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Abstract: This study aims to demonstrate the feasibility of applying eight machine learning algo-
rithms to predict the classification of the surface characteristics of titanium oxide (TiO;) nanostruc-
tures with different anodization processes. We produced a total of 100 samples, and we assessed
changes in TiO, nanostructures’ thicknesses by performing anodization. We successfully grew TiO,
films with different thicknesses by one-step anodization in ethylene glycol containing NH,F and
H,0 at applied voltage differences ranging from 10 V to 100 V at various anodization durations.
We found that the thicknesses of TiO; nanostructures are dependent on anodization voltages under
time differences. Therefore, we tested the feasibility of applying machine learning algorithms
to predict the deformation of TiO,. As the characteristics of TiO, changed based on the different
experimental conditions, we classified its surface pore structure into two categories and four groups.
For the classification based on granularity, we assessed layer creation, roughness, pore creation, and
pore height. We applied eight machine learning techniques to predict classification for binary and
multiclass classification. For binary classification, random forest and gradient boosting algorithm
had relatively high performance. However, all eight algorithms had scores higher than 0.93, which
signifies high prediction on estimating the presence of pore. In contrast, decision tree and three
ensemble methods had a relatively higher performance for multiclass classification, with an accuracy
rate greater than 0.79. The weakest algorithm used was k-nearest neighbors for both binary and
multiclass classifications. We believe that these results show that we can apply machine learning
techniques to predict surface quality improvement, leading to smart manufacturing technology to
better control color appearance, super-hydrophobicity, super-hydrophilicity or batter efficiency.

Keywords: titanium oxide; systematic surface control; machine learning; nanostructure prediction;

anodization

1. Introduction

Nowadays, ordered titanium dioxide (TiO,) nanotube arrays obtained by Ti anodiza-
tion have overwhelmingly attracted scientific and technological interests because of their
functional properties. Among its various applications, TiO; plays a pivotal role because of
its chemical stability, nontoxicity, and biocompatibility [1-3]. For example, TiO, is used in
solar cells production [3], photocatalytic processes [4], and self-cleaning coatings [2,5]. It
also has antibacterials properties [6] and can be used in semiconductors [2]. TiO; is also
considered a synthetic bone graft substitute [7,8]. Considering their superior features in-
cluding unique structure, high specific surface area, and quantum confinement effect, TiO,
nanotubes/nanoporous arrays are the most frequently fabricated nanostructures. There-
fore, various methods such as template-assisted sol-gel synthesis, play a crucial role in the
fabrication of Ti nanostructures [9,10]. However, highly aligned nanotubes/nonporous
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structures have increasingly focused on the anodization of Ti. Anodization is a simple
electrochemical process performed to produce thick nanoporous/tubular metal oxide and
subsequently precious such as Al, Ti, and Mg [11,12]. In general, the majority of principles
that apply to the electrochemical anodization of Ti in electrolytes containing fluoride ions
is the most common method used to create self-organized nanotube arrays [13-15]. The
anodic formation of TiO; is associated with different parameters, which affect the surface
morphology and quality of the structure [16-18]. For example, by controlling anodization
parameters, such as electrolyte type, electrolyte composition, pH, applied voltage and
potential difference, temperature and anodization duration, nanostructures with different
morphologies and characteristics can be obtained [14,15,19,20]. However, combining all
these parameters during anodization to observe all types of surface characteristics is costly.
It would be helpful if we can narrow the experimental procedures to a certain range by
predicting the core surface factors, which we aim to determine in our present study. Herein,
we focused to fabricate nanoporous/nanotubes anodic titanium oxide layers through a
one-step anodization process performed in fluoride-containing ethylene glycol at various
anodization and voltages. We mainly investigate the influence of applied voltage and
duration difference on the growth of TiO; nanostructures. Based on the systematic control
over the two parameters, we obtained 100 samples and categorized surface characteristics
from the surface image. We investigated whether we could apply machine learning algo-
rithms to predict an anodic formation of TiO; structure. We clearly aimed to predict surface
characteristics that were classified into two or four groups based on pore structures. Besides
the common parameters assessed in TiO; structures such as surface thickness, these oxide
structures are considered significant because they are superhydrophilic, superhydrophbic,
and have excellent color appearance on a Ti surface. We believe that if we are able to
determine certain parameters of the pore structures without conducting labor-intensive ex-
periments, the time and cost of conducting several experiments can be sufficiently utilized.
In this study, a total of 100 samples were produced, and this sample size is relatively small

when assessing the feasibility of machine learning algorithms compared to other domains.
However, if we can determine the feasibility of predicting surface characteristics, we will be
able to harness the appropriate predictive model that should be used to estimate generated
surface characteristics, allowing us to focus more on higher granularity of experimental
conditions to generate the desired surface characteristics.

Machine learning is a type of artificial intelligence algorithm that uncovers patterns
in large datasets using computer-based statistical models. Recently, machine learning
has developed a wide range of algorithms, which can be roughly described in three
ways: (1) supervised learning, where input and output variables are given and the model
is determined from the labeled input dataset; (2) unsupervised learning where a self-
organized learning method determines unknown patterns in a dataset without pre-existing
labels; and (3) reinforcement learning, where an intelligent agent is defined and interacts
with its environment by performing actions and learning from errors or rewards, termed
as a trial-and-error approach for learning [21].

Classification is a type of supervised learning technique that categorizes data from
prior information. The algorithm is used to predict a discrete value that is assigned to a
particular class or group. Imagine a set of photographs of animals where each photo is
labeled as a cat, rabbit or other animals. When a new image is assigned, the algorithm has
to classify it into one of these labeled categories. Each testing instance is matched with a
category, which we call labeled data and is used for training. Classification is performed
in two phases, and the labeled dataset is divided into training and test dataset. First, a
classification algorithm updates its model with the training dataset, and the analytical
model extracted is validated against a labeled test dataset to calculate the model perfor-
mance and accuracy. Compared to different applications such medical imaging detection
or quality control in manufacturing, materials science has recently applied these machine
learning techniques considering the difficulties they faced in collecting a large sample of
data. However, the prerequisite for machine learning is the existence of prior data. To
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obtain thousands of input data with traditional experimentation methods, a significant
amount of cost, time, and effort is required in materials science. Therefore, current research
in materials science primarily aims to discover and design new materials by using public
datasets on material properties [22]. In our current study, we aim to evaluate and compare
eight machine-learning techniques in predicting the experimental result on TiO; structures,
such as pore structure and thickness, by performing different anodization processes.

2. Experimental Dataset Development

We degreased the Ti sheets by sonicating in a solution of acetone, ethanol, and deion-
ized (DI) water for 30 min. Subsequently, we applied two different polishing methods.
Electrochemical polishing was performed in a mixture containing acetic acid, sulfuric acid
and hydrofluoric acid (60:15:25 in volume) at a constant current density of 140 mA /cm
and a temperature of 20 °C for 1 min. Chemical polishing was performed by dipping Ti
samples into a stirred mixture of hydrofluoric acid and nitric acid (1:3 in volume) for 10 s.
Subsequently, the samples were rinsed with water and ethanol and dried in the air. A
combined pretreatment method was conducted by electrochemical polishing followed by
chemical polishing. The polished Ti samples were prepared via one-step anodization in an
electrolyte of ethylene glycol containing 0.25 wt% NHyF and 2 wt% DI water at 0 °C. The
process was performed at 10 V intervals from 10 V to 100 V in a two-electrode cell, with
polished Ti samples as anodes and platinum as a cathode. The duration of anodization was
at 1 min intervals from 1 min to 10 min. Structural and morphological characterizations
were executed using a field emission scanning electron microscope (FE-SEM). The struc-
tural features and thickness of anodized samples were examined directly from FE-SEM
images by Image ] software.

3. Machine Learning Algorithm Development
3.1. Data Preprocessing for Classification

The data were categorized based on the characteristics of surface morphology. We
introduced the methodology for the multiclass and binary class categorization on the
obtained data. Initially, the surface was labeled into four groups based on the images
obtained from FE-SEM images. The second author designed the coding scheme based
on the formation of an additional layer, roughness with the hexagonal pattern and pore
formation. Each aspect is built upon another, for example, a pore would be created after
a layer was formed. Both authors used the scheme and independently coded the same
100 images. The inter-rater reliability was found to be good with kappa = 0.94. The two
raters slightly modified the coding scheme after validation. The four classes are described
below (see Table 1 for examples):

®  (lass 0: oxide layer creation

¢  C(lass 1: oxide layer creation with roughness

¢ C(lass 2: oxide layer creation with pore creation

e  C(Class 3: oxide layer creation with uniform pore generation

After categorizing the four classes, the images were classified into two categories,
according to the presence of the pore structure: “with pore” and “without pore.” Without
pore category includes Classes 0 and 1, and with pore category includes Classes 2 and 3.
A categorization into four classes is advantageous because it results in more granularity;
however, because of the small dataset size, we also wanted to test binary classification. The
presence of the pore is actually the key aspect we aim to determine considering that when
the structure becomes uniform with certain height, it contributes to certain characteristics
such as color appearance, super-hydrophobicity or super-hydrophilicity.
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Table 1. Definition of four classes of pore structure and sample images.

Binary Class Without Pore With Pore

Multiclass Class 0 Class 1 Class 2 Class 3
Definition Only layer Layer with roughness Unstable pore Uniform pore
Layer Creation O

Layer with Roughness

Pore Creation
Pore with Certain Height

Sample Image

Thickness(nm)

76.48 £ 32.90 147.89 £ 53.86 267.65 = 84.99 819.60 £ 544.35

# of samples

50 14 13 23

3.2. Classification Algorithms

We performed the classification task with eight well-known machine learning al-
gorithms. We aimed to compare the prediction capability of eight algorithms, namely,
logistic regression (LogReg) [23], naive Bayes (NB) [24], k-nearest neighbors (KNN) [25],
support vector machines (SVM) [26], random forest (RF) [27], bagging, gradient boosting
tree (GBT) [28,29], and decision tree (DecTree) [30]. Here the algorithms and importance of
their comparison in this study were briefly explained [31]. LogReg has been widely used
for decades even before the advancement of machine learning. It is one type of regression
analysis that is conducted when the dependent variable is dichotomous. NB is a simple
classification algorithm calculating the conditional probabilities of each input value given
in each class value. It is based on strong assumptions about the independence of each
input variable. However, it is shown to be effective in many problems. The KNN algorithm
is a simple and lightweight supervised machine learning algorithm and it assumes that
similar things exist close to one another. It is a nonparametric approach and is stable and
robust for small sets and lower dimensional data. The SVM algorithm is used to determine
a hyperplane in an N-dimensional space and robustly classifies the data points. It shows
great performance when the number of features is less. The DecTree algorithm is used
to create a training model that can be used to make decisions on the class by learning
simple decision rules inferred from prior data. Decision trees classify the data by starting
from the root and compare down to the next leaf/terminal node, with the leaf/terminal
node providing the classification of the new data. For multiclass classification problem,
the problem can be solved by naturally extending the binary classification techniques
when applying the above algorithms [32]. A machine learning paradigm named ensemble
learning is widely used where multiple models often called “weak learners”, are trained to
solve a certain problem and combined to achieve better results. The main hypothesis of
ensemble learning is that combining weak learners can obtain more robust and accurate
models. RF, bagging and GBT are all ensemble methods. RF is an example of ensemble
learning and the logic is simple but powerful if high nonlinearity and complex relationship
between dependent and independent variables are observed. Bagging enables the weak
learners to learn independently and combines them following deterministic averaging
processes. GBT trains many models in an additive manner and is based on the intuition
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that when the next model is combined with the previous models, the overall prediction
error is minimized.

3.3. Performance Measures for Machine Learning Algorithms
3.3.1. Binary Classification

To calculate the performance of the machine learning models, we used K-fold cross-
validation because it is suitable for a dataset with limited sizes [33]. Cross-validation is
widely used when we have limited data samples and is a resampling procedure to evaluate
machine learning algorithms. To obtain the classification accuracy which is a common
practice, 10-fold cross validation was used [34]. It is largely applied because it results in a
less biased estimate than simply splitting the dataset into train and test groups. The core
idea is to shuffle the dataset randomly; separate a subset of data for validation and use the
rest to train a model; and use the left-out data to predict. This process is repeated several
times and leaves out a different subset of the data for validation until all the given data is
used for learning.

For binary classification, we used area under the receiver operating characteristic
(ROC) curve (AUC) [35]. We will first introduce other common measures. For a binary
classification problem, accuracy is the proportion of correctly classified instances; however,
it is a poor measure for an imbalanced dataset (where TP = true positive, TN = true
negatives, FP = false positives, and FN = false negatives.)

TP+ TN

TP+ TN+ FP+FN @)

Accuracy =

Precision and recall are additional ways to assess the results by breaking down the
accuracy formula. Precision quantifies the number of classes predicted positive that actually
belong to the positive class. Precision is a good performance measure to apply when the
costs of false positive are high.

TP

Precision = m

@)

Recall quantifies how many of the actual positives our model captures through classi-
fying it as positive (true positive). It is a good performance measure when there is a high
cost associated with false negative.

TP
Recall = TP+ EN 3)

F1 score balances both precision and recall in one number. It is the weighted average
of precision and recall. Therefore, this score concerns both false positive and false negative

into account. F1 score is usually more useful than accuracy, especially when you have an

uneven class distribution.

Precision x Recall
F1=2 4
% Precision + Recall )

ROC curves shows the trade-off between the true positive rate (synonym for recall)
and false positive rate for the extracted model using different probability thresholds. If
we lower the classification threshold, the model classifies more items as positive, thus
increasing both false positives and true positives. AUC stands for “area under the ROC
curve.” The AUC measures the entire two-dimensional area below the ROC curve from
(0,0) to (1,1), which means that AUC provides an indication of how good or bad our
classifier is performing across all possible classification thresholds. Therefore, AUC ranges
in value from 0 to 1. If the classifier is perfect, then the AUC score is 1.0. If the predictions
are 100% wrong, then the AUC is 0. The advantage of applying the AUC measure is that
it is invariant of data imbalance [36]. For these reasons, we used AUC to estimate the
performance of our experiments.
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We used the AUC value as the performance measure. A high AUC value greater than
0.8 denotes a reasonably good prediction rate [37], while an AUC value of 0.5 denotes the
predictability of a purely random guess such as flipping a coin.

3.3.2. Multiclass Classification

When the number of classes is high, it becomes more complicated to measure the
performance. The combinations of true and false classifications for each class increases.
Therefore, micro- and macro-averages are calculated for precision and recalls [38]. How-
ever, their interpretation differs as these micro- and macro-averages compute slightly
different things. In a multi-class classification problem, micro-averaged precision and recall
equations are as below where c is the class label.

, - Yo TP
MicroPrecision = ———————— 5
Y TP, 1 Y. . ©)
. Y. TP
MicroRecall = 6
Y. TP+ 3 N ©)

In multi-class classification, the count of all false instances is as below (Equation (7)),
therefore micro-precision and micro-recall are the same. In other words, every single false
prediction will be a false positive for a certain class, and every single negative prediction
will be a false negative for a certain class. As accuracy is a harmony mean of precision and

recall, we report the accuracy.
Y FP. =) FN, @)
Cc c

A macro-average computes the metric independently for each class and then calculates
the average by treating all classes equally. On the other hand, a micro-average computes
the average aggregating the contributions of all classes. If there is class imbalance, macro
average will have lower values. However, it actually indicates the overall accuracy for
all classes, that is, predicting each class is equally important; therefore, we also report the
macro-average values.

4. Results
4.1. Experiment Results

Nanoporous anodic Ti oxide layers are fabricated by a one-step anodization process.

In the present study; it is evident that the dimension of the nanostructure, such as thickness,
strongly depends on the anodization conditions used. The key factors are the anodization
time and voltage. After some preliminary experiments, considering duration and volt-
age, the formation of the nanostructure is possible in a mixture of ethylene golycol/DI
water/NH,F in a duration ranging from 10 V to 100 V and a duration ranging from 10 min
to 100 min. The association between the voltage and time on the thickness of the TiO, films
formed on polished Ti samples was observed by FE-SEM. Table 2A-] shows the surface of
TiO, produced by anodization at different voltages and times. Table 2A-J shows three types
of structures—a non-nanoporous structure on polished titanium, a nanoporous structure,
and a nanotubular structure, where structure shape increases with anodization voltage and
time. Initially, the films are significantly thin with the non-porous layer. The films produced
with the lowest voltage (up to 50 V) are not ordered, comprising small pores or others
without pores. The above mentioned case is not observed, however, in the anodization
process under a relatively lower duration (1 or 2 min). The formation of pores is not created
and irregular. The formation of pores is not evident at an anodization duration of 1 min,
and the nanoporous structure at an anodization duration of 2 min could be seen above the
applied voltage of 90 V as shown in Table 2A,B. From the results presented in Table 2F-],

when the higher voltage and duration (greater than 50 V and 5 min) of anodization are
used, the TiO, structures have significant T/O, nanotube and display more uniform films.
As can be seen, with increasing anodization time and applied voltage, the rate of oxide
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growth increases and the TiO; films become thicker. As anodization of Ti procedure is
performed, metal ions (Ti*H) migrate from metal to the oxide/metal interface and dissolve
into the solution. At the same time, the oxygen-containing ions (O?~) are generated at the
oxide/electrolyte interface by the field-enhanced dissolution of H,O or OH™~ under the
influence of the electric strength (reactions of 8 and 9) [39].

Ti — Ti*" +4e” (8)

Ti** +2H,0 — TiO, +4H™ )

It is clear that the thickness of the grown oxide is closely related to the operating
condition during anodization. The effective current efficiency of the formation of TiO,
in ethylene glycol-based electrolyte is nearly 100%. We can expect that the thickness of
the grown oxide is proportional to the electric charge exchanged from electrolyte during
anodization process. In other words, the anodizing potential difference by changing current
density, anodizing time, and applied voltage determines the thickness of TiO,. Figure 1
shows the results of thickness for Ti anodization in ethylene glycol-based electrolyte. As
can be expected, significantly thicker oxide films are created at higher anodizing duration
and applied voltage. At relatively higher voltages (greater than 50 V), however, it can
be observed that the growth of thickness decreases at specific anodization times. It was
considered that the decreasing electrolyte viscosity on the rate of oxide growth in the
diffusion during anodization performed in ethylene glycol-based electrolyte. The steady-
state oxide growth is a dynamic equilibrium between the rate of oxide growth and the rate
of oxide etching at the oxide bottoms. During the oxide growth (which formed metal ions),
pH at the oxide bottoms decreases due to reaction 10 [40].

Ti +2H,0 — TiOy +4H" + 4e” (10)

In contrast, decreasing pH at the oxide bottoms encourages the etching of oxide at
the oxide film in the ethylene glycol-based electrolyte containing H,O and NH4F (reac-
tion 11) [41].

TiOy + 6HF — [TiFs)*~ +2H,0 +2H™" (11)
__ 120000
E
S 100000
(]

1 © so0oo
£
2 600.00
5 L

+ * 400.00 +
! » + 200.00 . + } ' +

40 &0 80 100 0.00

voltage (V) time (min.)

(@) (b)

Figure 1. (a) Mean thickness by voltage from 10 V to 100 V (b) Mean thickness by time from 1 min to 10 min (line indicates

95% CI).
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Table 2. Cross-sectional view of field emission scanning electron microscope (FE-SEM) images of TiO; films formed in the
anodization performed at 10-100 V at the anodization time of 1-10 min.

1ov 20V 30V 40V 50V 60V 70V 80V o0V 100V

A (1 min.)

B (2 min.)

C (3 min.)

D (4 min.)

E (5 min.)

F (6 min.)

G (7 min.)

H (8 min.)

I (9 min.)

J (10 min.)
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Moreover, it can be attributed to the effect of enhanced hydrolysis of metal ions (Ti*")
that appear in the electrolyte as a result of the increasing rate of the oxide growth at higher
voltage and time. The hydrolysis consequence in the deposition of the hydrous Ti oxide on
the TiO; surface. Consequently, the thickness is reduced by the deposition. Therefore, the
rate of deposition not only the hydrolysis is greater than the rate of chemical etching of the
TiO, layer.

4.2. Change of Thickness

Figure 1 shows the mean and variation of thickness by voltage and time separately.
Overall, as the voltage and time increase, the mean thickness shows a trend to increase.
However, the variation also increases in a nonlinear manner. Compared to voltage change,
the fluctuation of the thickness is larger with the time factor. Based on these results, time is
a more important factor for oxide thickness change than voltage. Therefore, experiments
have shown that time regulation of anode oxidation is a more important factor. Therefore,
predicting the anode oxidation time range to obtain the oxide thickness targeted by artificial
intelligence can save process time. The following section contains visualizations to help
understand the experimental results and to visually inspect how the experimental settings
affect the surface and also the relationship by labels that were used for classification.
Figure 2 plots the mean thickness by each level of time and voltage that were used in the
experiment. The size of the circle indicates the thickness mean.

1004 = e} o e @O . o O . . Thickness Mean (nm)
e 10
c e ® + 9 @O - . @ o ® 50
. 1000
@i{s o o + @ © © O o o
. ° o 3 ® & +» o o O
<
: B0 . . . . ) . . [ ] ® ®
g
2 - . . - . . . L] L ] L
40 . . . . . . . . . .
- . . . L ] . - - . -
20 . . . . . . . - . .
2 4 6 8 10
time (min.)

Figure 2. Mean thickness change by voltage and time variation.

Next, we visualized the thickness by experimental settings and separated them by
the labels we used for classification to understand the thickness difference among each
classification group. Figure 3 presents the binary classification and Figure 4 presents the
multi-class classification. For the binary classification, we can observe that surfaces without
pore structure are thinner than the surfaces with pore structure.
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Figure 3. (a) Binary classification result by voltage from 10 V to 100 V (b) Binary classification result
by time from 1 min to 10 min (line indicates 95% CI).
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Figure 4. (a) Binary classification result by voltage from 10 V to 100 V (b) Binary classification result
by time from 1 min to 10 min (line indicates 95% CI).
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4.3. Classification Results
4.3.1. Prediction on Binary Classification

Although AUC is our core measure, we report accuracy, precision, and recall measures
together. As shown in Table 3, the AUC scores ranged between 0.93 and 1.00. A high AUC
value greater than 0.8 denotes a reasonably good prediction rate and all the scores are
above this value [37]. Compared to the other models, RF and GBT produced superior AUC
scores. As mentioned in Section 3.2, the two algorithms are known as ensemble learning
methods utilizing decision trees. The superiority of these models could be attributed to the
following reasons. RF consists of a large number of individual decision trees that operated
as an ensemble, in other words, the wisdom of crowds [27]. GBT model’s key learning
is from the previous mistakes [42]. It relies on the assumption that calculating the best
next model combining with previous models, minimizes the overall prediction error that
will lead to better performance. KNN is known to have advance in short execution time;
however, it has shown to have the lowest accuracy for other classification problems [34].

Table 3. Comparison of evaluation metrics for classification algorithm on binary classification.

Algorithms AUC Accuracy Precision Recall

LogReg 0.98 0.90 0.88 0.90
NB 0.99 0.91 0.92 0.88
KNN 0.93 0.88 0.87 0.86
SVM 0.97 0.87 0.93 0.75
DecTree 091 0.92 0.94 0.88
RF 1.00 091 0.94 0.85
Bagging 0.97 0.90 0.96 0.90
GBT 1.00 0.93 0.94 0.90

4.3.2. Multiclass Classification

Table 4 shows the evaluation metrics for multiclass classification. The macro precision
scores ranged from 0.42 to 0.73 and macro recall scores ranged from 0.53 to 0.74. For both
cases DecTree has relatively higher scores than the other models. Considering accuracy,
DecTree, Bagging, and GBT had relatively higher accuracy than the other models. LogReg,
SVM, and KNN had relatively lower accuracy. The ensemble methods were superior as
binary classification. DecTree is widely known to be powerful for classification because the
tree tries to infer a split at each node.

Table 4. Comparison of evaluation metrics for classification algorithm on multiclass classification.

Algorithms Accuracy Micro Precision Micro Recall Macro Precision Macro Recall

LogReg 0.74 0.74 0.74 0.42 0.53
NB 0.78 0.78 0.78 0.60 0.65
KNN 0.70 0.70 0.70 0.52 0.57
SVM 0.74 0.74 0.75 0.55 0.57
DecTree 0.82 0.84 0.84 0.73 0.74
RF 0.79 0.79 0.79 0.66 0.65
Bagging 0.81 0.80 0.77 0.70 0.65
GBT 0.80 0.80 0.80 0.63 0.69

5. Discussion

There are several implications that we can achieve from the visualization (see Figure 2).
First, we can detect if there is a correlation or trend among the features. For example, one
can see that there is a positive increase as time and voltage increase. Second, we can also
see that there are similar thicknesses generated from different settings. For example, the
size of the circle is similar with the following settings: time (6 min) and voltage (70 V);
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time(10 min) and voltage(90 V). Even for the same thickness, there are certain levels of
time or voltages that are preferred because of stability and also safety issues during the
experiment. Third, if you want to determine the specific thickness, there is a minimal level
that should be required. If we could predict that then several experiments could be saved.
For example, to achieve thickness over 1000, a large amount of experiment settings on the
left and lower sides was not needed. Therefore, we believe that if we have a large amount
of experimental data, it could be narrowed into meaningful experimental setups.

Prediction scores for binary classification in this study show that our model is capable
of predicting the presence of pores using the experimental levels of time and voltages.
Researchers can predict whether pores will exist with the experimental settings. With the
multiclass classification the evaluation scores were relatively lower. However, even with
unbalanced and small sample size to predict four levels, over 0.7 for macro recall and
precision shows the potential to move forward with the approach. Higher micro scores
can be also interpreted; that is, certain levels have higher prediction scores. To obtain a
reliable classification model even for small data sets, Beleites et al. recommended at least
75 to 100 samples per class to achieve a reasonable precision [43].

Overall, we can see that ensemble methods are superior for the binary classification
problem. RF and GBT had a score of 1 for AUC. Ensemble methods are learning models
based on the intuition that combining the opinions of multiple learners lead to better
performance. RF uses a fully grown decision trees that have low bias, which are prone to
overfitting. The idea is to resample the data multiple times and train a new classifier each
time independently. In contrast, GBT adds a classifier each time, so that the next classifier
is trained to improve the previous one. Both cases have shown good performance because
they combine multiple individual models and show superior prediction power [44]. For
multiclass classification, algorithms based on decision trees had relatively higher accuracy
values. In our case, we had an imbalanced data set. A dataset is called imbalanced when the
number of samples is different between each class. In this case the accuracy decreases for
the minority classes. Decision tree algorithms are robust in these cases; therefore, we believe
the DecTree algorithm and the ensembles (i.e., RF, bagging, GBT) also show relatively good
performance. The KNN algorithm show the lowest performance for both binary and
multiclass classifications. However, the score of 0.97 still shows a high performance for
the binary classification problem. KNN is a robust and nonparametric machine learning
algorithm. However, the algorithm depends greatly on the distances between points. If the
classes overlap, the performance will decrease and we believe this may be the reason for
relatively low performance [45]. Considering that this was the first study that comprised
100 samples and applied machine learning techniques for prediction, if we increase the
sample size and get a better balanced dataset, we will get a more stable prediction on
comparing the algorithms.

6. Conclusions

The present work demonstrates that the well-aligned formation of TiO, nanostructures
can be created in an ethylene glycol-based electrolyte by one-step anodization performed
over various anodization voltages at anodization time ranging from 1 min to 10 min.
Anodization time and applied voltage have a great impact on the nanostructures of TiO,
and regularity of pore arrangement. With increasing applied voltage, the growth of oxide
thickness increases. In addition, it was found that the oxide thickness changes its thickness
in time with increasing tendency and decreasing tendency at specific anodization time and
voltage. The highest values of oxide thickness and the regularity of the pore arrangement
are observed at 100 V and 10 min as well. These consequences are described in terms of the
blocking effect on the TiO, surface caused by developed hydrolysis. On the above-obtained
results, the ability to control the growth of TiO, is an important factor towards a targeted
development of Ti nanostructure because it is expected that a variety of nano-geometry
industry exists.
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Therefore, we also applied machine learning to test the feasibility of predicting the
surface aspects by the experimental settings, voltage and duration. We have observed that
predicting the binary classification had higher accuracy than predicting the multiclass clas-
sification. However, the size of the dataset is relatively small than usual machine learning
experiments. This is an innate limitation when applying machine learning techniques to
experimental data for material science. We believe we have demonstrated classification
capability to predict certain aspects from experimental results, which can help identify
less useful experimental settings and properly use the cost and time to focus on specific
experiments to achieve accurate results.

Author Contributions: Conceptualization, C.J. and S.-H.K.; methodology, C.J. and S.-H.K.; formal
analysis, S.-H.K.; investigation, C.J.; resources, S.-H.K.; data curation, C.J.; writing, C.J. and S.-
H.K,; funding acquisition, S.-H.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Research Foundation of Korea Grant, grant number
NRF-2019R1C1C1005508 and Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT), grant number IITP-2020-0-01791.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data Sharing Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Byon, E.,; Moon, S.; Cho, S.B.; Jeong, C.Y.; Jeong, Y.; Sul, Y.T. Electrochemical property and apatite formation of metal ion
implanted titanium for medical implants. Surf. Coatings Technol. 2005, 200, 1018-1021. [CrossRef]

2. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38. [CrossRef]
[PubMed]

3. Xie, Z.; Adams, S.; Blackwood, D.; Wang, J. The effects of anodization parameters on titania nanotube arrays and dye sensitized
solar cells. Nanotechnology 2008, 19, 405701. [CrossRef]

4. Zhang, Y,; Li, X;; Hua, X;; Ma, N.; Chen, D.; Wang, H. Sunlight photocatalysis in coral-like TiO; film. Scr. Mater. 2009, 61, 296-299.
[CrossRef]

5. Jeong, C.; Choi, C.H. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior
superhydrophobic efficiency. Acs Appl. Mater. Interfaces 2012, 4, 842-848. [CrossRef]

6.  Minagar, S.; Berndt, C.C.; Wang, J.; Ivanova, E.; Wen, C. A review of the application of anodization for the fabrication of nanotubes
on metal implant surfaces. Acta Biomater. 2012, 8, 2875-2888. [CrossRef]

7. Smith, B.S,; Yoriya, S.; Johnson, T.; Popat, K.C. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube
arrays. Acta Biomater. 2011, 7, 2686-2696. [CrossRef] [PubMed]

8. Yoo, S.Y.; Park, H.G. Effect of anodic oxidation process parameters on TiO, nanotube formation in Ti-6Al-4V Alloys. Korean |].
Met. Mater. 2019, 57, 521-528. [CrossRef]

9.  Miao, Z; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. Electrochemically induced sol- gel preparation of single-crystalline TiO,
nanowires. Nano Lett. 2002, 2, 717-720. [CrossRef]

10. Sander, M.S.; Cote, M.].; Gu, W.; Kile, B.M.; Tripp, C.P. Template-assisted fabrication of dense, aligned arrays of titania nanotubes
with well-controlled dimensions on substrates. Adv. Mater. 2004, 16, 2052-2057. [CrossRef]

11. Jeong, C.; Ji, H. Systematic control of anodic aluminum oxide nanostructures for enhancing the superhydrophobicity of 5052
aluminum alloy. Materials 2019, 12, 3231. [CrossRef] [PubMed]

12. Ji, H.; Jeong, C. Study on corrosion and oxide growth behavior of anodized aluminum 5052 Alloy. . Korean Inst. Surf. Eng. 2018,
51, 372-380.

13.  Chen, X;; Selloni, A. Introduction: titanium dioxide (TiO,) nanomaterials. Chem. Rev. 2014, 114, 9281-9282. [CrossRef] [PubMed]

14. Lee, B; Lee, S.; Choi, J.; Jeong, Y.; Oh, H.J.; Lee, O.Y.; Chi, C.S. Growth behaviors of anodic titanium oxide nanotubes in the
ethylene glycol solution according to water contents. J. Korean Inst. Met. Mater. 2008, 46, 700-706.

15. Macék, ].M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO, nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 2005,
44,2100-2102. [CrossRef]

16. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53—229. [CrossRef]

17.  Henderson, M.A. A surface science perspective on TiO; photocatalysis. Surf. Sci. Rep. 2011, 66, 185-297. [CrossRef]

18. Kukovecz, A.; Kordas, K.; Kiss, J.; Kénya, Z. Atomic scale characterization and surface chemistry of metal modified titanate

nanotubes and nanowires. Surf. Sci. Rep. 2016, 71, 473-546. [CrossRef]


http://doi.org/10.1016/j.surfcoat.2005.02.133
http://dx.doi.org/10.1038/238037a0
http://www.ncbi.nlm.nih.gov/pubmed/12635268
http://dx.doi.org/10.1088/0957-4484/19/40/405701
http://dx.doi.org/10.1016/j.scriptamat.2009.04.005
http://dx.doi.org/10.1021/am201514n
http://dx.doi.org/10.1016/j.actbio.2012.04.005
http://dx.doi.org/10.1016/j.actbio.2011.03.014
http://www.ncbi.nlm.nih.gov/pubmed/21414425
http://dx.doi.org/10.3365/KJMM.2019.57.8.521
http://dx.doi.org/10.1021/nl025541w
http://dx.doi.org/10.1002/adma.200400446
http://dx.doi.org/10.3390/ma12193231
http://www.ncbi.nlm.nih.gov/pubmed/31581642
http://dx.doi.org/10.1021/cr500422r
http://www.ncbi.nlm.nih.gov/pubmed/25294394
http://dx.doi.org/10.1002/anie.200462459
http://dx.doi.org/10.1016/S0167-5729(02)00100-0
http://dx.doi.org/10.1016/j.surfrep.2011.01.001
http://dx.doi.org/10.1016/j.surfrep.2016.06.001

Materials 2021, 14, 1089 14 of 14

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.

31.
32.
33.
34.
35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

Jeong, C.; Lee, J.; Sheppard, K.; Choi, C.H. Air-impregnated nanoporous anodic aluminum oxide layers for enhancing the
corrosion resistance of aluminum. Langmuir 2015, 31, 11040-11050. [CrossRef]

Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglic, A. Influence of anodization parameters on morphology of TiO, nanostructured
surfaces. Adv. Mater. Lett. 2016, 7, 23-28. [CrossRef]

Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.

Liu, Y;; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Mater. 2017, 3, 159-177. [CrossRef]
Fan, RE.; Chang, KW.,; Hsieh, C.J.; Wang, X.R; Lin, C.J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res.
2008, 9, 1871-1874.

Saritas, M.M.; Yasar, A. Performance analysis of ANN and Naive Bayes classification algorithm for data classification. Int. J.
Intell. Syst. Appl. Eng. 2019, 7, 88-91. [CrossRef]

Nikam, S.S. A comparative study of classification techniques in data mining algorithms. Orient. . Comput. Sci. Technol. 2015,
8, 13-19.

Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1-27. [CrossRef]
Liaw, A.; Wiener, M. Classification and regression by RandomForest. R News 2002, 2, 18-22.

Becker, C.; Rigamonti, R.; Lepetit, V.; Fua, P. Supervised feature learning for curvilinear structure segmentation. In International
Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2013; pp. 526-533.
Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [CrossRef]

Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. ]. Chemom.
Soc. 2004, 18, 275-285. [CrossRef]

Brownlee, ]. Master Machine Learning Algorithms: Discover how They Work and Implement Them from Scratch; Machine Learning
Mastery: Cambridge, MA, USA, 2016.

Aly, M. Survey on multiclass classification methods. Neural Netw. 2005, 19, 1-9.

Bengio, Y.; Grandvalet, Y. No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 2004, 5, 1089-1105.
Liu, Y;; Bi, ].W,; Fan, Z.P. Multi-class sentiment classification: The experimental comparisons of feature selection and machine
learning algorithms. Expert Syst. Appl. 2017, 80, 323-339. [CrossRef]

Powers, D.M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. ]. Mach.
Learn. Technol. 2011, 2, 37-63.

Fawcett, T. ROC graphs: Notes and practical considerations for researchers. Mach. Learn. 2004, 31, 1-38.

Metz, C.E. Basic principles of ROC analysis. In Seminars in Nuclear Medicine; WB Saunders: Philadelphia, PA, USA, 1978;
Volume 8, pp. 283-298.

Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009,
45,427-437. [CrossRef]

Su’ait, M.; Alamgir, F; Scardi, P; Ahmad, A. Morphological studies of vertical arrays TiO, nanotubes by electrochemical
anodization technique for dye sensitized solar cell application. Am. Inst. Phys. 2013, 1571, 835-842.

Zhang, A.Y,; Long, L.L.; Liu, C.; Li, WW.,; Yu, H.Q. Chemical recycling of the waste anodic electrolyte from the TiO, nanotube
preparation process to synthesize facet-controlled TiO, single crystals as an efficient photocatalyst. Green Chem. 2014, 16, 2745—
2753. [CrossRef]

Lee, K.C,; Sreekantan, S.; Ahmad, Z.A.; Saharudin, K.A.; Taib, M.A.A. Nucleation of octahedral titanate crystals using waste
anodic electrolyte from the anodization of TiO, nanotubes. CrystEngComm 2017, 19, 6406—6411. [CrossRef]

Frery, J.; Habrard, A.; Sebban, M.; Caelen, O.; He-Guelton, L. Efficient top rank optimization with gradient boosting for
supervised anomaly detection. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, Skopje, Macedonia, 1822 September 2017; pp. 20-35.

Beleites, C.; Neugebauer, U.; Bocklitz, T.; Krafft, C.; Popp, ]. Sample size planning for classification models. Anal. Chim. Acta
2013, 760, 25-33. [CrossRef]

Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd
International Conference on Machine Learning, Pittsburgh, PA, USA, 25-29 June 2006; pp. 161-168.

Wettschereck, D.; Dietterich, T.G. An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms.
Mach. Learn. 1995, 19, 5-27. [CrossRef]


http://dx.doi.org/10.1021/acs.langmuir.5b02392
http://dx.doi.org/10.5185/amlett.2016.6156
http://dx.doi.org/10.1016/j.jmat.2017.08.002
http://dx.doi.org/10.18201/ijisae.2019252786
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.3389/fnbot.2013.00021
http://dx.doi.org/10.1002/cem.873
http://dx.doi.org/10.1016/j.eswa.2017.03.042
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1039/C3GC42167H
http://dx.doi.org/10.1039/C7CE01549F
http://dx.doi.org/10.1016/j.aca.2012.11.007
http://dx.doi.org/10.1007/BF00994658

	Introduction
	Experimental Dataset Development
	Machine Learning Algorithm Development
	Data Preprocessing for Classification
	Classification Algorithms
	Performance Measures for Machine Learning Algorithms
	Binary Classification
	Multiclass Classification


	Results
	Experiment Results
	Change of Thickness
	Classification Results
	Prediction on Binary Classification
	Multiclass Classification


	Discussion
	Conclusions
	References

