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A B S T R A C T   

Background: During the COVID-19 pandemic there was a plethora of dynamical forecasting models created, but 
their ability to effectively describe future trajectories of disease was mixed. A major challenge in evaluating 
future case trends was forecasting the behavior of individuals. When behavior was incorporated into models, it 
was primarily incorporated exogenously (e.g., fitting to cellphone mobility data). Fewer models incorporated 
behavior endogenously (e.g., dynamically changing a model parameter throughout the simulation). 
Methods: This review aimed to qualitatively characterize models that included an adaptive (endogenous) 
behavioral element in the context of COVID-19 transmission. We categorized studies into three approaches: 1) 
feedback loops, 2) game theory/utility theory, and 3) information/opinion spread. 
Findings: Of the 92 included studies, 72% employed a feedback loop, 27% used game/utility theory, and 9% used 
a model if information/opinion spread. Among all studies, 89% used a compartmental model alone or in com-
bination with other model types. Similarly, 15% used a network model, 11% used an agent-based model, 7% 
used a system dynamics model, and 1% used a Markov chain model. Descriptors of behavior change included 
mask-wearing, social distancing, vaccination, and others. Sixty-eight percent of studies calibrated their model to 
observed data and 25% compared simulated forecasts to observed data. Forty-one percent of studies compared 
versions of their model with and without endogenous behavior. Models with endogenous behavior tended to 
show a smaller and delayed initial peak with subsequent periodic waves. 
Interpretation: While many COVID-19 models incorporated behavior exogenously, these approaches may fail to 
capture future adaptations in human behavior, resulting in under- or overestimates of disease burden. By 
incorporating behavior endogenously, the next generation of infectious disease models could more effectively 
predict outcomes so that decision makers can better prepare for and respond to epidemics. 
Funding: This study was funded in-part by Centers for Disease Control and Prevention (CDC) MInD-Healthcare 
Program (1U01CK000536), the National Science Foundation (NSF) Modeling Dynamic Disease-Behavior Feedbacks 
for Improved Epidemic Prediction and Response grant (2229996), and the NSF PIPP Phase I: Evaluating the Effec-
tiveness of Messaging and Modeling during Pandemics grant (2200256).   

1. Introduction 

Forecasting infectious disease epidemics, as with other complex 
systems (e.g., weather), is hampered by pervasive uncertainty. Unlike 
weather forecasts, however, the trajectory of an epidemic can affect the 

future dynamics as people respond to risk [1]. A plethora of dynamical 
forecast models was created during the COVID-19 pandemic, but their 
ability to effectively describe future trajectories of cases and hospitali-
zations was mixed, with models producing both under- and over-
estimates [2]. A major challenge for these models in evaluating future 
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trends was forecasting the behavior of individuals, which was largely 
incorporated exogenously through changes in public health guidance. 
While public health guidance influenced behavior, several other 
endogenous factors, including age, gender, socioeconomics, health and 
wellbeing, and trust influenced risk perception and ultimately the 
behavior of individuals [3,4] but were largely lacking from models [5]. 

Mathematical models of disease have been important drivers of 
public policy since the eighteenth century; however, the incorporation 
of endogenous behavior driven by risk perception is a relatively recent 
phenomenon [1,6–9]. Behavior is endogenous to a model when the 
parameter(s) associated with behavior is a function of another time- 
dependent variable within the model. Including behavior endoge-
nously can enhance the utility of a model by providing a mechanism for 
how behavior varies in response to both control measures as well as the 
epidemic dynamics. In turn, the behavioral response can alter the 
epidemiological dynamics within the simulation by changing the disease 
state of individuals, modifying parameters, or modifying the contact 
structure of a network [6]. Models incorporating this recursive element 
can project periodic waves of infection with multiple epidemic peaks, 
which more closely matches real-world data [10–12]. 

Incorporation of endogenous behavior in disease models prior to the 
COVID-19 pandemic has largely been restricted to models of HIV and 
vaccination choices [6], though there has been some extension of 
prevalence-dependent behavior to other domains [6–9], such as influ-
enza [13]. Increasingly, there is awareness of the importance of 
endogenous behavior in models of COVID-19 [14]. To understand the 
extent to which endogenous behavior was incorporated into COVID-19 
models, we conducted a systematic scoping review of the mathemat-
ical approaches for including endogenous behavior. Models in which 
behavior was included as an exogenous input variable or changed at 
fixed points of policy change were not considered. The goal of this 

review is to inform researchers and decision-makers on the importance 
of incorporating endogenous behavior in dynamic models to increase 
their use in future outbreaks. 

2. Methods 

We conducted a search of the literature for studies that used models 
of COVID-19 transmission dynamics that included human behavior as an 
endogenous variable. We did not place any restrictions on the language 
or date published. The following sections describe the search strategy, 
selection criteria, inclusion and exclusion criteria, and data extraction 
and analysis. 

2.1. Search strategy 

A PubMed search was conducted in July 2022 using a comprehensive 
search strategy comprised of three concepts: 1) dynamic modeling, 2) 
COVID-19, and 3) human behavior. Keywords were searched using the 
‘Text Word’ field, which includes all words in the title, abstract, and 
MeSH terms. Keywords and subject headings were combined using the 
OR Boolean operator for each concept, and the concepts were combined 
using the AND Boolean operator (See Supplementary Table 1 for the 
complete search strategy). The search was re-run in June 2023 to cap-
ture studies published after July 2022. 

2.2. Selection criteria 

Search results were imported into the Covidence Platform [15], and 
the Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses (PRISMA) guidelines for scoping reviews were followed [16]. 
Six reviewers (AH, AT, FH, NK, SP, and GL) conducted title and abstract 

Fig. 1. PRISMA Flow Chart.  
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screening as well as full-text screening using a customized screening tool 
(Supplementary Table 2). Title and abstract screening was conducted 
using Covidence, and information gathered during full-text screening 
was compiled in an Excel spreadsheet. One reviewer was needed to 
screen each study. If a reviewer was unclear on the eligibility of a study, 
a second reviewer was consulted. 

2.3. Inclusion and exclusion criteria 

We included studies that modeled a COVID-19 outcome, such as 
cases, deaths, hospitalizations, or the basic or effective reproduction 
number and excluded studies of other infectious diseases. We restricted 
analysis to studies that used dynamic models (i.e., used systems of 
equations to capture the epidemiological dynamics of disease). These 
include compartmental models, agent-based models (ABMs), network 
models, system dynamics models, and Markov chain models (Supple-
mentary Table 3). We excluded conceptual models without mathemat-
ical equations and statistical and machine learning models which only 
use prior data and exogenous factors to predict future burden. We 
included studies that incorporated behavior endogenously as a function 
of another time-dependent variable within the model. Studies that 
included human behavior simply as an exogenous longitudinal input 
variable (e.g., cellphone mobility data) were excluded, as were studies 
that modeled behavioral responses by adjusting parameters exogenously 
at fixed time points based on policy changes. We only considered orig-
inal research articles published in academic journals or pre-print plat-
forms, such as medRxiv, and we excluded letters, protocols, abstracts, 
conference proceedings, and reviews. 

2.4. Data extraction and analysis 

During the full-text screening, seven reviewers (including HD) read 
each article in-depth and collated extracted data in an Excel spreadsheet 
later used for counting statistics. We recorded data on model type, 
approach to endogenous behavior, compartments or states, population 
scale and mixing, randomness, time-step and simulation length, spatial 

information, modeled outcomes, parameterization, forecast validation, 
sensitivity analyses, and health equity considerations. Each article was 
read by at least one reviewer, and a second reviewer was consulted to 
resolve uncertainties. 

2.5. Role of the funding source 

This work was funded by the Centers for Disease Control and Pre-
vention (CDC) MInD-Healthcare Program (grant number 
1U01CK000536) and the National Science Foundation (NSF) Modeling 
Dynamic Disease-Behavior Feedbacks for Improved Epidemic Prediction 
and Response grant (award number 2229996). The funders had no role 
in the design, analysis, decision to publish, or preparation of the 
manuscript. 

3. Results 

The PubMed search resulted in 6344 articles, among which 2559 
duplicates were removed, leaving 3785 for title and abstract screening 
(Fig. 1). One hundred ninety-six studies were selected for full-text 
screening, among which 104 studies did not meet inclusion criteria. 
Twenty were excluded because the model was not dynamic, 23 were 
excluded because the outcomes modeled did not pertain to COVID-19, 
and 58 were excluded because the behavior element was not endoge-
nous. Full-text versions were unavailable for two studies, and one paper 
was a pre-print of an already included study. Ninety-two studies met all 
inclusion criteria. Full results from data extraction are presented in the 
supplementary file Included_Studies_Dialogues.xlsx, and a summary is 
provided in the following sections and in Table 1. 

For the purposes of this study, “model type” refers to the type of 
model, for example, compartmental, ABM, or Network (See Supple-
mentary Table 3 for a general overview of model types). Eighty-nine 
percent of studies (N = 82) used a compartmental model, 11% (N =
10) used an ABM, 15% (N = 14) used a network model, 7% (N = 6) used 
a system dynamics model, and 1% (N = 1) used a Markov chain model 
(Fig. 2). Nineteen percent of studies (N = 18) used hybrid models of two 

Table 1 
Summary of Extracted Data by Approach to Endogenous Behavior   

All studies  
92 (100%)* 

Feedback Loop  
66 (72%)* 

Game/Utility Theory  
25 (27%)* 

Information/ 
Opinion Spread  

8 (9%)* 

Model Type     
Compartmental 82 (89%) 57 (86%) 23 (92%) 6 (75%) 
ABM 10 (11%) 8 (12%) 3 (12%) 2 (25%) 
Network 14 (15%) 9 (14%) 3 (12%) 6 (75%) 
System Dynamics 6 (7%) 5 (8%) 0 (0%) 2 (25%) 
Markov 1 (1%) 1 (2%) 0 (0%) 0 (0%) 
Effect of Behavior Change     
Modifies parameter(s) 56 (61%) 42 (64%) 13 (52%) 5 (63%) 
Changes state 27 (29%) 15 (23%) 12 (48%) 2 (25%) 
Modifies network structure 14 (15%) 11 (17%) 1 (1%) 1 (13%) 
Decision Maker     
Individual 87 (95%) 60 (91%) 25 (100%) 8 (100%) 
Central planner 18 (20%) 12 (18%) 5 (20%) 2 (25%) 
Population Heterogeneity      

30 (33%) 24 (36%) 6 (24%) 3 (38%) 
Spatial Heterogeneity      

9 (10%) 8 (12%) 1 (4%) 0 (0%) 
Stochasticity      

37 (40%) 24 (36%) 10 (40%) 8 (100%) 
Data fitting for parameterization     

63 (68%) 49 (74%) 15 (60%) 2 (25%) 
Compared forecasts to real-world data    

23 (25%) 21 (32%) 2 (8%) 0 (0%) 
Compared models with and without endogenous behavior  
Sensitivity analysis 34 (37%) 24 (36%) 10 (40%) 3 (38%) 
Data fitting 4 (4%) 3 (5%) 1 (4) 0 (0%)  

* Percentages are not exclusive and expressed vertically; for example, 88% of studies using a feedback loop approach employed compartmental models. 
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or more types, hence percentages sum to over 100, while the rest used a 
single model type. 

Behavior change resulted in three mathematical effects as described 
by Funk et al. 2010 [6] (Fig. 3). These included: i) modifying a model 
parameter (61%, N = 56, e.g., decreasing the transmission rate in 
response to increasing prevalence to simulate protective behaviors 
[17]), ii) changing the disease state of individuals (29%, N = 27, e.g., 
moving to a vaccinated state [18]), and iii) modifying the contact 
structure of the network (15%, N = 14, e.g., decreasing contacts to 
simulate social distancing [19]). Other descriptors of behavior included 
limiting mobility, mask wearing, adhering to restrictions, and unspeci-
fied protective behaviors. Regardless of the terms used to describe 
behavior, we found behavior changes always resulted in one or more of 

the three mathematical effects. 
Behavior change was instigated by individuals in 95% (N = 87) of 

studies (e.g., wearing masks, social distancing, etc.) and by a central 
planner in 20% (N = 18, e.g., forced quarantine, closing schools, etc.). 
Thirty-three percent (N = 30) of studies introduced population hetero-
geneity, usually via age-stratification, and 10% (N = 9) introduced 
spatial heterogeneity (e.g., stratifying by US census block group). Sixty- 
eight percent (N = 63) of studies used data fitting for parameterization, 
and 25% (N = 23) compared forecasted data to real-world data either 
qualitatively (i.e., visual comparison) or with a quantitative metric (e.g., 
Root Mean Square Error). Studies that compared forecasts to real-world 
data after the calibration period matched observed data well regardless 
of the stage of the pandemic. 

Fig. 2. Number of Studies by Model Type. a) Number of studies by model type including overlap from hybrid models (values will sum to over the total number of 
studies). b) Number of studies by model type without overlap (categories are mutually exclusive). 
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Forty-one percent (N = 38) of studies compared the model with 
endogenous behavior to a version of the same model without endoge-
nous behavior. Thirty-four of these studies used sensitivity analyses in 
which parameters associated with dynamic behavior were adjusted, and 
four studies fitted both versions of the model (with and without 
endogenous behavior) to observed data. Introducing endogenous 
behavior often led to a smaller and delayed initial epidemic peak, could 
simulate multiple waves, and matched observed data well upon visual 
comparison regardless of the stage of the pandemic. 

We categorized the method of incorporating behavior into three 
“approaches”: i) feedback loop (72%, N = 66), ii) game theory/utility 
theory (27%, N = 25), and iii) information/opinion spread (9%, N = 8) 

(Figs. 4 and 5). Six percent (N = 6) of studies used more than one 
approach while the rest used a single approach (Fig. 5). Approaches by 
model type and effect of behavior are presented in Figs. 6 and 7, 
respectively. The following sections describe each approach for 
including endogenous behavior in models of COVID-19 transmission 
with examples from studies that compared simulations to real-world 
data. 

3.1. Feedback loop 

A feedback loop, or feedback control system, uses the prevalence of a 
disease outcome to stimulate a change in behavior within the model 

Fig. 3. Number of Studies by Effect of Behavior Change. a) Number of studies by effect of behavior change including overlap from hybrid models (values will sum to 
over the total number of studies). b) Number of studies by effect of behavior change without overlap (categories are mutually exclusive). 
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Fig. 4. Number of Studies by Approach to Endogenous Behavior a) Number of studies by approach to endogenous behavior including overlap from hybrid models 
(values will sum to over the total number of studies). b) Number of studies by approach to endogenous behavior without overlap (categories are mutually exclusive). 
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(Fig. 5b). For example, people increase protective behaviors, such as 
vaccination, in response to rising case counts and reduce protective 
behaviors in response to dropping case counts. This approach is often 
referred to as “prevalence-dependent behavior” [20] or “risk-driven 
response” [12]. Feedback loops are relatively straightforward to 
implement and easy to understand. The data needed for this approach is 
usually available in the form of cases, hospitalizations, or deaths. 
Feedback loops allow for high-level analyses without individual-level 
data. In an analysis by Rahmandad et al. 2022, a relatively simple 
compartmental model with a feedback loop performed just as well an 
ensemble of CDC models in forecasting COVID-19 deaths [14]. Feedback 
loops do ignore some important human decision processes, however. 
Behavior is assumed to be protective, and heterogeneity in behavioral 
responses due to demographic factors is often ignored by assuming ho-
mogenous populations. 

In an example of a feedback loop captured by this review, Menda 
et al. 2021 employ a “reactive-SEIRD” model in which the infection rate 
is a function of disease prevalence over time [17]. After calibrating the 
model, they ran simulations from March to September 2020, which 
reproduced multiple epidemic peaks as observed in real-world data from 
the United States. Using Root Mean Square Error (RMSE) and a Tukey 
Mean Difference Plot, they showed that the reactive behavior model had 
less error when compared to a standard SEIRD model without a behavior 
feedback loop. 

3.2. Game theory/utility theory 

Game theory is a technique to model how people make decisions in 
response to each other or some external initiative [21]. Game theoretic 
frameworks are commonly implemented in computational models using 
utility functions, which incorporate costs and benefits of different out-
comes to determine the preferences of the players (i.e., individuals or a 
central authority). In the context of epidemic modeling, this is incor-
porated by having individuals or population groups maximizing their 
utility of engaging voluntarily or complying with mandated restrictions 

given the state of the outbreak (e.g., current case growth or mortality 
rate). Huang and Zue 2022 [22] provide a comprehensive review of 
game-theoretic methods in models of other infectious diseases. 

Game theoretic methods incorporate individual-level decision pro-
cesses that can vary based on population demographics. This approach is 
useful when thinking about tradeoffs; for example, a government 
weighing the health and economic costs and benefits of certain policies. 
Game theory assumes rational decision makers that make optimal de-
cisions, and fine grain data on forces driving decisions are often un-
available. For example, applications of a cost utility approach in 
modeling people’s decision to stay home from work when sick may be 
limited without survey data on worker preferences, which will vary 
depending on demographic factors. Without this information, the utility 
function may not accurately capture the nuances of real-world choices, 
leading to less accurate predictions. These preferences may change over 
time as well, so continual surveys may be needed. 

In the context of COVID-19, Jovanović et al. 2021 use a hybrid model 
in which individuals weigh the costs and benefits of getting vaccinated 
based on local information (infected and immune nearest neighbors) 
and global information (total infections within the simulation) [18]. 
Vaccination payoff and anti-vaccination payoff are modeled as functions 
of these information sources in the vaccination game, resulting in in-
dividuals changing their vaccination state. 

3.3. Information/opinion spread 

In models of information or opinion spread, an individual’s behav-
ioral susceptibility to infection is affected by opinions or attitudes ac-
quired from others in the population. Factors affecting behavior may 
include anti-vaccine views, compliance with government policies, 
emotional state, and risk awareness. Epstein et al. 2008 [23] refer to this 
approach as “coupled contagion” in a model in which fear, as well as a 
disease, spreads throughout a population [23]. In these models, indi-
vidual behavior is influenced by a mixture of information reflecting the 
actual state of the epidemic (e.g., case counts) and information that may 

Fig. 5. Three Approaches of Incorporating Endogenous Behavior in COVID-19 Transmission Models. Each box illustrates a simplified expression and can be 
employed in the states of compartmental, network, or agent-based models. 
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not be reflective of the epidemic at all (e.g., opinions of neighbors). 
Unlike in feedback loops and game theoretic approaches, information/ 
opinion spread models can include irrational behavior. For example, 
choosing not to get vaccinated due to anti-vaccine views among 
neighbors may increase health burden both locally and globally. Infor-
mation/opinion spread models may be useful in modeling misinforma-
tion and superspreading events. 

In the hybrid model by Guo et al. 2021, adoption of NPIs is deter-
mined by individuals’ emotional state (indifferent, worried, afraid, and 
numb) [24]. The rate at which individuals transfer between emotional 
states depends on the “concern” variable which is dynamically influ-
enced by local and global information about the epidemic. They cali-
brated their model using infection counts from six cities over the first 40 
days of the pandemic, demonstrating a good fit between their model and 
the data. 

4. Discussion 

During the COVID-19 pandemic, public health policy makers and 
officials relied heavily on mathematical models of disease transmission 

that predicted epidemic spread to inform decision-making. While many 
models incorporated human behavior exogenously, either by using 
longitudinal input data (e.g., cellphone mobility data) or by changing 
parameters at fixed time points of policy change, these approaches were 
often suboptimal in capturing the dynamics of disease [14], especially 
after the first epidemic peak. For example, correlations between COVID- 
19 case counts and mobility data proved to be weak after the first wave 
of the pandemic [25]. Similarly, trying to predict the extent and timing 
of future public health restrictions is difficult and this cannot capture 
future adaptations in human behavior to disease spread. In contrast, 
modeling behavior endogenously using dynamic parameters attempts to 
capture the fluctuating nature of human behavior in response to a 
continuously changing epidemic [11] and has the potential to simulate 
more accurate depictions of disease burden. This review aimed to cap-
ture models that included an adaptive behavior element in the context of 
COVID-19 transmission. We categorized studies into three main ap-
proaches, including feedback loops, game theory/utility theory, and 
information/opinion spread. 

Most studies in this review employed a feedback loop with a 
compartmental model in which the behavior change modified a model 

Fig. 6. Approach to Endogenous Behavior by Model Type.  
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parameter. Compartmental models have a long history in infectious 
disease modeling and making the transmission parameter a function of a 
disease outcome (cases, deaths, etc.) is relatively straightforward and 
does not require additional data on behavior or preferences. Researchers 
have been proposing this method for years in response to past epidemics 
[6–9], such as the H1N1 influenza epidemic [13], in which reactive 
human behavior was an important driver of disease spread. However, 
relatively few models in the CDC influenza forecasting hub [26] or the 
COVID-19 hubs [27,28] use this approach. 

Other approaches to endogenous behavior and model types can be 
more complicated and need finer grain data, which may explain why 
they were not represented as much in our review. Game/utility theory 
approaches benefit from survey data on player preferences, but such 
data may be difficult to collect from a representative sample. Network 
models may be particularly suited to the information/opinion spread 
approach where a social network is required within which to transmit 
information. However, generating a realistic contact network, especially 
one that is geographically realistic, can be very involved. ABMs can 
capture demographic and geographic heterogeneity better than 
compartmental models given their ability to assign attributes to indi-
vidual agents, but this can be computationally expensive. System dy-
namics models are often very complex with many assumptions that are 
difficult to validate. Similarly, adding complexity with a Markov chain 
model may not be necessary when a compartmental model performs just 
as well. 

Variability in model design, target population, and reporting made 
comparing the performance of models in this review difficult. Thus, we 
were unable to prescribe the most effective method or most relevant 
behavior to embed. Several studies compared versions of their model 
with and without endogenous behavior, usually via sensitivity analyses 
in which behavior parameters were adjusted or “turned off”. Almost all 
models that conducted parametric analysis in this way found that sim-
ulations with endogenous behavior more closely matched real-world 
data. The incorporation of endogenous behavior often led to a reduced 
and delayed initial peak followed by periodic waves of disease burden. 
For example, in Rypdal et al. 2020, changing parameters associated with 
intervention fatigue impacted the magnitude and frequency of multiples 
peaks [29]. Sensitivity analyses are useful to describe how endogenous 
behavior impacts simulated results, but they are not sufficient to 
quantify model performance against real-world outcomes. In order to 
claim that the inclusion of endogenous behavior brings added value, 
both models (with and without endogenous behavior) must separately 
be calibrated to the same dataset to demonstrate that the model with 
endogenous behavior fits the data better. Only four studies in this review 
calibrated both versions of their model to the same dataset. Thus, we 
cannot conclude that models with endogenous behavior outperform 
models without endogenous behavior (e.g., models with exogenous 
behavior) from studies in this review. 

While to some extent the choice of method is dependent on data 
availability, resources and time constraints of the modeling team, the 

Fig. 7. Approach to Endogenous Behavior by Effect of Behavior Change.  
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model type, and the behavior modeled, a process to validate different 
mechanisms of embedding endogenous behavior is urgently needed to 
prepare for the next pandemic. A standardized reporting protocol, such 
as the EPIFORGE checklist [30], will help when comparing models to 
better understand the different facets of behavior and how they impact 
disease dynamics. Furthermore, while some data that could potentially 
drive behavior change may be readily available, such as local case/ 
hospitalization counts, investments are needed to develop new data 
streams that can aid model development and provide context during a 
crisis. 

Understanding how heterogeneity in human behavior during infec-
tious disease outbreaks is another crucial area that many of the models 
examined did not account for. Only 33 % of studies in our analysis 
included population heterogeneity by stratifying populations based on 
demographic factors. Heterogeneity in response to disease outbreaks can 
be highly dependent on social stratifiers, such as age, race, ethnicity, 
class, education level, geographic location, ability, and sexual orienta-
tion [31]. Incorporating these factors in models more accurately rep-
resents real-world disease dynamics with regards to behavior and 
differential health outcomes. This is particularly important for lower 
socioeconomic populations (e.g., individuals without savings or lacking 
telework options) that often must make important tradeoffs between 
health and financial security. Not including how populations may differ 
in their perception and response to an epidemic undermines our ability 
to evaluate policies that take various dimensions of well-being into ac-
count. Furthermore, the lack of demographic, and particularly socio-
economic differences, limits the ability to assess equitability of policy 
options, including distributional consequences across socioeconomic 
groups. Including social heterogeneity in models can help identify 
complex interactions among subgroups and can provide insight into the 
impact that varying groups have on the spread of diseases and adoption 
of health-related behaviors. 

Our inclusion criteria captured a substantial number of COVID-19 
models; however, this review is not exhaustive and has some limita-
tions. First, we excluded models of other infectious diseases for which 
human behavior is an important component impacting transmission. 
Second, our last search was run in June 2023, and our review does not 
include studies published after this date. Third, we only searched one 
database and only required one reviewer to screen each study. Fourth, 
we excluded unpublished models; many COVID-19 modeling efforts 
were not published but played an important role in public health deci-
sion making during the pandemic. To address this limitation, we 
reviewed models in the USA CDC Forecasting and Scenario Hubs (N =
21) and the European Forecasting Hub (N = 61). We found five models 
in the USA CDC efforts that included endogenous behavior in model 
design. Finally, we did not exclude studies if they employed a model 
from another included study; therefore, some studies may use modified 
versions of the same model. Despite these limitations, we believe this 
review represents COVID-19 modeling efforts adequately enough to 
summarize different approaches for incorporating endogenous behavior 
in COVID-19 models. 

5. Conclusion 

We have more to learn about what exactly drives human behavior in 
infectious disease outbreaks (e.g., fear, altruism, or obedience). Multi- 
disciplinary collaboration between epidemiologists, economists, math-
ematicians, psychologists, and social scientists is needed to build the 
next generation of models that more accurately represent real-world 
dynamics. We must think creatively about the kinds of data needed to 
capture human behavior in order to build robust models with justifiable 
assumptions. Now is the time to invest in building capacity for these 
models to prepare for and better respond to the next pandemic. 
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