTs 0.23

Figure 3a–c show the cross-sectional morphology images of the 15 wt.% BaTiO3/PDMS,
20 wt.% BaTiO3/PDMS, and 40 wt.% BaTiO3/PDMS, respectively. Those images were taken
using SEM to verify the uniformity of particles distribution. According to these figures,
BaTiO3 particles are not well-distributed within the PDMS matrix and are sedimented at
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the bottom, leading to the formation of a lot of free space in the upper part, especially for
samples prepared with 15 wt.% BaTiO3, as demonstrated in Figure 3g. By increasing the
amount of BaTiO3 within the polymer matrix, less free space between neighboring particles
was seen for the sample containing 20 wt.% BaTiO3. However, the sedimentation was more
pronounced in the 40 wt.% BaTiO3 case.
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respectively; (d–f) 15 wt.% BaTiO3/PDMS composite containing 0.3 wt.% MWCNTs, 0.5 wt.% MWC-
NTs, and 0.75 wt.% MWCNTs, respectively; and (g,h) illustration of the distribution of BaTiO3 in two
different cases without and with MWCNTs, respectively.

3.2. Influence of Addition of MWCNTs on the Nanogenerator Performance

To minimize the free spaces existing in the sample with 15 wt.% BaTiO3, the sedimenta-
tion of the particles, and to achieve a better performance at a low concentration, MWCNTs
were doped within 15 wt.% BaTiO3/PDMS with different concentrations.
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By the addition of MWCNTs within the composite, enhancement on the BaTiO3
particles distribution was remarqued at 0.5 wt.% MWCNTs. In fact, MWCNTs were
acting as niches for BaTiO3 particles, prompting them to not settle down, as shown in
Figure 3d,e,h. In spite of that, increasing the amount of MWCNTs leads to the formation of
multiple MWCNTs clusters within the polymer matrix, as shown in Figure 3f.

The enhancement of piezoceramics particles distribution at low MWCNT concentra-
tions leads to the improvement of the piezoelectric performance of the nanogenerators, as
demonstrated in Figure 4a,b.
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By evaluating the performance of the nanogenerators containing different amounts of
MWCNTs, the important role of MWCNTs was obvious to see. For the composite containing
0.5 wt.% MWCNTs, it was noted that the output voltage was two times higher, as well
as the output power. The high output voltage of the NG with MWCNTs compared to
the one with only BaTiO3 is not only related to the uniform distribution of nanoparticles
within the polymer matrix, which is one of the key factors in obtaining a high output
voltage, but it is also due to their high electrical conductivity that acts as bridges between
piezoceramics nanoparticles and leads at the end to transmit efficiently the electrical charge
from the top electrode to the bottom electrode generated during pressing. MWCNTs
then act as nanobridges between BaTiO3. This effect was suppressed by the presence
of only nonconductive PDMS polymers between BaTiO3. Similar results were found
by Sun et al. [27], the addition of MWCNTs within the ZnO/PDMS composite leads to
efficiently enhancing the export of the charge generated by ZnO NPs. Therefore, increasing
the amount of CNTs within the composite helps to ensure the self-polarization process
within the material owing to the improved electron transport by the formation of conductive
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pathways within the matrix. According to Figure 4c, the addition of MWCNTs leads to
reducing the internal electrical resistance of the nanocomposite where the resistance is
sharply minimized at 0.5 wt.% MWCNTs, indicating the formation of the conductive
network. By increasing the amount of MWCNTs, the electrical resistance shows a minor
reduction, indicating that the 0.5 wt.% presents the percolation threshold of this composite.
In fact, many studies show that the dielectric property of composites filled with a conductive
filler shows a significant increase near the percolation threshold [28,29]. Additionally,
Banerjee et al. [30] illustrated that increasing the MWCNT volume fraction from 1 to 4%
within the PZT/epoxy matrix increases the strain coefficient, d33, from 0.06 to 0.45 pC/N.
This increase can be attributed to the increase in polarization of the composite due to
the increased conductivity by the MWCNTs inclusions. In addition, the introduction of
MWCNTs can also help to improve the composite mechanical properties, as depicted in
Table 2, and ensure a better load transfer within the nanogenerator.

In Reference [31], they demonstrated the synergistic effect between isotropic and
anisotropic fillers in constituting a collaborative network that led to enhanced mechanical
properties of the composite due to the different aspect ratio and the different surface
characteristics, which avoids the filler flocculation phenomenon.

It can be seen from the XRD graph presented in Figure 5 that the film prepared with
BaTiO3 has no other phases except the ones of the BaTiO3 phases, indicating that no other
impurities are created during processing. In addition, the graph demonstrates sharp peaks,
which is a sign of good crystallinity.
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The appearance of the peaks (002/200) near 45◦ and peaks (103/310) near 75◦ indicate
the presence of both crystal phases, which are the tetragonal and cubic phases. As the
peaks of PDMS were not interfering with peaks of BaTiO3, the Scherrer method for the
calculation of particle sizes for single crystallite peaks was adopted as shown in Equation (3)
to calculate the particle sizes for samples containing only BaTiO3 and the samples with
BaTiO3 and MWCNTs.

D =
Kλ

(βcosθ)
(3)

where λ is the X-ray wavelength (0.154051 nm), β is the full width at half-maximum of
(111), and θ is the scattering angle. The measurements show that the particles’ diameters
are 1007.36 Å and 955 Å for samples without and with MWCNTs, respectively.

The comparison of the XRD spectrum of composites containing MWCNTs to the
spectrum of the sample without MWCNTs shows that the peak intensities of BaTiO3 were
higher, reflecting the important role of MWCNTs to boost the crystallinity. In fact, the
addition of MWCNTs leads to avoid the formation of BaTiO3 aggregates and sedimentation
that may hinder the nucleation and crystal growth.
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3.3. Nanogenerator Performance under Simulated Environments

The performance of the nanogenerator can be tuned as a function of the thickness
and applied frequency, as shown in Figure 6a,b. Therefore, three different thicknesses:
A, B, and C have been investigated for the nanogenerator under a vibration shaker of
30 Hz, which are 300 µm, 500 µm, and 800 µm, respectively. The study demonstrates that a
thicker film shows the highest performance. Additionally, the performance of the optimal
nanogenerator geometry was investigated under different force-frequency ranging from
10 Hz to 45 Hz. The study illustrates that, as the external force frequency was rising, the
output voltage gradually increased from 0.6 V to 2.93 V at 29 Hz, as depicted in Figure 6b.
However, the output voltage was gradually reduced to 0.9 V at 45 Hz. This reduction in
the output voltage could be explained by the short time of the compressive force that led
to inhibiting the material to recover and returning to its original position before the next
force impact.
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In order to validate the potential use of the NG for practical applications, the NG was
tested under different scenarios, such as finger tapping and palm striking, as illustrated in
Figure 6c. The nanogenerator demonstrates the ability to harvest biomechanical energy
efficiently up to 5.56 V and 11.22 V under finger and palm striking, respectively.
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One of the important things that needs to be addressed is the effect of the environmen-
tal changes on the performances of the nanogenerator. Herein, the effect of a temperature
change on the NG performance was examined from room temperature up to 60 ◦C. The
measurements were conducted by placing the nanogenerator on top of the hotplate for
10 min. Then, a compressive force was applied by finger tapping. Figure 6d shows the
output voltages at different temperatures. It is noted that the output voltage increased until
50 ◦C from 5.56 V to 23.86 V. Then, the NG exhibited a decrease in the output voltage to
reach 3.74 V. The increase can be explained by the enhanced electrical properties of the
nanocomposite. In fact, MWCNTs exhibit a negative temperature coefficient (NTC) behav-
ior, due to their semi-conductive behavior. By increasing the temperature, the electrons’
mobility will be improved, which facilitates the electron tunneling effect, resulting in an
increase in conductivity. Additionally, the mobility of polymer molecular chains will be
increased, leading to expansion of the nanocomposite, which can boost the distribution of
piezoceramics within the polymer matrix. In this way, the nanogenerator electromechanical
coupling coefficient will be increased with the temperature. However, the decreasing at
60 ◦C may be due to the destruction of the conductive network caused by the thermal
expansion of the polymer, which inhibited the electron transfer. In fact, the expansion of
the polymer will increase the tunneling resistance between neighboring MWCNTs, lead-
ing to a sharp reduction of the conductivity, as well to creation of free spaces between
ceramic particles.

4. Conclusions

In this work, eco-friendly and cost-effective flexible nanogenerators were developed
using a solution mixing method followed by mold casting. The prepared nanogenerators
are based on lead-free piezoelectric BaTiO3 nanoparticles known by their high piezoelectric
coefficient. The results show that the performance of nanogenerators containing only
BaTiO3 particles depends greatly on the concentration of BaTiO3. In fact, increasing the
BaTiO3 concentration improves the output voltage and power, owing to the enhanced
piezoelectric coefficient of the composite material. However, excessive BaTiO3 leads to
the reduction of the composite performance, caused by the lack of homogeneity and the
sedimentation of the particles at the bottom.

To boost the performance of the BaTiO3/PDMS composite, MWCNTs as conductive
elements were incorporated within the composite.

Thereby, the BaTiO3 particles were better and homogeneously dispersed in the PDMS
matrix, and the sedimentation of the particles was avoided. Additionally, the addition
of MWCNTs contributes to the improvement of the electrical and mechanical proper-
ties of the composite, especially at the percolation threshold. This later significantly en-
hanced the performance of the NG, which became two times higher compared to the NG
without MWCNTs.

The study has also shown the importance of geometrical parameters such as the
composite thickness and the test conditions on the output performance.

Increasing the composite thickness leads to enhancing the output voltage, as well as
the applied frequency.

The optimized NG structure favors the scavenging of biomechanical energy without
any additional poling process around 5.56 V under gentle finger tapping and 11.22 V under
palm striking. Therefore, the realized NG offers great opportunities for achieving wearable
energy harvesters for self-powered electronics.

This work demonstrates the importance of addressing the temperature aspect on the
NG response. The results showed that the output voltage increased enormously by increas-
ing the temperature. As a consequence, several aspects should be deeply investigated in
the future in regard to the environmental effects.
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