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Abstract: This is a crucial transition time for human
genetics in general, and for HIV host genetics in particular.
After years of equivocal results from candidate gene
analyses, several genome-wide association studies have
been published that looked at plasma viral load or disease
progression. Results from other studies that used various
large-scale approaches (siRNA screens, transcriptome or
proteome analysis, comparative genomics) have also shed
new light on retroviral pathogenesis. However, most of
the inter-individual variability in response to HIV-1
infection remains to be explained: genome resequencing
and systems biology approaches are now required to
progress toward a better understanding of the complex
interactions between HIV-1 and its human host.

Introduction

Many fundamental questions about how and why humans differ

in their susceptibility to HIV-1 remain largely unanswered. For

example, it has long been known that a fraction of the human

population cannot be infected by HIV-1 [1,2]. We still do not

know, however, whether most of those who are resistant to

infection are resistant due to innate or adaptive immunity, or to

some other mechanism. Nor are the precise pathways that allow

apparently permanent control of the virus amongst a subset of

those that do become infected well understood. These questions

are obviously central in the effort to develop effective strategies to

combat HIV-1, and at their heart, they are genetic.

Until recently, our capacity to systematically address these issues

was limited. But genomic analyses have advanced to the point that

comprehensive or nearly comprehensive analyses of the role of

genetic variation in viral control is now within reach. A series of

genome-wide association studies has already provided a detailed

description of how common variation influences control of HIV-1

[3–9]. More importantly, next-generation sequencing is now

sufficiently advanced such that a dedicated effort to uncover the

role of rare variation has become feasible. Coupling these new

developments with rich cohorts being built under the auspices of

international groupings such as the Center for HIV/AIDS

Vaccine Immunology (CHAVI) and the International HIV

Controllers Study, all ingredients are now available for drawing

conclusive answers to these fundamental questions.

Here, we first review what is known about how genetic variation

influences HIV-1 acquisition and control. We then describe new

developments and argue that a concerted effort is now appropriate

to bring these elements together to answer these outstanding

questions decisively and draw the appropriate lessons for vaccine

development as well as understanding of pathogenesis.

Cohorts

Cohorts for the Study of HIV-1 Acquisition
In various high-risk populations, there are reports of individuals

that have been repeatedly exposed to HIV-1 and yet have not

been infected. Exposure itself has been assessed in various ways,

but in all cases it appears that portions of the population are

protected. Perhaps the most striking example is the case of

hemophilia: a vast majority of severe hemophilia A patients born

before 1979 became HIV-1 seropositive, due to virtually universal

exposure to contaminated batches of factor VIII concentrates.

Still, about 5% of them remained seronegative [1]. Other

examples of exceptional resistance to infection have been

described in cohorts of men who have sex with men reporting

high-risk behavior [10] and of female sex workers in Nairobi,

Kenya [11]. Finally, virtually all infectious disease clinicians report

individual patients with very high levels of exposure that did not

become seropositive; a celebrity such as Sir Elton John also

described himself as a lucky person that mysteriously avoided

infection. The genetic analysis of well-characterized highly

exposed, yet uninfected, individuals is thus essential. An alternative

approach to study HIV-1 acquisition is to test for differences in

allelic distribution between patients with HIV-1 and large cohorts

of presumably uninfected controls, since the infected population

will then be depleted in protective factors or enriched in alleles

conferring enhanced susceptibility to infection. Many groups

active in HIV-1 host genetics research have recently created the

International HIV Acquisition Consortium to initiate such a study.

Cohorts for the Study of Viral Control
The existence of clinical cohorts/studies prospectively collecting

data and samples from individuals with HIV makes it more

straightforward to study post-infection outcomes. Various mea-

sures of HIV-1 control and disease progression have been used as

phenotypes in host genetic studies (Box 1). Plasma viral load and

CD4+ T cell count are routinely collected during clinical follow-up

and are thus widely available for large numbers of patients. These

markers have been shown to be independent predictors of

progression to severe immunodeficiency [12]. Later measures of

progression like AIDS-defining events, specific opportunistic

infections, or AIDS-related death are more likely to result from
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complex interactions between multiple genetic and environmental

factors: the power to detect true genetic effects is thus reduced. In

addition, later outcomes can only be assessed in historical cohorts,

thanks to the efficacy of current antiretroviral treatments. The study

of the earliest stages of infection represents an especially challenging

task, since identification and recruitment of acutely infected patients

is hampered by significant scientific and sociologic limitations.

Finally, it is important to note that, so far, the vast majority of HIV-

1 host genetic studies focused on patients of Western European

ancestry, in striking contrast with the global distribution of HIV-1

burden. The creation and analysis of cohorts in other ethnic groups

is clearly a priority for ethical reasons, but also because population

diversity increases the likelihood of genetic discovery.

Cohorts for the Study of Therapeutic Outcomes
Human genomic approaches can also be used to study

therapeutic intervention outcomes. Although antiretroviral therapy

is highly effective, critical questions remain about how patients

respond to treatment: genetic variation among individuals and

populations may cause considerable variability in drug pharmaco-

kinetics and pharmacodynamics. In particular, since anti-HIV

medicines are used for life, even modest differences in susceptibilities

to adverse events can become important. Identification of risk

profiles could allow the tailoring of the drugs to minimize the long-

term toxicities associated with treatment, like metabolic disturbanc-

es and cardiovascular diseases. Consequently, an important effort

should be made to obtain informed consent for genetic testing from

participants in randomized clinical trials, which represent an ideal

setting for pharmacogenetic discovery, as recently demonstrated, for

example, in hepatitis C research [13,14]. Genetic variation will also

be responsible for differences in vaccine immunogenicity and

tolerability, and as such needs to be considered in the design and

evaluation of current and future HIV-1 vaccine trials.

Common Variation and the Control of HIV-1

Most recent HIV-1 host genetic studies have interrogated

human genetic variants for their association with viral load (either

as a continuous trait, or as a categorical variable in studies of

controllers) and CD4+ T cell decrease. Only a few confirmed

genetic associations are understood in terms of the responsible

causal sites, and even if it is the case, fundamental questions

remain about the exact mechanisms involved in viral control. Most

prominent is the example of human leukocyte antigen (HLA) class

I variation, and notably of HLA-B*5701, whose protective effect

has been shown to be the largest contributor to inter-individual

variability for both viral set point and CD4+ T cell decline in

genome-wide association studies performed in populations of

recent European ancestry [3–7]. Interestingly, a very similar result

has also been observed in a genome-wide study performed in

African-Americans, where HLA-B*5703 was the most important

determinant of viral control [9]. HLA-A, -B and -C are extremely

polymorphic and encode protein products that are fundamental in

the immune recognition process: expressed at the cell surface, they

present antigenic epitopes including processed viral peptides to

CD8+ T lymphocytes, thereby initiating a cytotoxic T cell (CTL)

response. Other HLA-B types have been shown to associate with

differences in HIV-1 outcomes [15]: HIV-1 control is better in the

presence of HLA-B*27, B*51, and B*5801, but poorer in the

presence of HLA-B*5802 and of alleles from the HLA-B35Px

group [16–19]. Homozygosity for class I alleles also leads to faster

progression and higher viremia, presumably because it reduces the

diversity of the epitope recognition machinery, thereby impairing

antiretroviral CTL response [16].

Beyond the key role they play in the induction of CTL responses,

HLA class I molecules are also ligands for the killer cell

immunoglobulin-like receptors (KIRs), expressed at the surface of

natural killer (NK) cells. KIRs regulate NK cell activation status

through inhibitory or activating signaling and can thereby have a

direct modulating effect on the innate immune response to HIV-1

infection. Certain combinations of KIR genes and HLA class I alleles

have epistatic influences on the outcome of HIV-1 infection [20]:

KIR3DL1 and KIR3DS1 have been associated with better control of

HIV-1 when they are found in patients that have HLA-B alleles with

a Bw4 specificity. Recently, we showed that copy number variation

of the KIR3DL1/KIR3DS1 locus results in differences in HIV-1

control in the presence of HLA-Bw4 (K. Pelak, A. C. Need, J. Fellay,

K. V. Shianna, S. Feng et al., unpublished data).

Other genetic associations, albeit statistically unequivocal, are still

poorly understood. A polymorphism located in the upstream region

of HLA-C (HLA-C -35) associates with both HIV-1 control and

expression levels of the gene [3,21], suggesting that the number of

HLA-C molecules expressed at the cell surface might play a role in

the efficacy of the immune response. Genome-wide studies also

detected additional independent associations in the major histo-

compatibility complex (MHC) [3–5,7], but the long-range linkage

disequilibrium structure of the region makes it virtually impossible

to pinpoint the real causal sites using genetic data alone.

Outside of the MHC, nearly all genetics findings reported to

date resulted from candidate gene studies. As a consequence,

variants were identified in genes implicated in HIV-1 life cycle or

in immune-related genes. The problem, however, is that most

results are equivocal or controversial, due to technical or

methodological limitations. In particular, the quasi-systematic

absence of correction for population stratification before the

genome-wide era has been responsible for a high number of false

positive results [7,22]. In fact, other than HLA and KIR variation,

only polymorphisms located in the chemokine receptor cluster on

chromosome 3 have been repeatedly associated with HIV-1

control: specifically, heterozygosity for a 32–base pair deletion in

CCR5 (CCR5D32), variants of the CCR5 promoter region, and a

non-synonymous coding change in CCR2 (V64I) have been

consistently shown to associate with differences in viral load

and/or disease progression [7,23–28].

Common Variation and Acquisition

Variation in CCR5 remains the only human genetic determinant

that has been proven to significantly impact HIV-1 acquisition:

Box 1. Phenotypes That Have Been Used in
Genetic Studies of HIV-1 Infection

HIV resistance/acquisition:
N Mucosal exposure
N Intravenous exposure
N Mother-to-child transmission

HIV viral load:
N Set point viral load
N Intracellular HIV-1 DNA level
N Viral control (elite control/viremic control)

HIV disease progression:
N Slope of CD4+ T cell decrease
N Time to CD4+ T cell decrease below a certain threshold
N Time to AIDS 1987/AIDS 1993
N Time to death
N Long-term non-progression
N Rapid disease progression
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both the CCR5D32 variant (present in homozygous form in about

1% of Europeans) and the m303T.A point mutation (much rarer)

result in a defective CCR5 protein product that is not expressed at

the cell surface [23,29–31]. When present in homozygous or

combined heterozygous form, they confer complete resistance to

infection by HIV-1 viruses that use CCR5 as co-receptor. Of note,

those individuals remain susceptible to infection by CXCR4-using

viruses (including dual-tropic viruses) that associate with more

rapid HIV disease progression [32].

Other gene variants were reported to protect against acquisition

or to increase susceptibility to infection, but they are at best

supported by weak evidence from candidate gene studies. In fact,

none could yet be replicated using contemporary standards widely

accepted in human genetics, notably a correction for population

stratification: for example, we and others reported a lack of

association between HIV-1 susceptibility and the number of copies

of CCL3L1 [33–35], or the allelic distribution of a DARC promoter

variant [36–40].

Given the importance of the natural model of resistance to

HIV-1 infection, it comes as a surprise that no genome-wide study

has been published that looks at correlates of protection. It is

clearly a priority for the HIV genetic field to carry out such

studies.

The Role of Genetic Variation: The Complete
Picture

It seems reasonable to conclude that most of the common

variants important in the control of HIV-1 have now been

identified, at least in individuals of European ancestry. Despite

this, it appears that most of the inter-individual differences in

control remain to be explained. The confirmed host genetic

determinants of HIV-1 control are only able to explain about 20%

of the observed variation in viral load or disease progression [7]. It

is noteworthy that such limited genetic knowledge can already be

used to refine the prediction of disease progression, beyond the

information provided by viral load only, as shown in Figure 1.

So, what is responsible for the large variability in HIV-1

control that still remains unexplained? Clearly, part of it is

attributable to the virus itself, as demonstrated by sudden changes

in disease course and/or viral set point upon super-infection in

chronically infected patients [41] and by sizeable differences in

viral load set point that can be observed between the donor and

the recipient in HIV-1 transmission pairs [42]. Environmental

influences also play a role: for example, pro-inflammatory

diseases are often associated with a significant increase in HIV-

1 viral load, while co-infections with viruses like GB virus C,

Figure 1. An additive genetic score helps predict HIV-1 disease progression. Data are from Fellay et al. [7]: 1,071 individuals of Caucasian
ancestry with HIV-1 are included in the analysis. The columns show the proportions of individuals that reached a progression outcome (CD4+ T cells
,350/ul or initiation of combined antiretroviral treatment with CD4+ T cells ,500/ul) during the first 5 years after estimated date of seroconversion
in categories defined by HIV-1 viral load and by a simple additive genetic score, in which one unit is counted for each ‘‘protective’’ allele. The
minimum score is 0 for individuals that are homozygous for the major allele at rs2395029 (a proxy for HLA-B*5701), rs9264942 (HLA-C -35 variant),
rs9261174 (ZNRD1), and CCR5-D32. The maximal observed score is 3 since no individual was heterozygous or homozygous for the minor allele at all
four sites. Individuals were grouped in three categories to clearly show that the genetic score refines the prediction of progression, beyond the
information provided by viral load only, throughout the range of set point values.
doi:10.1371/journal.ppat.1001033.g001
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HTLV-1, and HIV-2 have been reported to have an inhibitory

effect on HIV-1 replication [43].

However, as it is the case for many other human complex traits,

it is not unreasonable to assume that rarer genetic variants are

responsible for a sizeable fraction of the unexplained inter-

individual differences [44]. For example, it is clear that a fraction

of the population is highly resistant to infection by HIV-1. While

homozygosity for CCR5D32 is responsible for some of these cases

[23,29,30], it appears to explain only a minority of such

observations. Several studies have shown a higher frequency of

CCR5D32/D32 in HIV-uninfected hemophiliacs than in the

general population (up to 25% compared to 1%, respectively),

with the highest frequencies in those with severe hemophilia [45–

47]. Homozygosity for CCR5D32 is also significantly enriched in

highly exposed, yet seronegative homosexual men [23,24]. While

those numbers clearly illustrate the high degree of exposure in

these populations, it also suggests that other protective mecha-

nisms are responsible for most individual cases of resistance. So

far, genome-wide studies in these groups also fail to reveal any

strong common variants conferring further protection (D. Gold-

stein, unpublished data). The identification of the other variants

responsible for protection therefore will require a deeper

interrogation of the human genome than is possible using

genome-wide association studies.

While still expensive and difficult to implement due to

computational and bioinformatic challenges, it is feasible to carry

out systematic discovery genetics using whole exome or whole

genome sequencing [48]. Several recent reports demonstrated that

the cause of Mendelian diseases can be identified using such

resequencing strategies [49–51]. In the HIV field, one project

already underway involves sequencing the complete genomes of 50

hemophilia patients (Figure 2). Discovery of variants in this

framework will depend principally on three factors: 1) the initial

population frequency, 2) the degree of enrichment in frequency in

the exposed uninfected individuals, and 3) the defining character-

istics of a rare causal variant, e.g., predicted functional

Figure 2. Project framework: human genome resequencing of hemophilia A individuals exposed to HIV-contaminated factor VIII in
1979–1984, yet uninfected.
doi:10.1371/journal.ppat.1001033.g002
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consequence, clustering in a gene/pathway, conservation. What-

ever the ease of recognition, it seems reasonable to expect that

causal variants can be identified using a combination of

sequencing in a discovery cohort and confirmation by genotyping

in a much larger validation cohort.

Other phenotypes related to HIV control that could be studied

using a similar design include extremely rapid versus extremely

slow progression, as well as resistance to infection through mucosal

exposure. Other more complicated phenotypes may also be

interesting targets for study, such as the occurrence of persistently

high viral loads without progression to AIDS [52], extreme levels

of microbial translocation during acute infection [53], or unusual

immune activation patterns (Box 2).

Systems Approach

Beyond the information generated by genome studies, the field can

now press ahead with novel approaches that use a range of

technologies. Prominent among these are the analyses of the

transcriptome and proteome, and small interfering RNA (siRNA)

screens (Figure 3). These genome-wide studies generate large data sets

that can be analyzed in isolation, and, increasingly, in an integrated

manner [54,55]. Below we summarize key studies in the HIV field

using these techniques, and the first efforts at feeding information

across studies. The last section will address the prospects for a systems

biology approach in the study of HIV-1 biology and pathogenesis.

Transcriptome Analyses
New microarray technologies have recently allowed the genome-

wide analysis (.<20,000 transcripts) of infected cells in vitro, and in

vivo in individuals with HIV [56–59]. Dynamic analyses have been

also completed in animal models. The cell types investigated varied

from the collective study of peripheral blood mononuclear cells, to

cell type–specific studies [60]. The overarching messages from these

studies are (i) the massive modulation of the antiviral defense systems

(the interferon response, including the antiretroviral intrinsic

cellular defense apparatus), (ii) the prominent modulation of genes

involved in the cell cycle and degradation/proteasome pathways,

and (iii) the absence of a characteristic expression pattern of effective

control of viral replication (e.g., in elite controllers). Evidence of a

persistent deregulated interferon response upon infection is of

particular interest in light of comparative studies of pathogenic and

non-pathogenic animal models [61,62]. Upon primary simian

immunodeficiency virus infection of sooty mangabeys and of

African green monkeys, these natural hosts display a strong

interferon response at seroconversion followed by distinctive

down-regulation despite persistence of ongoing active viral

replication [63,64]. The precision of transcriptome analyses will

be greatly improved through the added resolution of RNA-Seq [65]

and the capacity to look at the transcriptome in single cells [66].

Proteome Analyses
Large-scale studies are limited by the number of proteins that

can be assessed in a quantitative fashion. Analyses of 2,000 to

3,200 proteins identified 15%–21% to be differentially expressed

upon infection [67,68], including changes in the abundance of

proteins with known interactions with HIV-1 viral proteins. The

NCBI HIV-1 Human Protein Interaction Database (http://www.

ncbi.nlm.nih.gov/RefSeq/HIVInteractions/) summarizes over

3,000 interactions with almost 1,500 human genes [69]. Other

datasets of interest include the human–pathogen protein–protein

interactions (PPIs)/pathogen interaction gateway (PIG) [70] that

reports that pathogens tend to interact with hubs (proteins with

many interacting partners) and bottlenecks (proteins that are

central to many paths in the network) in the human PPI network

[71]. No integrated approaches have been used so far to analyze

these data in the context of other genome-wide studies.

siRNA and Gain-of-Function Screens
Three siRNA transfection [72–74] and one short hairpin RNA

(shRNA) [75] transduction studies have targeted the coding RNA

for .20,000 human proteins. Approximately 1,000 proteins have

been identified as potentially necessary for an optimal viral

replication. However, there was minimal overlap across studies—

possibly because of differences in cell types and in study design.

None of the studies captured or were designed to identify genes

that would restrict viral replication—i.e., their silencing would

result in greater viral production. Overall, 34 genes were identified

in two or more of the transfection screens. However, among those

genes that were shared by one or more studies, a pattern emerged

that involves the nuclear pore machinery, the mediator complex, a

number of key kinases, and components of the NF-kB complex

(Figure 4). One gain-of-function screen used a cDNA library

representing 15,000 unique genes in an infectious HIV-1 system

[76]. This led to the proposal of novel proviral host factors.

Evolutionary Data
Genes involved in immunity and inflammation among those

exhibiting the strongest signatures of positive selection both across

species and within humans [77–84]. Increasingly, evolutionary

and comparative sequence analyses across species or within

human populations can be used to identify genes that have played

a major role in host survival and are therefore likely to influence

modern susceptibility to, or pathogenesis of, infectious diseases

[78,85–87]. Given the relevance of endogenous and exogenous

retroviruses in primate evolution, the identification of genomic

signatures can provide an additional layer of data for analysis of

contemporary susceptibility to HIV-1. A number of targeted

analyses of genes involved in cellular defense against retroviruses

have been reported [88–92]. A systematic study of long-acting

selective pressures on primate genomes (analysis of 140 genes

proven or possibly involved in HIV-1 biology and pathogenesis)

reached the following conclusions: (i) there are three general

groups of genes presenting different evolutionary histories of their

coding regions in primates, (ii) analyses allow a non a priori

identification of candidate residues that affect host–pathogen

interactions, and (iii) a subset of genes may remain under positive

selective pressure in modern human populations [92].

Data Integration
Progressively, researchers aim at integrating different layers of

data. Rotger et al. [59] examined the correspondence of results from

genome-wide transcriptome analysis of differentially expressed

mRNA in CD4 T cells from infected individuals with results from

Box 2. Examples of Target Phenotypes for
Human Genome Resequencing Studies

N Resistance to HIV-1 infection in highly exposed uninfected
individuals

N Very rapid disease progression
N Elite viral control
N Poor viral control in HLA-B*57 individuals
N Persistently high viral loads without apparent disease

progression
N Degree of intestinal microbial translocation during acute

infection
N Unusual immune activation patterns

PLoS Pathogens | www.plospathogens.org 5 October 2010 | Volume 6 | Issue 10 | e1001033



analysis of cis-acting genetic variants modulating gene expression in

the same samples. In this work, 265 genes were differentially

expressed in CD4 T cells across the range of viral set point, and 160

genes were shown to have cis-acting genetic variants associated with

expression. However, the overlap between the two lists was minimal:

only one gene was common to both lists: OAS1, an interferon-

stimulated gene. However, SNPs in this gene are not associated with

notable differences in viral set point or disease progression.

Bushman and colleagues [54] applied meta-analytical proce-

dures to assess a wider range of genome-wide studies and public

interaction databases. A higher level of signal would be obtained if

the data were evaluated in the frame of specific networks and

cellular systems. The approach led to the identification of at least

11 densely connected clusters. These clusters, which are enriched

for proteins identified in multiple separate screens, specify cellular

subsystems associated with HIV replication: the proteasome,

subunits of RNA polymerase II and associated factors, the

mediator complex, the Tat activation machinery, RNA binding

and splicing proteins, and the BiP/GRP78/HSPA5 and CCT

chaperones. The study went one additional step to organize data

Figure 3. Genome-wide and large-scale studies published since 2007 in the HIV field. The number of studies is in parentheses. Diverse sets
of results and data are compiled in an encyclopedia of overlaps between studies (http://www.hostpathogen.org/). This approach serves to identify
networks used by HIV-1 to support its replication. Figure updated from reference [55] (http://F1000.com/Reports/Biology/content/1/71).
doi:10.1371/journal.ppat.1001033.g003
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in an ‘‘encyclopedia’’ of host factors assisting HIV replication

(http://www.hostpathogen.org/).

There is growing interest in applying non-reductionist ap-

proaches such as systems biology to the study of infectious diseases.

The general premise of systems biology includes the high-

throughput quantitative approach to a biological system that can

be subjected to iterative cycles of perturbation, and the modeling

of the collected data. HIV infection, which results in a perturbed

environment that can be exogenously manipulated through

treatment, or modulated by genetic determinants, should now be

approached under this research paradigm.

Conclusion

The aim of HIV host genetic research is to comprehensively

describe human genetic influences on HIV/AIDS. Some genetic

factors have now been convincingly associated with viral control or

resistance to infection, yet much effort is still needed to get the full

picture. The field is now moving simultaneously towards greater

depth in genome analysis and towards more breath and

integration through systems biology. This ongoing transition

brings renewed hopes that genetic analysis of the human host

will contribute substantially to understanding HIV-1 pathogenesis

and developing new strategies to stamp out the AIDS pandemic.
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