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Effect of coffee or coffee 
components on gut microbiome 
and short-chain fatty acids in 
a mouse model of metabolic 
syndrome
Kazuchika Nishitsuji1,2, Syunsuke Watanabe1, Jinzhong Xiao3, Ryosuke Nagatomo4, 
Hirohisa Ogawa1, Takaaki Tsunematsu1, Hitomi Umemoto5, Yuki Morimoto1, Hiroyasu Akatsu6,  
Koichi Inoue4 & Koichi Tsuneyama1

We previously showed that male Tsumura Suzuki obese diabetes (TSOD) mice, a spontaneous mouse 
model of metabolic syndrome, manifested gut dysbiosis and subsequent disruption of the type and 
quantity of plasma short-chain fatty acids (SCFAs), and daily coffee intake prevented nonalcoholic 
steatohepatitis in this mouse model. Here, we present a preliminary study on whether coffee and its 
major components, caffeine and chlorogenic acid, would affect the gut dysbiosis and the disrupted 
plasma SCFA profile of TSOD mice, which could lead to improvement in the liver pathology of these 
mice. Three mice per group were used. Daily intake of coffee or its components for 16 wk prevented 
liver lobular inflammation without improving obesity in TSOD mice. Coffee and its components did 
not repair the altered levels of Gram-positive and Gram-negative bacteria and an increased abundance 
of Firmicutes in TSOD mice but rather caused additional changes in bacteria in six genera. However, 
caffeine and chlorogenic acid partially improved the disrupted plasma SCFA profile in TSOD mice, 
although coffee had no effects. Whether these alterations in the gut microbiome and the plasma SCFA 
profile might affect the liver pathology of TSOD mice may deserve further investigation.

Metabolic syndrome is a disorder that encompasses a group of symptoms that are related to obesity and met-
abolic modifications, and raises the risk of developing cardiovascular disease and type 2 diabetes mellitus1,2. 
This syndrome has the clinical manifestations of hyperglycemia, insulin resistance, hyperlipidemia, nonalcoholic 
fatty liver disease (NAFLD), and progressive phenotype of NAFLD, nonalcoholic steatohepatitis (NASH)3–5. The 
crucial characteristic of metabolic syndrome is persisting low-grade inflammation6. We previously showed that 
Tsumura Suzuki obese diabetes (TSOD) mice, that were found to spontaneously develop type 2 diabetes mellitus 
in the original reports7,8, also spontaneously developed NASH9. Currently, TSOD mice are an accepted mouse 
model of metabolic syndrome10.

Mammals possess diverse and extremely active gut microbiota that includes over 10 trillion microbial cells 
and 1000 microbial strains11. Gut microbiota affects the physiology of the hosts ranging from energy metab-
olism to immune responses12,13, and growing evidence supports that alterations in gut microbiota compo-
sition, i.e., changes that are referred to as gut dysbiosis, involve in the development of metabolic syndrome 
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including NAFLD, NASH, and diabetes mellitus especially from the aspect of inflammation that is associated 
with obesity14–26. The most plentiful product of undigested dietary fibers by bacterial fermentation are 1–6 
carbons-containing short-chain fatty acids (SCFAs) which link gut microbiota and the host’s physiology12,27–29. In 
addition to functioning as an energy substrate, SCFAs affect several physiological processes of the hosts’ tissues 
and organs by modulating anti-inflammatory responses and neuroendocrine system29,30. Thus, the gut microbiota 
plays a critical role in the development of obesity and metabolic syndrome via regulating the types and quantity of 
SCFAs. Indeed, we previously reported that metabolic syndrome-affected TSOD mice demonstrated gut dysbiosis 
and subsequent disruption of the plasma SCFA profile31.

Coffee is one of the most popular beverages worldwide. It contains more than 1500 chemical components 
including phenolic polymers, polysaccharides, minerals, caffeine, and chlorogenic acid32. In addition to caffeine, 
which is a major water-soluble component of coffee (1%), several other components such as chlorogenic acid 
(4%) are reportedly biologically active33. Consumption of coffee or chlorogenic acid has been associated with 
alterations in the risk of metabolic syndrome and NAFLD34,35. Also, we previously reported that daily intake of 
coffee, not caffeine-free coffee, prevented the onset of hepatic pathology without affecting obesity or hyperlipi-
demia in TSOD mice36. Here, we focused on caffeine and chlorogenic acid as major bioactive coffee components, 
and we hypothesized that coffee or its major components may improve the hepatic pathology in TSOD mice by 
repairing the gut dysbiosis and disrupted plasma SCFA profile.

Results
Daily intake of coffee or major coffee components prevented hepatic lobular inflammation in 
TSOD mice.  The experimental design of this study is shown in Fig. 1. We first analyzed the general character-
istics and histopathology of the livers of 24-wk-old TSOD male mice that were given caffeine, chlorogenic acid, or 
coffee and age-matched Tsumura Suzuki non-obesity mice (TSNO mice, controls). As Fig. 2a,c shows, 24-wk-old 
TSOD mice demonstrated obesity-related alterations, such as increased body weight (1.5-fold increase, P < 0.01) 
and visceral fat (1.5-fold increase, P < 0.01), compared with TSNO mice. We did not detect significant differences 
in blood glucose levels in TSNO and TSOD mice (Fig. 2b). These obesity-related alterations were not improved 
by the intake of coffee or its components (Fig. 2a,c). The histopathological characteristics of the liver were scored 
according to our previous report9 (Fig. 2d–f). The average of NAS scores of TSOD mice were 3.7, which was com-
parable to those in our previous report (Fig. 2g)9. Liver lobular inflammation, i.e., infiltration of inflammatory 
cells into liver parenchyma, was reduced in the coffee-, caffeine-, and chlorogenic acid-treated groups (Fig. 2d).

The gut microbiome in TSOD mice that were treated with coffee or its components.  The use of 
fecal microbiota as a substitute for gut microbiota is generally accepted, so we analyzed the species in the microbi-
ota via 16S ribosomal RNA (rRNA) gene sequencing of DNA obtained from the fecal samples. As Fig. 3 illustrates, 
24-wk-old metabolic syndrome mice (TSOD mice) and age-matched TSNO mice (controls) had different levels 
of Gram-positive (1.2-fold increase, FDR adjusted Q < 0.05) and Gram-negative bacteria (0.8-fold decrease, FDR 
adjusted Q < 0.05), which is consistent with results found in our previous report31. However, we observed no sig-
nificant changes in the contents of Gram-positive and Gram-negative bacteria among the untreated TSOD mice 
and the coffee- or coffee component-treated TSOD mice (Fig. 3). As in our previous report, we found a 1.1-fold 
increased percentage of Firmicutes with a favorable trend (FDR adjusted Q = 0.0594) and a significant decrease 
in Bacteroidetes (0.8-fold decrease, FDR adjusted Q < 0.05) in TSOD mice compared with TSNO mice (Fig. 4a)31. 
The ratio of Firmicutes to Bacteroidetes was 1.6-fold higher in TSOD mice compared to TSNO mice (P < 0.05, 
Fig. 4b). Again, we observed no changes in the percentages of these bacteria (Fig. 4a,b). These results suggest that 
daily intake of coffee or its components did not repair the gut dysbiosis in TSOD mice.

Instead, in the fecal samples from the mice, we found that the percentages of six genera changed signifi-
cantly versus non-treated TSOD mice in the groups treated with caffeine, chlorogenic acid, or coffee (Table 1). 
These bacteria included Blautia, Coprococcus, and Prevotella, which have been implicated in inflammation or 
obesity37–43.

Figure 1.  Experimental flow chart. Animals were divided into five groups (n = 3 in each group): TSNO mice; 
non-treated TSOD mice; caffeine-treated TSOD mice; chlorogenic acid-treated TSOD mice; and coffee-treated 
group. After the experiment, the liver was subjected to histopathological and immunohistochemical analysis.
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The type and quantity of SCFAs in plasma.  In our previous study, we reported dysbiosis and distur-
bances in the type of plasma SCFAs in metabolic syndrome-affected TSOD mice29. Thus, we next investigated 
the effects of daily consumption of coffee or its components on plasma SCFA profiles in TSOD mice. Figure 5a 
indicates that chlorogenic acid recovered the reduced acetate level in TSOD mice. However, caffeine and chloro-
genic acid increased the plasma concentrations of propionate and butyrate even more (propionate, 1.5- to 4-fold 
increase, P < 0.05 (caffeine-treated group) and P < 0.0001 (chlorogenic acid-treated group) versus non-treated 

Figure 2.  General liver characteristics and pathological scores in 24-wk-old TSOD mice that were treated 
with coffee or its components and in age-matched TSNO mice. (a) Body weight (b) blood glucose level (c) 
ratio of visceral fat to body weight, and scores for (d) liver steatosis (e) lobular inflammation (f) hepatocellular 
ballooning and (g) NAFLD activity score (NAS). Data are means ± SD. *P < 0.05; **P < 0.01 versus all groups.
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Figure 3.  Analysis of the percentages of Gram-positive bacteria and Gram-negative bacteria in 24-wk-old 
TSOD mice that were treated with coffee or its components and in age-matched TSNO mice. Comparison of 
the percentages of Gram-positive bacteria and Gram-negative bacteria. Boxes show the interquartile ranges 
of the first and third quartiles; medians are shown by the lines in the boxes. If no error bars are shown, the 
experimental error was smaller than the symbol. *FDR adjusted Q < 0.05 versus non-treated TSOD, TSOD + 
caffeine and TSOD + coffee mice.

Figure 4.  Analysis of fecal bacteria at the phylum level in caffeine-, chlorogenic acid-, and coffee-treated 
groups and in age-matched TSNO mice. (a,b) Comparison of the percentages (a) and ratio (b) of the Firmicutes 
bacteria and the Bacteroidetes bacteria in caffeine-, chlorogenic acid-, and coffee-treated groups. (a) Boxes 
show the interquartile ranges of the first and third quartiles; medians are shown by the lines in the boxes. If no 
error bars are shown, the experimental error was smaller than the symbol. *FDR adjusted Q < 0.05 versus non-
treated TSOD mice. (b) Data are means ± SEM (n = 3). #P < 0.05 versus non-treated TSOD, TSOD + caffeine 
and TSOD + chlorogenic acid mice.



www.nature.com/scientificreports/

5SCienTifiC REPOrts |         (2018) 8:16173  | DOI:10.1038/s41598-018-34571-9

group; butyrate, 1.5- to 3-fold increase, P < 0.05 (caffeine-treated group) and P < 0.0001 (chlorogenic acid-treated 
group) versus non-treated group; Fig. 5b,c). The ratio of acetate to butyrate plus propionate in TSOD mice 
therefore did not change in the caffeine- and chlorogenic acid-treated groups (Fig. 5d). The levels of the minor 
SCFAs valerate and hexanoate, which were almost not measurable in untreated TSOD mice, reached detectable 
levels in the caffeine-treated and chlorogenic acid-treated groups (Fig. 5e,f). The quantity of lactate, the pre-
cursor of SCFAs29, was significantly reduced in the caffeine-treated and chlorogenic acid-treated groups (0.3- 
to 0.5-fold decreases, P < 0.01 (caffeine-treated group) and P < 0.001 (chlorogenic acid-treated group) versus 
non-treated group, Fig. 5g). To our surprise, however, we found no significant changes in the type and quantity 
of plasma SCFAs in the coffee-treated group (Fig. 5a–h). In addition, the plasma concentration of lactate in the 
coffee-treated group was similar to that in the non-treated TSOD group (Fig. 5g).

Discussion
Metabolic syndrome significantly alters gut microbiota in humans and in animal models. The most prominent 
changes are a reduced abundance of Bacteroidetes that is accompanied by an increased occurrence of Firmicutes 
in obese mice19, humans17, and patients with NASH21. We also previously reported an increased occurrence of 
Firmicutes species together with a corresponding decrease in Bacteroidetes species in TSOD mice31. In addi-
tion, we reported that the percentages of several bacteria at the family and genus levels were altered in TSOD 
mice, a spontaneous model of metabolic syndrome, which led us to conclude that TSOD mice had their own 
microbial signature, called the TSOD microbiome. As an important finding, this TSOD microbiome occurred 
independently of diet, which is consistent with findings in the report of Ley et al.19 and suggests that the TSOD 
microbiome was related to metabolic syndrome.

Because of our previous report showing that coffee and its components prevented the development of NASH 
pathological characteristics in TSOD mice36, for this study we investigated the hypothesis that coffee or its com-
ponents can affect the gut microbiome and SCFA profile in TSOD mice and thereby improve hepatic inflamma-
tion. Here, caffeine and chlorogenic acid treatments partly restored the disrupted plasma SCFA profile in TSOD 
mice. Because we fed all mice standard chow throughout the study, the determinant of the SCFA profile was pre-
sumably the composition of the gut microbiota in these groups. Thus, our results suggest that although the effect 
of consumption of caffeine or chlorogenic acid on the gut microbiome is not accompanied by marked changes, 
these coffee components might repair the disrupted SCFA profile by modulating the gut microbial community. 
Additional experiments with a number enough of mice to allow possible correlations would be needed to evaluate 
this possibility.

Daily intake of coffee or its components did not improve the gut dysbiosis in TSOD mice. Rather, we found 
that the percentages of six microbial genera changed in these mice. These genera were completely different from 
genera that were altered in TSOD mice in our previous report31. Among them, we found that the percentages 
of Blautia and Coprococcus in the Firmicutes phylum were higher in the chlorogenic acid-treated group than 
in the untreated group. The percentage of bacteria in these genera reportedly increased in obese individuals in 
a Japanese population44. Another study also reported an increased occurrence of Blautia in rats fed a high-fat 
diet37. These data suggest a potential role of these genera in the development of obesity. However, the occur-
rence of Coprococcus correlated with fasting levels of gastrointestinal polypeptide in obese women38. Because 

Phylum Class Order Family Genus TSNO TSOD
TSOD + 
caffeine

TSOD + 
chlorogenic acid TSOD + coffee

Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium
0 0 0.000795 0 0

0–0 0–0 0.000745–
0.002314* 0–0.000227 0–0

Firmicutes Bacilli Bacillales Staphylococcaceae Jeotgalicoccus
0 0.0000394 0.001192 0 0

0–0 0–0.00008425 0.000883–
0.00217* 0–0.000426 0–0.000423

Firmicutes Bacilli Lactobacillales Aerococcaceae Facklamia
0 0 0.001302 0.000194 0

0–0 0–0 0.000298–
0.001325* 0.000114–0.000851 0–0

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia
0.000728 0.000281 0.000447 0.001589 0.000317

0.0001965–
0.001801

0.0001435–
0.000363

0.000289–
0.001237

0.000872–
0.002894* 0–0.00053

Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus
0.005388 0.004505 0.006094 0.01347 0.003339

0.002686–
0.006538

0.001799–
0.01095

0.004618–
0.008535 0.01283–0.01439* 0.002009–

0.004507

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella
0.004087 0.004174 0.002031 0.001447 0.0007402

0.002854–
0.006105

0.002591–
0.00574

0.001736–
0.002681 0.001022–0.002906 0.0006629–

0.001669**

Table 1.  Bacteria whose percentages changed significantly in 24-wk-old TSOD mice that were treated with 
caffeine, chlorogenic acid, or coffee. Values are medians and interquartile ranges of the percentages. FDR 
adjusted Q-value of 0.05 was considered statistically significant. Q values versus untreated TSOD mice were 
calculated by the Benjamini and Hochberg method and the results were considered statistically significant when 
Q < 0.05. *Q < 0.05, **Q < 0.01 versus non-treated TSOD mice.
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gastrointestinal polypeptide is known to stimulate insulin secretion39, Coprococcus may protect against metabolic 
syndrome. The percentage of Blautia bacteria reportedly increased in humans after consumption of whole grain, 
which may contribute to the anti-inflammatory effect of whole grain40. As an intriguing result, the daily intake of 
chlorogenic acid in the present study improved the hepatic lobular inflammation of TSOD mice without altering 
the body weight. Because Blautia was reportedly involved in acetate production45, the increased abundance of 
Blautia may contribute to the increased plasma concentration of acetate. However, given that the plasma SCFA 
profile depends on the whole microbial community30, identifying a single bacterial species responsible for the 
alteration of the quantity or type of plasma SCFAs in caffeine-treated and chlorogenic acid-treated groups will 
be difficult. The involvement of Prevotella species, which are Gram-negative rods, is relatively well-documented. 
A decrease in the percentage of Prevotella species was associated with improvement in endotoxemia and sys-
temic inflammation in diabetic mice42. The abundance of Prevotella also reportedly increased in obese humans43. 
In agreement with these reports, the percentage of Prevotella decreased in our coffee-treated TSOD mice. As 
Prevotella has been implicated in degradation of dietary fibers46, the abundance of this bacteria might depend on 
the brand of coffee. Involvement of these genera in Table 1 in the pathology of metabolic syndrome remains to 
be elucidated.

Figure 5.  Analysis of plasma SCFAs in caffeine-, chlorogenic acid-, and coffee-treated groups and in age-
matched TSNO mice. (a–d) Concentrations of the major SCFAs (a, acetate; b, propionate; and c, butyrate) and 
the ratio of acetate to propionate plus butyrate (d). (e–h) The concentrations of the minor SCFAs (e, valerate; 
and f, hexanoate) and the concentration of total plasma SCFAs (h). The Concentration of the precursor of 
SCFAs, lactate, was also determined (g). Data are means ± SEM (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001 versus non-treated TSOD mice.
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The mechanisms by which daily consumption of coffee improved liver lobular inflammation remain to be 
clarified. Although coffee contains caffeine and chlorogenic acid, daily consumption of coffee did not fix the 
disrupted TSOD mouse-specific SCFA profile. The altered gut microbiota at the genus level in the coffee-treated 
group could contribute to the improvement in lobular inflammation, but we cannot exclude the possibility that 
pathways other than those mediated by gut microbiota also contributed to the protective effects of coffee. Several 
coffee components reportedly act as antioxidants by scavenging free radicals,32,34 which may promote the devel-
opment of NAFLD47,48. Furthermore, coffee reduced hepatic concentrations of proinflammatory cytokines such 
as tumor necrosis factor α and interferon γ and increased those of anti-inflammatory cytokines such as interleu-
kins 4 and 10 in an animal model of steatohepatitis, which led to reduced liver damage49. Caffeine also has hepato-
protective effects50,51. These lines of evidence strongly suggest that coffee reduced liver lobular inflammation via 
multiple pathways. Coffee includes dietary fibers that can be fermented by gut microbiota to produce acetate, 
propionate, and butyrate52. However, in the present study, we observed no alterations in the type and quantity of 
plasma SCFAs in the coffee-treated group. Because composition of coffee differs by brand, this discrepancy might 
be due to the coffee brand used.

In summary, we showed that coffee and its components improved liver lobular inflammation in a spontaneous 
mouse model of metabolic syndrome, affected also the gut microbial community and, in the case of the coffee 
components additionally influenced plasma SCFA profile. Some of the bacterial genera identified could be fur-
ther studied as potentially protective against the pathology of metabolic syndrome particularly that is associated 
with inflammation. Additional studies with more animals in each group and a longer consumption period are 
necessary to investigate the effects of coffee and its components on various pathological features of metabolic 
syndrome. Studies of patients are also a challenge for the future.

Methods
Animals.  Male twelve TSOD mice and three TSNO mice were purchased from the Institute for Animal 
Reproduction (Ibaraki, Japan). We reared two or three mice in plastic cages that were kept in a non-barrier-main-
tained animal room under the following conditions: 23 ± 2 °C, 50 ± 10% relative humidity, and a 12/12-h light/
dark cycle. All mice were fed the basal diet MF (Oriental Yeast Co., Ltd., Tokyo, Japan) and had access to chlo-
rinated water ad libitum. Eight-week-old TSOD mice were given coffee (Nescafe Gold Blend Gold Label; Nestle 
Japan, 0.5%) or its components, caffeine (INDOFINE Chemical Company, Inc., Hillsborough, NJ, 0.012%) or 
chlorogenic acid (INDOFINE Chemical Company, Inc., 0.0195%), by mouth, for 16 wk (referred to as the cof-
fee-treated group, caffeine-treated group, and chlorogenic acid-treated group, respectively). Each group contained 
three mice. The content of caffeine or chlorogenic acid corresponded to that in 0.5% coffee. Coffee and its compo-
nents were administered by dissolving the test substance in self-pumped water containing sodium hypochlorite. 
The animals had free access to these liquids. No differences were noted in the volume of liquids that the animals in 
the different groups drank throughout the study. The intake amounts of coffee and its components in the present 
study fell within the range of amounts recommended by the European Food Safety Authority. This study was per-
formed according to the “Consensus Author Guidelines on Animal Ethics and Welfare” specified by the Institute 
for Animal Reproduction (Ibaraki, Japan), which were developed and published in 2010 by the International 
Association of Veterinary Editors. All experimental protocols were also approved by the animal research commit-
tee of the Institute for Animal Reproduction.

Analysis of the gut microbiome.  We used the isopropanol precipitation technique to extract DNA from 
fecal samples. In this method, we suspended mouse feces (30–40 mg) in phosphate-buffered saline (19× volume) 
and homogenized the sample with the FastPrep-24 homogenizer (MP Biomedicals, Santa Ana, CA). A sample 
that contained 250 μL of TE buffer (200 mM Tris-HCl, 80 mM ethylenediaminetetraacetic acid, pH 9.0), 500 µL 
of TE-saturated phenol (Nippon Gene Co., Ltd., Tokyo, Japan), 50 µL of 10% sodium dodecyl sulfate, and 0.3 g of 
glass beads (0.1 mm diameter; As-One Co., Ltd., Osaka, Japan, #BZ-01) was added to 200 μL of the homogenized 
samples of feces. These samples were homogenized again for 30 s with the FastPrep-24 homogenizer, and then 
they were centrifuged at 15,000 rpm at 4 °C for 5 min. We added a 400-μL sample of a mixture of phenol, chlo-
roform, and isoamyl alcohol (25:24:1) (Nippon Gene Co., Ltd.) to the supernatant, vortexed it for 10 s, and cen-
trifuged it at 15,000 rpm at 4 °C for 5 min. We added 250 μL of isopropanol obtained from Wako Pure Chemical 
Industries Ltd. (Osaka, Japan) to 250 μL of the supernatant, mixed it by flipping, and kept the mixture at room 
temperature for 10 min, after which we centrifuged the sample at 15,000 rpm at room temperature for 10 min. 
We removed the supernatant and washed the resultant pellet with 400 μL of ice-cold ethanol. We air-dried the 
extracted DNA and then dissolved it in 2000 μL of TE buffer (pH 8.0). We amplified the V3-V4 region of the 
bacterial 16 S rRNA gene by means of PCR with the TaKaRa Ex Taq HS Kit (TaKaRa Bio, Shiga, Japan) and 
the Tru357F primer set (5ʹ-CGCTCTTCCGATCTCTGTACGGRAGGCAGCAG-3ʹ) and Tru806R primer set 
(5ʹ-CGCTCTTCCGATCTGACGGACTACHVGGGTWTCTAAT-3ʹ). We concentrated the DNA by amplifying 
it, in triplicate, via PCR: 94 °C preheating for 3 min, and then 30 cycles of denaturation at 94 °C for 30 s, annealing 
at 50 °C for 30 s, extension at 72 °C for 30 s, and a terminal extension at 72 °C for 5 min. We then amplified the 
16 S rRNA gene amplicons with a 2nd primer set that was adapted for the Illumina MiSeq (Illumina, San Diego, 
CA) as previously described53. DNA was amplified according to the above-mentioned thermal cycling pattern, 
except that the cycle number was 15, and the 2nd amplified PCR products were purified by using a QIAquick 
PCR Purification Kit (Qiagen, Hilden, Germany), after which purified PCR products were quantified with a 
Quant-iT PicoGreen dsDNA Assay kit (Thermo Fisher Scientific, Carlsbad, CA). After removing primer-dimer 
by using the QIAquick PCR Purification Kit, sequences of the libraries were determined by means of an Illumina 
MiSeq instrument with a MiSeq v3 Reagent kit (Illumina, San Diego, CA). Data were analyzed as previously 
described54 with several modifications. The Illumina paired-end reads that passed the quality filters were com-
bined by using the fastq-join script in ea-utils (ver. 1.1.2–537)55. Potential chimeric sequences were excluded by 
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using reference-based chimera checking in USEARCH (ver. 5.2.32)56 and the gold database (http://drive5.com/
otupipe/gold.tz). Non-chimeric sequences were analyzed with the QIIME software package (version 1.7.057,58) 
by using closed-reference operational taxonomic unit (OTU) picking against 16S rRNA genes of 15 species of 
predominant human gut-derived microbiota and B. longum BB536.

Histopathological and immunohistochemical analyses.  We recorded the body weights at the start 
and at the end of the experimental period. Immediately after the animals were killed, we rapidly excised the liver 
and visceral fat and rinsed them in ice-cold saline. We fixed the excised organs with 10% neutral-buffered for-
malin and embedded them in paraffin for histological analysis. We stored some liver samples at −80 °C. We cut 
formalin-fixed, paraffin-embedded liver tissue into 4-μm-thick serial sections and stained them with hematox-
ylin and eosin. We also stained a frozen 5-μm-thick section with Sudan IV and hematoxylin counterstaining for 
lipid analysis. We scored the liver histology by using a semiquantitative method: steatosis (scored 0–3), lobular 
inflammation (scored 0–3), and hepatocellular ballooning (scored 0–2), as described in our previous report9. We 
scored three representative areas in each section and used the averages as the final scores. The sum of the scores of 
steatosis, lobular inflammation, and hepatocellular ballooning was presented as the NAFLD activity score (NAS).

Analysis of SCFAs in plasma.  We performed SCFA analysis for nine analytes. We purchased acetate, propi-
onate, lactate, butyrate, isobutyrate, valerate, isovalerate, pivalate, and hexanoate from Wako Pure Chemical Co. 
We obtained propionate-d6, butyrate-d5, valerate-d9, and hexanoate-d11 from Sigma-Aldrich Co. (St. Louis, MO) 
and CDN Isotopes Co. (Quebec, Canada) for use as internal standards (IS). We purchased triphenylphosphine 
(TPP), 2,2-dipyridyl disulfide (DPDS), and 2-picolylamine from Tokyo Kasei Co. (Tokyo, Japan). We used meth-
anol to prepare these stock solutions.

We used the Waters Acquity H Class ultra-performance liquid chromatography (UPLC) system (Waters 
Co., Milford, MA). We performed a reverse phase analysis via an Acquity UPLC BEH C18 column (1.7 μm, 
2.1 × 100 mm) at 40 °C, with an injection volume of 5 μL. The mobile phase, which contained solvent A (0.1% 
formic acid in water) and solvent B (0.1% formic acid in methanol), was delivered at a 0.3 mL/min flow rate. We 
used the following gradient elution: B% = 2, 2, 35, 45, and 98 (0, 3, 10, 12, and 14 min). We operated the Waters 
Xevo TQD triple quadrupole mass spectrometer with an electrospray ionization (ESI) source in the positive 
mode, with the following ionization source conditions: capillary voltage, 2.00 kV; cone voltage, 20–70 V; collision 
energy, 10–40 eV; source temperature, 150 °C; and desolvation temperature, 400 °C. The cone gas flow was 50 L/h 
and the desolvation gas flow was 800 L/h, and they were obtained via a nitrogen source (N2 Supplier Model 24 S; 
Anest Iwata, Yokohama, Japan). In view of a previous report describing derivatization of carboxylic acids59, we 
used methanol to dilute mixed SCFAs and IS solutions. We reacted these solutions with 2-picolylamine in DPDS 
and TPP in acetonitrile for 10 min at 60 °C. We removed the reaction mixtures and re-dissolved them in 100 μL of 
methanol/water (80:20, v/v). We used UPLC-ESI-MS/MS to analyze the derivatization solutions (5 μL). We added 
thawed plasma samples to IS and mixed these samples with equal volumes of methanol and QuEChERS (Supel 
QuE PSA (EN) 25 mg), after which they were vortexed vigorously and centrifuged for 5 min at 15,000 rpm. We 
then removed the supernatant and re-dissolved the remaining residue in methanol and derivatized it by using the 
process described above for 2-picolylamine. We then used UPLC-ESI/MS/MS to analyze the samples.

Statistical analysis.  The statistical differences in the body weight, visceral fat, the ratio of Firmicutes to 
Bacteroidetes, and plasma SCFAs between groups were evaluated using one-way analysis of variance followed by 
Dunnett’s test (Fig. 2a,c, Fig. 4b, and Fig. 5), by means of Prism software (GraphPad Software, La Jolla, CA). We 
set the level of significance at P < 0.05. In order to assess whether significant differences occurred in an abundance 
of bacteria, a multiple-comparison procedure that controls the false-discovery rate (FDR) were performed by 
using the Benjamini and Hochberg method. FDR adjusted Q value of 0.05 was considered statistically significant 
(Fig. 3, Fig. 4a, and Table 1).
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