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As a traditional Chinese herbal medicine, Panax ginseng C. A. Meyer (PG) has

preventive and therapeutic effects on various diseases. Ginsenosides are main

active ingredients of PG and have good pharmacological effects. Due to the

diversity of chemical structures and physicochemical properties of

ginsenosides, Currently, related studies on PG monomer saponins are mainly

focused on the cardiovascular system, nervous system, antidiabetic, and

antitumor. There are few types of research on the toxin treatment,

predominantly exogenous toxicity. PG and its monomer ginsenosides are

undoubtedly a practical option for treating exogenous toxicity for drug-

induced or metal-induced side effects such as nephrotoxicity,

hepatotoxicity, cardiotoxicity, metal toxicity and other exogenous toxicity

caused by drugs or metals. The mechanism focuses on antioxidant, anti-

inflammatory, and anti-apoptotic, as well as modulation of signaling

pathways. It summarized the therapeutic effects of ginseng monomer

saponins on exogenous toxicity and demonstrated that ginsenosides could

be used as potential drugs to treat exogenous toxicity and reduce drug

toxicities.
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Introduction

Panax ginseng C. A. Meyer (PG) has been used worldwide as a traditional medicine

for thousands of years; numerous studies have shown that ginsenosides are the main

active ingredients of PG. Currently, more than 150 natural ginsenosides have been

isolated and identified from various parts of ginseng herbs (Christensen, 2009). According

to the different skeletons of ginsenoside glycosides, ginsenosides can be divided into three

saponins, protopanxdiol, protopanaxtriol and oleanolic acid (Wang et al., 2006). There

are numerous reports on the biological effects of ginsenosides, such as immune

enhancement (Bai et al., 2019), hepatoprotection (Fan et al., 2019), neuroprotection

(Ying et al., 2019), anti-inflammatory (Chen et al., 2021), anti-tumour (Liu and Fan,
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2019), and ginsenosides also reverse the drug resistance of

tumour cells caused by other chemotherapy drugs (Meng

et al., 2019). Different ginsenoside monomers have different

functions. For example, ginsenoside Rh2 can inhibit the

metastasis of cancer cells to other organs (Shi et al., 2014);

ginsenoside Rg1 has the effect of excitation of the central

nervous system and inhibition of platelet agglutination (Sun

et al., 2016); ginsenoside Rg3 can inhibit the synthesis of

proteins and adenine nucleoside triphosphate (ATP) in cancer

cells during mitotic prophase and delay the proliferation and

growth of cancer cells (Jiang et al., 2017).

Many western drugs are effective in the therapy

treatment of diseases and play an essential role in the

clinical management of tumors in particular, but their

limitations are also evident; for example, the commonly

used oncological drug Doxorubicin (DOX) causes

cardiotoxicity. The items that contacted by us in our daily

life may also contain toxic ingredients, for example,

Trimethyltin in plastic stabilizers can cause neurotoxicity,

and the presence of toxicity in metals such as iron and

aluminum can also induce disease. Therefore, it is crucial

to discover drugs from natural plants to mitigate drug

toxicity and treat exogenous toxicity.

This paper reviewed the effects of ginsenosides on the

treatment of exogenous toxins, and we hope that this review

will lay the foundation for an in-depth study of biochemical

mechanisms and pharmacological impact of ginsenosides

and provide a reference for further development and

utilization of ginsenosides in the treatment of exogenous

toxicity.

Effects of ginsenosides on
cardiotoxicity

Tumours and cardiovascular diseases have become the top

two causes of death in China’s urban population (Ma et al.,

2020). In addition, it has been reported in the literature that the

two disciplines are cross-cutting and that some long-term

surviving malignant tumour patients may eventually die

from heart disease rather than tumour, and heart disease has

become the leading cause of non-cancer-related death in

tumour patients (Zaorsky et al., 2017). In clinical practice,

some antitumor therapies can also cause cardiotoxicity.

Anthracyclines, alkylating agents, 5-FU and paclitaxel, are

common chemotherapeutic drugs with cardiotoxicity, which

can cause cardiovascular diseases such as heart failure,

coronary artery lesions, hypertension and thrombosis (Luis

Zamorano et al., 2016). Although there are many drugs for

clinical use in oncology, current information on the exogenous

cardiotoxic effects of ginsenosides for the treatment of the heart

is focused on the cardiotoxicity caused by DOX and

Trastuzumab (TZM).

Although DOX is an anthracycline antibiotic with

powerful anti-tumor effects, it causes cumulative and dose-

dependent cardiotoxicity, which leads to an increased risk of

death in cancer patients. Thus, its clinical application is

limited (Zhao et al., 2018, 2; Rawat et al., 2021).

Ginsenosides protect the heart from various cardiovascular

diseases by regulating multiple cellular signaling pathways.

Ginsenoside Rg1 ameliorates DOX-induced cardiac

insufficiency by inhibiting endoplasmic reticulum stress

and autophagy (Xu et al., 2018). Rg1 increases

phosphorylation of Akt and Erk, increases the ratio of Bcl-

2 and Bax, and reduces cytochrome c release in mitochondria,

thereby protecting the heart from DOX-induced apoptosis

(Zhu et al., 2017). Ginsenoside Rg2 attenuates DOX-induced

apoptosis by upregulating Akt phosphorylation and inhibiting

p53 expression through the PI3K/Akt pathway in

cardiomyocytes (Qiu et al., 2021). In summary, Rh2 may

become a new protective agent in the clinical application of

DOX (Wang H. et al., 2012).

Similarly, ginsenosides can achieve cardioprotective effects

by regulating autophagy. Rb1 attenuates DOX-induced

reduction in cardiomyocyte viability and inhibits the

increase in autophagy-related structures, the conversion of

light chain 3-I to light chain 3-II, and the reduction in

p62 protein expression (Li et al., 2017). In addition,

endoplasmic reticulum stress is another cause of cardiac

dysfunction, closely associated with autophagy activation

(Rashid et al., 2015). Echocardiographic and pathological

findings suggest that ginsenoside Rg1 can significantly

reduce DOX -induced cardiotoxicity. Endoplasmic reticulum

stress and inhibition of autophagy may be the mechanism by

which Rg1 ameliorates DOX-induced cardiac dysfunction (Xu

et al., 2018).

TZM is a standard clinical treatment for breast cancer, but it

has significant cardiotoxicity (Koulaouzidis et al., 2021).

Rg2 induces autophagy in human cardiomyocytes (HCMs) by

upregulating the expression levels of (p)-Akt, p-mTOR, beclin 1,

light chain 3 (LC3) and autophagy protein 5 (ATG5), thereby

treating TZM-induced cardiotoxicity (Liu et al., 2021). Liu et al.

(2022) suggested that Rg2 could inhibit TZM-induced cardiac

cytotoxicity. The mechanism might be related to the

downregulation of proapoptotic proteins caspase-3, caspase-9,

and BAX expression, which inhibited TZM-induced apoptosis in

cardiac myocytes.

Effects of ginsenosides on
neurotoxicity and brain toxicity

Ginsenosides attenuate neurotoxicity

Trimethyltin (TMT) is a by-product of the production of

plastic stabilizers. It has been found in domestic water
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supplies, aquatic specimens, and marine environments

(Gomez et al., 2007). TMT is a toxic organotin compound

which selectively induces neurodegeneration in the limbic

system, especially prominent in the hippocampus (Lee

et al., 2016). Ginsenoside Re can against TMT-induced

neurotoxicity through the PI3K/Akt signalling pathway of

IL-6 (Tu et al., 2017). Another study discovered that

Rg3 and Rh2 treat TMT-induced neurodegeneration by

reducing oxidative stress and neuroinflammatory

neurotoxicity (Hou et al., 2018). Hou et al. (2017)

administered a single injection of 2 mg/kg body weight of

TMT to ICR mice after pretreating them with ginsenoside Rd.

Compared with saline-treated controls, Rd was found to act as

a neuroprotective agent to prevent TMT-induced

neurotoxicity. Cadmium (Cd) is a toxic and non-essential

element for humans, which enters and accumulates in

organisms through occupational exposure, contaminated

air, water and food (Huang et al., 2017), Ren et al. (2021)

reported that Rg1 eliminated Cd-induced toxicity and

restored oxidative stress and inflammatory responses, and

accordingly restored behavioural performance in animals,

suggesting that Rg1 has an eliminating effect on Cd-

induced neurotoxicity.

Ginsenosides protect the brain from β-
amyloid-induced toxicity

β-Amyloid (Aβ) aggregates cause complex neurotoxicity and

play a vital role in the progression of Alzheimer’s disease (AD)

(Ho et al., 2015). Prevention of Aβ-induced toxicity could lead to
drug development for Alzheimer’s disease. In a double-

transgenic AD mouse experiment, Yun et al. (2022) found

that ginsenoside F1 exerts its beneficial effects by increasing

insulin-degrading enzyme (IDE) and neprilysin (NEP)

expression, providing scientific evidence regarding the

applicability of Aβ treatment in AD patients. It has been

suggested that Rb1 is likely to protect neurons from Aβ
toxicity through the antioxidant pathway (Qian et al., 2009).

Xie et al. (Xie et al., 2010) pretreated cells with Rb1 for 24 h and

then added Aβ25-35 to the medium for another 24 h. They found

that Rb1 pretreatment inhibited Aβ-induced Reactive oxygen

species (ROS) overproduction and lipid peroxidation, increased

the Bcl-2/Bax ratio, and attenuated caspase-3 activation, thereby

increasing cell survival and protecting against Aβ-induced cell

damage.

Effects of ginsenosides on metal-
induced toxicity

Iron accumulation is thought to be involved in the

pathogenesis of Parkinson’s disease (PD) (Jiang et al., 2007).

Several studies have shown that selectively high iron levels and

oxidative stress due to elevated iron levels in the substantia

nigra pars compacta (SNpc), play a crucial role in developing

PD (Youdim et al., 2004, 28; Zecca et al., 2008). Rg1 reduces

cellular iron accumulation and attenuates the inappropriate

upregulation of divalent metal transporter 1 with the iron-

responsive element (DMT1 + IRE) through the IRE/Iron

regulatory protein (IRP) system to achieve neuroprotective

effects against iron toxicity (Xu et al., 2010a). In addition, it

was found that Rg1 could reduce iron influx and iron-induced

oxidative stress by inhibiting the upregulation of DMT1-

IRE(Xu et al., 2010b). Wang et al. (Wang et al., 2009)

suggested that the neuroprotective effect of Rg1 on

dopaminergic neurons against 1-Methy-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) is due to the ability to reduce

nigrostriatal iron levels, which is achieved by regulating the

expression of divalent metal transporter 1 (DMT1) and

Ferroportin1 (FP1).

Aluminum (Al)-induced disorders of bone metabolism

are a significant cause of osteoporosis. The research

concluded that Rb1 significantly reverses osteoblast

viability and osteoblast growth regulators, inhibits

oxidative stress, and attenuates histological damage to

osteoblasts by AlCl3(Zhu et al., 2016), activating the TGF-

β1/Smad signaling pathway is one of the mechanisms by

which Rg3 alleviates Al-induced bone damage (Song et al.,

2021). Song et al. (2020) reported that Rg3 effectively

alleviated AlCl3-induced osteoporosis by increasing the

mRNA expression of transforming growth factor-β1, bone
morphogenetic protein-2, insulin-like growth factor I, and

core binding factor α1 to promote growth regulators and

attenuate Al accumulation.

Effects of ginsenosides on
hepatotoxicity

Frequent overdose of acetaminophen (APAP) is one of the

most common and essential triggers of acute hepatotoxicity (Xu

et al., 2017). Ginsenoside Rg5 exerts hepatoprotective effects

against APAP-induced acute hepatotoxicity. Wang et al. (2017)

administered Rg5 to mice and found the protein expression of

proliferating cell nuclear antigen (PCNA), Bax, cytochrome c,

caspase-3, caspase-8, and caspase-9 was significantly inhibited in

the Rg5 group compared with the control group. In contrast, the

expression level of Bcl-2 protein was increased, indicating that

Rg5 has anti-apoptotic ability in APAP-induced hepatotoxicity.

Rk1 pretreatment significantly reduced serum alanine

aminotransferase, aspartate aminotransferase, tumour necrosis

factor, and interleukin-1β levels and significantly reversed

APAP-induced liver tissue necrosis (Hu et al., 2019).

Rb1 exhibits significant hepatoprotective effects against

APAP-induced ALI by modulating MAPK and PI3K/Akt
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TABLE 1 Therapeutic effect of ginsenosides on CP-induced nephrotoxicity.

Ginsenosides Experimental
model

Dosage and
method

Mechanisms Effects References

Rb3 ICR mouse 10 and 20 mg/kg by
oral gavage

(↓) p62, ATG3, ATG5, ATG7,
p-mTOR, the ratio of LC3-I/LC3-II

Rb3 regulates AMPK-/mTOR-mediated
autophagy and inhibits apoptosis in vitro
and in vivo, thereby alleviating CP-
induced nephrotoxicity

Xing et al.
(2019)

Rh2 Male SPF grade ICR
mice (22–25 g)

20 and 40 mg/kg by
gavaged (P.O)

(↑) Bcl-2 Rh2 protects against CP-induced
nephrotoxicity by acting on caspase-
mediated pathways

Qi et al. (2019)

(↓) p53, Bax, cytochrome c,
caspase-8, caspase-9, and caspase-3

Re Male ICR mice 25 mg/kg by oral
gavage

(↓) Renal dysfunction,
inflammatory cytokines, apoptosis,
malondialdehyde in the kidney

The renal protective potential of Re may be
partly related to its antioxidant, anti-
inflammatory and anti-apoptotic effects

Wang et al.
(2018)

Rh3 pig kidney epithelium,
CL-101

(↓) JNK, ERK, p38, caspase-3,
Proportion of apoptotic cells in
LLC-PK1

Inhibition of JNK and ERK mitogen-
activated protein kinase signaling cascade
plays an important role in the
renoprotective effects of Rh3

Lee and Kang,
(2017)

Rg5 Male ICR mice
(6–8 weeks old)

10 and 20 mg/kg
administered
intragastrically

(↑) Bcl-2 Rg5 attenuates CP-induced nephrotoxicity
by reducing oxidative stress, inhibiting
inflammation, and suppressing apoptosis
in CP-treated mice

Li et al. (2016)

(↓) NF-κB p65, COX-2, Bax

ATG3, autophagy related three; ATG5, autophagy related five; ATG7, autophagy related seven; LC3-I, light chain 3-I; LC3-II, light chain 3-II; JNK, c-Jun N-terminal kinase; ERK,

extracellular signal-regulated kinase; LLC-PK1, porcine renal proximal epithelial tubular; NF-kB, nuclear factor-kappa B; COX-2, cyclooxygenase 2.

FIGURE 1
The effects of ginsenosides on the treatment of exogenous toxins. Abbreviations: ROS, reactive oxygen species; Erk, extracellular signal-
regulated kinases; mTOR, mammalian target of rapamycin; LC3, light chain three; ATG5, autophagy related five; IL-1b, interleukin-1b; Nrf2, nuclear
factor erythroid related factor 2; ATG3, autophagy related three; JNK, c-jun N-terminal kinase; ERK, extracellular signal-regulated kinase; COX-2,
cyclooxygenase two; DMT1 + IRE, divalent metal transporter 1 with iron responsive element.
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signalling pathway-mediated inflammatory responses (Ren et al.,

2019). Rg3 exerts hepatoprotective effects on APAP-induced

hepatotoxicity by inhibiting oxidative stress and inflammatory

responses (Zhou et al., 2018).

Cisplatin (CP) is an effective antitumor drug widely used in

cancer treatment, and hepatotoxicity is one of its side effects

(Taghizadeh et al., 2021). Rg1 effectively prevents cisplatin-

induced hepatotoxicity, mainly by inhibiting the binding of

Keap1 and Nrf2, partly through the accumulation of p62 (Gao

et al., 2017).

Effects of ginsenosides on
nephrotoxicity

Nephrotoxicity is a common side effect of chemotherapy and

drugs. For example, the commonly used drug CP may cause severe

nephrotoxicity, including tubular injury and renal failure (Miller et al.,

2010; Manohar and Leung, 2017). Numerous studies have

demonstrated that ginsenosides can promote the recovery of kidney

function by regulating inflammation apoptosis and reducing kidney

damage (Baek et al., 2006; Park et al., 2015; Wang et al., 2018). In CP

mice, Rh2 treatment significantly increased the expression of Bcl-2. It

decreased the expression of p53, Bax, cytochrome c, caspase-8, caspase-

9, and caspase-3 in renal tissues, suggesting that Rh2 prevents CP-

induced nephrotoxicity by acting on the cystein-mediated pathway (Qi

et al., 2019). The increase in the percentage of apoptotic LLC-PK1 cells

induced by CP treatment was also significantly reduced after

Rh3 treatment (Lee and Kang, 2017). Thus, ginsenosides are

potential agents for treating CP-induced nephrotoxicity (Table 1).

Effects of ginsenosides on
reproductive toxicity

The value of ginsenosides in reproductive function was

demonstrated in several reports. Many studies have shown

that bisphenol A (BPA) can cause reproductive toxicity.

Wang et al. (Wang L. et al., 2012) showed that ginsenosides

(75 μg/ml) significantly inhibited the decrease in cell viability

and increase in apoptosis inhibited by BPA through in vitro cell

culture model experiments. These effects are mediated by

preventing ERK1/2 phosphorylation and enhancing cellular

antioxidant capacity. Testicular toxicity is one of the side

effects of chemotherapeutic drugs. Ji et al. (2007) reported

the therapeutic and preventive effects of protopanaxatriol

saponin (PT) on the testicular organs of male mice under

toxicity induction of the chemotherapeutic drug busulfan,

and the damage to spermatogenic tubules in mice injected

with PT was less than that of busulfan treatment alone.

These results suggest that PT is effective in recovering male

reproductive organs and overcomes the toxicity of busulfan. PT

may be indicated for recovering male infertility caused by

azoospermia and oligospermia. Endometriosis (EMS) is an

estrogen-dependent gynaecological disorder, impaired NK

cell cytotoxic activity is associated with clearance obstruction

of ectopic endometrial tissue in the abdominal and pelvic

cavity. Zhang et al. (2018) reported that PPD-pretreated

ectopic endometrial stromal cells (eESCs) enhanced the

cytotoxic activity of NK cells against eESCs, reduced the

number of ectopic lesions and inhibited the growth of

ectopic lesions in a mouse EMS model. They suggest that

this effect may be through limiting estrogen-mediated

autophagy regulation and enhancing NK cell cytotoxicity.

Summary and observations

Due to the mutual influence and restriction of various

saponin monomers, the unique medicinal and health-care

properties of various monomeric saponins cannot be

displayed, which significantly reduces the application value.

In recent years, researchers at home and abroad have devoted

themselves to the use of biological methods to produce

ginsenoside products and have made corresponding

progress and breakthroughs in biotechnology in various

research fields such as tissue culture, transgenic plants,

biosynthetic pathways and synthetic biology, which have

laid an essential foundation for the preparation or

production of ginsenoside products in large quantities.

Most ginsenoside monomers on the market are relatively

cheap, such as Rb1, Re, etc. The average price is about

0.289 USD/mg; individual monomeric saponins are rarer

and more costly, with an average price of about

5.797 USD/mg.

This review briefly summarizes the therapeutic potential of

ginsenosides in drug toxicities and exogenous toxins, and

explains the mechanism of action (Figure 1). Ginsenosides

play an essential role in treating drug toxicity, especially in

treating cancer patients, and can reduce drug toxicity and

improve the survival quality of cancer patients after the cure.

The underlying mechanism may be related to an increase in

antioxidant enzymes and anti-apoptotic, anti-inflammatory

signalling and immunostimulatory factors, as well as a

decrease in pro-apoptotic, pro-inflammatory,

immunosuppressive and pro-oxidant indices. Further studies

revealed that this mechanism involves several signalling

pathways, such as the classical antioxidant pathway: P62/

KEAP1/NRF2, the apoptosis-related pathway: JNK/P53/

CASPASE3, and the AMPK/mTOR signalling pathway, which

plays a crucial role in the development of autophagy. In addition,

ginsenosides play an essential role in the treatment of metal

toxicity and the accumulation of toxins that may be caused by

chemicals added to household products. In conclusion,

ginsenosides are potential drugs for preventing and treating

exogenous toxins.
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