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Abstract
Most agricultural pests are poikilothermic species expected to respond to climate change.

Currently, they are a tremendous burden because of the high losses they inflict on crops

and livestock. Smallholder farmers in developing countries of Africa are likely to suffer more

under these changes than farmers in the developed world because more severe climatic

changes are projected in these areas. African countries further have a lower ability to cope

with impacts of climate change through the lack of suitable adapted management strategies

and financial constraints. In this study we are predicting current and future habitat suitability

under changing climatic conditions for Tuta absoluta, Ceratitis cosyra, and Bactrocera inva-
dens, three important insect pests that are common across some parts of Africa and respon-

sible for immense agricultural losses. We use presence records from different sources and

bioclimatic variables to predict their habitat suitability using the maximum entropy modelling

approach. We find that habitat suitability for B. invadens, C. cosyra and T. absoluta is par-
tially increasing across the continent, especially in those areas already overlapping with or

close to most suitable sites under current climate conditions. Assuming a habitat suitability

at three different threshold levels we assessed where each species is likely to be present

under future climatic conditions and if this is likely to have an impact on productive agricul-

tural areas. Our results can be used by African policy makers, extensionists and farmers for

agricultural adaptation measures to cope with the impacts of climate change.

Introduction
The combination of about 795 Million people suffering from undernourishment [1] and an
expected population increase from 7 up to 9 billion by 2050 is projected to lead to an increase
in the need for food between 70–100% compared to 2010 [2]. At the same time, the United
Nations have agreed to aim at reaching the Sustainable Development Goals (SDGs) that
include the eradication of hunger and the sustainable use of terrestrial ecosystems. Yet, it is
very likely that competition for the limited arable land will increase under these, at least
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partially, conflicting goals and that efficient and sustainable use of already cultivated land will
become even more important in the future than it is already today.

The global scale of climate change (CC) and the necessity for sustainable poverty mitigation
strategies increases the need to quantify CC impacts. Especially the effects on agricultural pro-
duction are of major importance for the local populations, in particular famers, national gov-
ernments, regional bodies like the African Union (AU), international development partners
and other stakeholders [3]. Such data can increase awareness and help to develop coping strate-
gies for the vulnerable, as well as enable them to adapt better to a changing environment. It
would also allow national governments to design and implement changes in policies, necessary
for mitigating the effects of climate change [4].

In Africa, agriculture is the source of income for many families and represents over two
thirds of livelihoods of the poor. About 65% of full-time employment is in the agricultural sec-
tor and over half of the total export earnings derive from agricultural goods [5]. Large losses of
agricultural production can be attributed to pests. In Africa alone 12.8 billion US$ were esti-
mated to be lost to pathogens, insects and weeds between 1988 and 1990. Insects are the eco-
nomically most relevant pest group and the cause for about 1/3 of the actual crop production
equal to 4.4 billion US$ being lost [6]. Many people in sub-Saharan Africa (SSA) heavily rely
on natural resources and have a relatively low tolerance towards climatic and economic stress
because of high poverty levels and lack of alternative sources of income [4]. The often limited
capacity to adapt to changes through a lack of knowledge and education, further increases the
vulnerability of Africa´s poor to CC impacts [7]. Apart from the more general negative effects
that CC is expected to have on agricultural production in many developing countries, it is also
likely to have a profound impact on the abundance and distribution of many pest species.

CC impacts are expected for the whole planet, but farmers in the developed world are likely
to be better prepared to deal with potentially increasing numbers of pests or invasive species
than those in less developed countries. Main reasons for this include greater financial means of
farmers in the developed world to utlize different pest control strategies, be they biological, syn-
thetic pesticides or genetically modified crops, interventions that are most often economically
not feasible for most of the producers in the developing world. By consequence, this then
results in greater food insecuirty in these regions.

Agricultural productivity strongly depends on continued innovations to control pests as
they develop resistances to different control measures, such as synthetic pesticides, or disperse
to new regions [2]. While most studies estimate increasing numbers and distribution for many
pest species, responses of individual species may vary depending on, among others, the biocli-
matic conditions under different CC scenarios. In this study we use species distribution model-
ling to evaluate the possible extent and change of the habitat suitability across Africa for three
important pest species, Tuta absoluta, Ceratitis cosyra and Bactrocera invadens, under future
CC.

Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), also called the tomato leaf miner, is a
key threat to European and African tomato production. The pest originates from South Amer-
ica and is spreading rapidly over southern Europe into northern Africa since its first detection
in Spain in 2006. Its high reproductive capacity and rapid development of resistance to many
different insecticides make conventional chemical control very challenging. Consequently yield
losses of 80–100% have been reported [8]. Ceratitis cosyra (Walker) (Diptera: Tephritidae), or
mango fruit fly, is a serious pest in smallholder and commercial mango plantations across SSA.
It is native to afrotropical regions and is commonly intercepted in Europe as larvae in infested
mangoes [9]. Bactrocera invadens (Drew, Tsura and White, 2005) (Diptera: Tephritidae) is a
member of the oriental fruit fly species complex, possibly of Sri Lankan origin, and since 2003
has spread across East and West Africa. It has a very broad host range and feeds on a wide
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variety of unrelated wild and cultivated crops. Due to its highly destructive and invasive poten-
tial, B. invadens has become economically the most important fruit fly in Africa [10].

Many studies investigating the impact of CC on pest distribution show increasing densities
or an expansion of the geographical range of pests [11–14]. Significant research focusing on
the possible impacts of CC on insects has already been carried out in temperate areas of the
world [15–17]. It was reported that warmer winters might advance the survival rate of insects
and permit a faster population revival that will consequently built-up in spring [17]. Addition-
ally, an increase in the length of the cultivating period is projected, permitting multivoltine spe-
cies to generate a higher number of generations per year and therefore upsurge invasions by
alien species [15,18].

In comparison to temperate areas, tropical countries of Africa are highly disposed to insect
pest problems and outbreaks due to their year-round favorable environments for insects’ popu-
lation growth and host plants availability [19]. Further studies revealed that warming in tropi-
cal areas, although tiny in scale, is expected to yield harmful consequences because tropical
insects are very sensitive to small changes on the magnitude of climatic veriables, such as tem-
perature [20,21].

Species distribution modelling with presence-only data can be used to model the current
habitat suitability of a species and project future suitabilities under changed climatic condi-
tions. Models of this type have already been developed for several pest species in Asia [22–24],
North America [25,26], several European countries [27], as well as for the global distribution
of pests [28–30]. Fewer modelling approaches have been carried out with a focus on Africa
[31,32]. Considering the importance of agriculture for the continent, more studies assessing
pest species dispersal are needed to estimate potential future yield losses as a result of CC.

Climate change is likely to have negative impacts on food security and livelihoods of farmers
in Africa through change of the number of generations and distributions of pest species
[13,33,34]. Despite this, there are only few studies providing specific information on which spe-
cies are likely to affect which regions under CC in Africa. This information, however, is vital
for farmers, if they want to adapt to the impacts of CC.

Methods

Pest species and presence records
Presence records of the three important insect pest species were used from different sources
including the Global Biodiversity Information Facility (GBIF, www.gbif.org) and published
studies (Table 1, Fig 1).

Presence data were randomly split in two sets for model training (70%) and testing (30%). A
number of presence records had to be excluded because of missing environmental information
or other issues with the geographical coordinates (e.g. coordinates pointed towards locations in
the ocean). All used presence records are provided in S1 File.

Environmental variables
Presence records (Fig 1) were used in combination with bioclimatic variables downloaded
from the WorldClim database ([44] accessed through [45]) to assess current and future habitat
suitability of the pest species using maximum entropy modelling. Current climatic data corre-
spond to interpolations of observed data from 1950 to 2000, while future climatic conditions
represent downscaled modelled data averaged for the years 2041 to 2060 according to the
IPCC5 (CMIP5). Three different global circulation models (GCMs) and four representative
concentration pathways (RCP) were used in a 2.5 arc minute (4.6 km) resolution.
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Not all of the selected GCMs provide data for all RCPs (Table 2). The GCMs were selected
based on their ability to reflect the dynamics of the West African monsoon [46,47] and their
representation of modelled precipitation and temperature values from different CMIP5 models
[48]. While the GFDL model represent colder and wetter values, the HadGEMmodel values
are warmer and drier and the MPI-ESM values are close to the multi-model mean.

Habitat suitability was modelled using bioclimatic variables under each GCM and RCP.
Bioclimatic variables are calculated based on monthly values of temperature and rainfall but

are likely to be biologically more meaningful than simple average values since they represent
both annual trends but also seasonality and extreme conditions (Table 3).

Mean values of future habitat suitability were calculated over all modelled habitat suitability
datasets. They were calculated first over all models for all RCPs before they were calculated
over all models. Therefore the lack of data for two RCPs for two GCMs only results in a lower
confidence level for the results of the two higher RCPs. The overall results, however, are not
skewed towards higher or lower emission scenarios.

Modelling approach and evaluation
The machine learning approach Maxent (www.cs.princeton.edu/~schapire/maxent/) was used
to assess habitat suitability based on maximum entropy. Maxent has been shown to perform
particularly well for modelling presence-only data [49]. Maxent is used to predict the environ-
mental suitability for the species as a function of the given environmental variables. Hereby the
distribution probability is estimated by finding the distribution of maximum entropy that satis-
fies a set of constraints from environmental variables. The results serve as an approximation of

Table 1. Species names, source of presence records, date of data access, total number of presence records found for Africa in the original source
and number of presence records used for training and testing.

Species Name Source Access Date No. of presence records

from source used for training used for testing

Tuta absoluta [35–40] 03/02/15 542 141 60

Ceratitis cosyra [35,41,42] 13/02/15 595 175 75

Bactrocera invadens [10,31,43] 05/01/15 226 118 50

doi:10.1371/journal.pone.0153237.t001

Fig 1. Presence records for 3 important pest species accessed through GBIF and other literature (see Table 1 for an overview).

doi:10.1371/journal.pone.0153237.g001
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a species’ ecological niche under the studied environmental conditions [50]. Maxent belongs to
the family of models relying solely on presence records of the investigated species.

Environmental variables were reduced to only the three most important variables, with the
highest variable contributions calculated according to a first model run based on all variables.

A bias file was produced with the package kernSmooth in R [51] to correct for uneven distri-
butions of sampling efforts across the study area. For this purpose coordinates from presence
18,108,111 records of all animals from GBIF were used to create a kernel density estimate map
across Africa with a bandwith of 5 in each direction. Since the sample size is very large, we
chose a relatively small bandwidth which is still large enough to result in values greater than 0
in each pixel cell.

The performance of the model is characterized by the area under the curve (AUC). The
AUC is obtained by the threshold independent receiver operating characteristic (ROC) analysis
[50]. In the process of modelling, 70% of occurrence localities were randomly selected as train-
ing data, while the remaining 30% served for testing the resulting models. The ROC method is
based on the AUC when model sensitivity is plotted against 1 minus model specificity. This
method has been shown to be effective in evaluating model performance and being indepen-
dent of prevalence compared to the more commonly used kappa statistic [52–54].

Table 2. Overview of global circulationmodels (GCMs) and representative concentration pathways
(RCPs) that were available and accessed via the databaseWordlCim ([44] accessed through [45]).

RCP 26 RCP 45 RCP 60 RCP 85

GFDL-ESM2G • • •

HadGEM-ES • • • •

MPI-ESMLR • • •

doi:10.1371/journal.pone.0153237.t002

Table 3. Overview of bioclimatic variables used for species distribution modelling.

Abbrev. Bioclimatic Variable Description

BIO1 Annual Mean Temperature

BIO2 Mean Diurnal Range (Mean of monthly (max temp—min temp))

BIO3 Isothermality (BIO2/BIO7) (* 100)

BIO4 Temperature Seasonality (standard deviation *100)

BIO5 Max Temperature of Warmest Month

BIO6 Min Temperature of Coldest Month

BIO7 Temperature Annual Range (BIO5-BIO6)

BIO8 Mean Temperature of Wettest Quarter

BIO9 Mean Temperature of Driest Quarter

BIO10 Mean Temperature of Warmest Quarter

BIO11 Mean Temperature of Coldest Quarter

BIO12 Annual Precipitation

BIO13 Precipitation of Wettest Month

BIO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality (Coefficient of Variation)

BIO16 Precipitation of Wettest Quarter

BIO17 Precipitation of Driest Quarter

BIO18 Precipitation of Warmest Quarter

BIO19 Precipitation of Coldest Quarter

doi:10.1371/journal.pone.0153237.t003
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The output of the model represents an area with conditions comparable to those in the spe-
cies’ known occurrence range, whereas the values between 0 and 1 indicate regions with no or
most suitable habitat conditions, respectively.

The response of the species distribution model to specific environmental variables was
investigated through the permutation importance and response curves of each bioclimatic vari-
able. The permutation importance is calculated based on the drop or increase of the AUC,
when the respective environmental variable is altered.

Based on a threshold value, habitat suitability can be converted from probability maps to
species distribution maps. In this study we used three different threshold values to create distri-
bution maps and overlaid them with agricultural production intensity with current and future
species presence polygons. We chose to use three commonly used threshold levels to display
the variability in distribution maps dependent on the selected threshold level (Table 4). The
agricultural intensity map is an extract of the data on global crop land published by Raman-
kutty et al. [55] and represents the fraction of area being under use as cropland for each raster
cell at a resolution of 5 min (10 km).

All maps are displayed using a simple Plate Carrée (WGS 84) projection. This projection is
an equidistant projection, which was chosen as it is appropriate for large-scale studies to bal-
ance area distortion and shape.

Results

Statistical model evaluation
AUC values for training data of all species are>0.85 and AUC values for test data of all species
are>0.8 (Table 5). This demonstrates that all models show a good predictive performance.

Habitat suitability under current and future climatic conditions
Current habitat suitability shows which area each species is likely to inhabit under current cli-
matic conditions (Fig 2).

Bactrocera invadens (Fig 2A) and C. cosyra (Fig 2D) show high values of habitat suitability
scattered across SSA. However, while C. cosyra seems to be able to inhabit also Central Africa,
B. invadens is more restricted to the coastal areas. Suitable habitats for T. absoluta (Fig 2G) are
located almost exclusively in North Africa (Algeria, Libya and Egypt), across the Sahelzone,

Table 4. Thresholds used to estimate species distribution maps for all three species. The "Balance"
threshold minimizes 6 * training omission rate + .04 * cumulative threshold + 1.6 * fractional predicted area.

B. invadens C. cosyra T. absoluta

Equal training sensitivity and specificity 0.266 0.378 0.379

Maximum training sensitivity plus specificity 0.196 0.187 0.463

Balance training omission, predicted area and threshold value 0.063 0.095 0.088

doi:10.1371/journal.pone.0153237.t004

Table 5. Area under curve (AUC) values of training and test data as an evaluation parameter of model
performance for all investigated species.

Species AUC training data AUC test data

Bactrocera invadens 0.929 0.917

Ceratitis cosyra 0.874 0.861

Tuta absoluta 0.938 0.868

doi:10.1371/journal.pone.0153237.t005
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Fig 2. Habitat suitability under current and future climatic conditions as well as change of habitat suitability of Bactrocera invadens (a-c), Ceratitis cosyra (d-
f), and Tuta absoluta (g-i) modelled as logistic outputs of Maxent.

doi:10.1371/journal.pone.0153237.g002
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and on the Arabian Peninsula. Especially in Egypt tomato, the host plant of T. absoluta, is an
important cash crop. Egypt belongs to the top tomato producing countries worldwide (http://
faostat.fao.org/). Therefore, we expect large negative economic impacts of T. absoluta for
tomato producers under future CC.

The shown values represent mean values over model outputs with all available 10 biocli-
matic variable datasets (3 GCMs and 4 RCPs, Table 2) using the three most important vari-
ables. Mean values over each RCP can be found for each species in S1–S3 Figs. Future habitat
suitability of the three species appears to be overall similar to the current suitability (Fig 2).
Although species react differently to projected climatic changes, in this study all three species
showed, at least for parts of Africa, an increase in habitat suitability. Across large parts of the
continent they show an either unchanged or even slightly increasing number of suitable habitat
sites. Within the maps highlighting the change of habitat suitability an increase of suitability is
indicated by the colours yellow to red, while the suitability of areas with the colours light-green
to dark-green is likely to decrease.

Environmental variable importance and impact
Permutation importance varies between species and for all environmental variables (Table 6).
Response curves of the models for the three most important environmental variables of each
species are shown in S4 Fig. For B. invadens temperature seasonality (BIO4), temperature
annual range (BIO7) and precipitation of the driest quarter (BIO17) are the most important
variables. The species is preferring for all of these variables rather low values. Especially tem-
perature seasonality and annual range are unlikely to change dramatically in the future, which

Table 6. Permutation importance as drop in area under curve (AUC) after values of variables on training and presence data had been randomly
permuted for each environmental variable in turn; values represent normalized percentage values based on a first model run including all avail-
able bioclimatic variables (values before slash) and a secondmodel run including only the three most important variables (values after slash)
according to the first model run.

Variable Abbrev. Permutation importance (%)

Bactrocera invadens Ceratitis cosyra Tuta absoluta

BIO1 0.5 0 2.3

BIO2 1.6 0.7 4.9

BIO3 0.3 15 1.6

BIO4 14/63.3 6.4 0

BIO5 0 0.4 0

BIO6 3.4 0 28.9/31.2

BIO7 15.3/23.4 5.5 1.4

BIO8 4.4 8.1 8/20.8

BIO9 0.4 0.3 3.8

BIO10 0.5 1.4 1.2

BIO11 1.3 11.1/28.5 0

BIO12 13.5 8.8 40.5/48

BIO13 5.2 5.3 6

BIO14 0.5 8.9/13.2 1.2

BIO15 5.1 5.9 1.3

BIO16 4.2 10.2/58.3 0

BIO17 20.9/13.4 4.8 0.6

BIO18 3.5 2.2 3.8

BIO19 4.8 5 4.5

doi:10.1371/journal.pone.0153237.t006
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is probably the reason why B. invadens does not respond strongly to changing climatic
conditions.

The C. cosyramodelled suitability depends mainly on the mean temperature of the coldest
quarter (BIO11), precipitation of the driest month (BIO14) and the precipitation of the wettest
quarter (BIO16). Overall it prefers medium to high precipitation rates and temperatures
>10°C throughout the year. Climate change projections indicate that in those areas of Africa,
where we find increasing habitat suitability especially temperatures and precipitation are likely
to increase under future CC. For T. absoluta the minimum temperature of the coldest month
(BIO6), the mean temperature of the wettest quarter (BIO8) and annual precipitation (BIO12)
are the most important parameters for suitable habitat conditions. The model indicates that it
prefers higher temperatures and lower preciptition rates. Under CC more areas are projected
to fulfill these requirements, especially in northern Africa.

Pest impact on agricultural areas
Assuming a threshold habitat suitability at different level shows that although habitat suitabil-
ity in some areas might be increasing, under the suitability threshold equal training sensitivity
and specificity the species is still not predicted to be present. However, under a threshold value
of maximum training sensitivity plus specificity as well as balancing training omission, pre-
dicted area and threshold value much larger proportions of Africa are predicted to be inhabited
by the species (Fig 3).

Comparing the areas where the species is predicted to be present under current and future
climate shows that B. invadens and T. absoluta are unlikely to shift their habitat at all. For all
three applied habitat suitability thresholds species distribution does not change under current
and future climatic conditions even though habitat suitability generally is increasing over large
parts of the continent (compare with Fig 2). For C. cosyra we find a decreasing number of areas
in southern and Central Africa being inhabited under a higher threshold (Fig 3D). For the two
higher thresholds mostly the same areas are being predicted as suitable under future as under
current climatic conditions.

Comparing current and future distributions of the studied species with agricultural crop
intensity indicates that those areas with high agricultural production are not under a higher
threat under future CC than under current conditions. Habitat extent of all tested species is
likely to remain constant, shift to less productive sites or decrease.

Overlaying the habitat of all three species for all three thresholds under current and future
climate shows that especially for lower threshold levels CC impact seems to be deniable (Fig 4).
Under these levels almost all areas are already under current conditions affected by at least one
of the pest species (Fig 4E and 4F). For higher threshold levels, CC seems to have a rather posi-
tive impact since the distribution of C. cosyra is slightly decreasing, while the distributions of
the two other species remain largly constant (Fig 4A and 4B).

Discussion
In this study we assessed the impact of CC on three important agricultural pests of different
crops in Africa. We used environmental variables to assess CC effects in combination with dif-
ferent presence records obtained from multiple sources. Few other studies have investigated
the distribution and potential for dispersal of pests in Africa [31,32]. Here we modelled the
future distribution of three important pests in Africa under current and future climatic condi-
tions. Area under the curve statistics showed high values for all species confirming a good
model performance.
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Climate Change impacts on agriculture poses a major threat to agricultural productivity in
Africa [34,56,57]. Even without consideration of the impact of pests under CC decreasing
yields for major crops between 5% for maize and 17% for wheat have been projected by 2050
across the entire African continent [56]. At the same time many studies indicate that produc-
tivity could also benefit under CC if suitable adaptation measures are implemented [58]. Adap-
tation through better agricultural management as well as decision making under consideration
of CC risks, as suggested for example by Vermeulen et al. [59], is strongly influenced by the
availability of information on CC impacts, such as the future distribution of important pests.

Our results show that species presence or absence depends strongly on the choice of a habi-
tat suitability threshold. While in a certain area a species might not be predicted to be present
under a higher threshold level, it might yet be under a lower threshold level. Using variable
threshold levels, as we did in this study, shows this uncertainty, which can also be translated to
risk levels of pest species invasion. Such information are useful for farmers, NGOs and policy
makers as they give them a prioritisation list on which pest species to focus on first and which
species are of lesser concern to them. Furthermore, it provides a guideline which crops are rec-
ommendable to be planted and which should be avoided, if risks are to be minimized.

Presence-only data models stand beside those based on presence and absence data usually
obtained through systematic sampling, e.g. generalized linear or additive models. However, pres-
ence data are often easier to obtain than verified absence data for example from databases and
museum collections. Therefore, presence-only models, such as Maxent, GARP (Genetic Algorithm
for Rule-Set Production) or ENFA (Ecological Niche Factor Analysis) are usually used for predic-
tions based on presence-only data. GARPmodels are based on the integration or rejection of rules
that are being tested to improve or decrease the predictive performance of the model. ENFA based
predictions are calculated from uncorrelated factors explaining the differences between the whole
study area and the area inhabited by the species. Maxent, on the other hand, assumes that a species
distribution would follow a maximum entropy without any environmental constraints. The model
predicts habitat suitability by fitting a probability distribution for the occurrence of the species
across the whole area. Based on data from the different environmental variables different con-
straints are being formulated and considered in the model. According to to Elith et al. [49] Maxent
performs relatively well compared to other presence-only models. However, Maxent also seems to
suffer from a higher tendency of overfitting at low threshold levels than e.g. GARPmodels [60].
For this reason we used three different threshold levels to display species distribution maps.

Comparing our results with other studies shows some discrepancies in the predictions of
habitat suitability for individual species under current and projected climate. For instance Ton-
nang et al. [30] modelled worldwide habitat suitability for T. absoluta using CLIMEX and
found much larger areas of high suitability, especially across Central, eastern and southern
Africa than in our study. De Meyer et al. [31] modelled habitat suitability for B. invadens in
Asia, Africa and worldwide using two different approaches, i.e. GARP and Maxent with pres-
ence records from India, Sri Lanka and Bhutan. The Maxent modelling approach showed a
much smaller area than the GARP approach. Suitable areas as predicted by De Meyer et al.
[31] show some overlaps with highly suitable areas identified in our study. Yet for Central
Africa we predicted lower suitability values than De Meyer et al. [31].

The discrepancies between the findings in our study and other publications may be the
result from the level of uncertainty of methodologies currently used for species distribution

Fig 3. Agricultural crop intensity overlaid with presence of each species under current and future climate assuming three different habitat
suitability levels (Table 4): Equal training sensitivity and specificity (a-c), maxium training sensitivity plus specificity (d-f) and balancing training
omission, predicted area and threshold value (g-i). Agricultural crop intensity is reprinted from Ramankutty et al. [55] under a CC BY license, with
permission from JohnWiley and Sons, original copyright 2008.

doi:10.1371/journal.pone.0153237.g003
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modelling as well as different modelling input data. For example both, Tonnang et al. [30] and
De Meyer et al [31] did not correct for sampling bias.

Another important fact is that the two species, B. invadens and T. absoluta, for which our
modelling outcomes differ from those in other studies, are alien invasive species (AIS) in
Africa. In Tonnang et al. [30] and De Meyer et al [31], both authors reported to have used rec-
ords from the species native areas to develop their models; the obtained parameters were then
projected to Africa for estimating areas of habitat suitability of the species. This approach dif-
fers from our modelling method, where we used only presence records from Africa. Being alien
to Africa, the two species are likely to be still spreading and adapting to new environmental
conditions to establish their final realized niches. When a species invades a new region its dis-
persal into new areas depends on environmental conditions and its ability to adapt can take a
considerable amount of time. Hence, for model development using data of an AIS´ home
might not be ideal for correctly predicting habitat suitability in a newly colonised region/area.
Alternatively, native presence records of a species can be used to predict habitat suitability in
different regions. Yet for species with high tolerance towards different environmental condi-
tions this may also lead to lower predicted habitat suitability, especially in areas with environ-
mental conditions not present in the species native area. If a species has for example a high
tolerance to lower temperatures but presence points of areas with low temperatures were not
included in the model because the species has not yet invaded such an area, predicted habitat
suitability solely based on native records could be lower than the true suitability.

We used bioclimatic variables to characterize environmental conditions. However, other
important environmental variables, such as soil properties, land cover and agricultural man-
agement interventions (e.g. use of pesticides or fertilizers) can influence species distribution
but were not considered in this study. Including such variables has been described as a key
challenge for modelling approaches [61]. While we agree that these variables are key to assess
the final distribution of species, in this study, however, we emphasize on the necessity to assess
only CC impact on three important agricultural pests in Africa. Since their distribution very
much depends on which crops are grown where and how they are managed, projections under
future climatic conditions are substantially influenced by individual decisions of farmers as
well as market developments and thus difficult to model. Hence we decided to focus on assess-
ing CC effects on the habitat suitability only.

In our study we used three different habitat suitability levels as an estimated threshold for
species presence. This way we accounted for uncertainties related to the choice of a fixed
threshold level. However, estimating species distributions from current and future habitat suit-
ability is hampered by the fact that a species fundamental niche may be different from its real-
ized niche, for example due to competition with other species or because of the effects the
species itself has on its environment [62,63]. Furthermore, it should also be considered that
simple presence of a pest species might not be harmful for agriculture if the density remains
low. Here, we only looked at habitat suitability and the likelihood of presence or absence of a
species. Nevertheless, it is reasonable to assume that higher densities are likely to occur if habi-
tat suitability is high as long as the host species is present.

Furthermore, we were only using agricultural crop intensity as an estimation of agricultural
productivity. Yet, areas which are currently not in use and/or less productive, might become so
under future CC. Since pest species are highly dependent on their host species and agricultural

Fig 4. Agricultural crop intensity overlaid with presence of all three species combined under current and future climate assuming three different
habitat suitability levels (Table 4): Equal training sensitivity and specificity (a and b), maxium training sensitivity plus specificity (c and d) and
balancing training omission, predicted area and threshold value (e and f). Agricultural crop intensity is reprinted from Ramankutty et al. [55] under a CC
BY license, with permission from JohnWiley and Sons, original copyright 2008.

doi:10.1371/journal.pone.0153237.g004
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production, this is likely to affect species distribution in a significant way. This aspect was,
however, not considered in this study due to the lack of specific data.

Future research should include not only more important pest species in Africa, but also
other environmental variables, and individual pest species should be linked to the cultivated
areas of their respective host plants. Estimations of the impacts of pest species on agricultural
production under projected CC would benefit from more species presence records as well as
more detailed current and forecasted maps of crop production areas across the continent.

We believe that the results of this study can help policy makers, extension organisations and
farmers to make adapted agricultural management decisions today while anticipating future CC
impacts, for instance by choosing crops that are less susceptible to certain pest species. This can
help to secure food production and livelihoods of farmers in the coming decades, when some pest
species are likely to expand their distribution under CC. The maps can give farmers an orientation
which crops are less likely to suffer under pests in the future and which they should avoid planting
because of their association with higher risk of infestation. Using species distribution maps and cli-
mate scenarios and integrating them into land management decision systems can help to increase
agricultural productivity, mitigate global hunger and thereby decrease competition for arable land.
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