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Dimensionless parameter predicts bacterial
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Abstract

Understanding mechanisms of antibiotic failure is foundational to
combating the growing threat of multidrug-resistant bacteria.
Prodrugs—which are converted into a pharmacologically active
compound after administration—represent a growing class of
therapeutics for treating bacterial infections but are understudied
in the context of antibiotic failure. We hypothesize that strategies
that rely on pathogen-specific pathways for prodrug conversion
are susceptible to competing rates of prodrug activation and bac-
terial replication, which could lead to treatment escape and fail-
ure. Here, we construct a mathematical model of prodrug kinetics
to predict rate-dependent conditions under which bacteria escape
prodrug treatment. From this model, we derive a dimensionless
parameter we call the Bacterial Advantage Heuristic (BAH) that
predicts the transition between prodrug escape and successful
treatment across a range of time scales (1–104 h), bacterial carry-
ing capacities (5 × 104–105 CFU/µl), and Michaelis constants
(KM = 0.747–7.47 mM). To verify these predictions in vitro, we use
two models of bacteria-prodrug competition: (i) an antimicrobial
peptide hairpin that is enzymatically activated by bacterial surface
proteases and (ii) a thiomaltose-conjugated trimethoprim that is
internalized by bacterial maltodextrin transporters and hydrolyzed
by free thiols. We observe that prodrug failure occurs at BAH
values above the same critical threshold predicted by the model.
Furthermore, we demonstrate two examples of how failing
prodrugs can be rescued by decreasing the BAH below the critical
threshold via (i) substrate design and (ii) nutrient control. We envi-
sion such dimensionless parameters serving as supportive pharma-
cokinetic quantities that guide the design and administration of
prodrug therapeutics.
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Introduction

The rise of multidrug-resistant bacteria coupled with the lack of

newly developed antibiotic treatment strategies has created a seri-

ous public health threat (Baquero et al, 2008; Gullberg et al, 2011).

Antibiotic success is markedly improved by proper titration of

drugs, as overdosing leads to off-target toxicity and underdosing

increases the likelihood of pathogens developing resistance

(Opatowski et al, 2010). However, optimal drug doses are difficult

to achieve over the course of treatment because infection burden

changes dynamically over time, creating a moving target

(Opatowski et al, 2010; Iizumi et al, 2017). Prodrugs, which repre-

sent ~10% of all FDA-approved drugs in the last decade (Rautio

et al, 2018a), are a promising solution because they present multiple

strategies for reviving existing or previously discarded antibiotics

(Jubeh et al, 2020); these strategies include increasing bioavailabil-

ity and solubility, reducing off-target effects, or targeting bacteria-

specific enzymes. For example, a prodrug of ciprofloxacin was

developed that reduced off-target toxicity while selectively targeting

bacteria expressing ß-lactamase (i.e., a resistance enzyme that

degrades ß-lactam antibiotics) (Evans et al, 2019). Prodrug forms of

Triclosan (Howse et al, 2019), Carvacrol (Marinelli et al, 2019), and

multiple nucleoside derivatives (Negrya et al, 2020) were developed

which increased solubility while maintaining antimicrobial efficacy.

In this work we focus specifically on antibiotic prodrugs, a subset of

prodrugs that includes compounds such as ganciclovir (Al-Badr &

Ajarim, 2018) and isoniazid (Metcalfe et al, 2008), which are
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administered as biologically inactive forms and are enzymatically

activated into their parent form by the pathogen.

Despite their growing importance, prodrugs are critically under-

studied in the context of potential failure mechanisms that may arise

during treatment. Currently, failure mechanisms fall into three dis-

tinct categories—resistance, persistence, and tolerance—which are

characterized by the change in drug concentration and exposure

time required to kill bacteria. For example, resistance is character-

ized by genetic mutations or phenotypic changes which result in

bacteria requiring significantly higher concentrations of antibiotic

(minimum inhibitory concentration, MIC) to be lethal. In contrast,

bacteria exhibiting tolerance or persistence require increased drug

exposure time (minimum duration for killing, MDK) (Brauner et al,

2016). However, prodrug activation introduces an additional reac-

tion step; this two-step (Jain et al, 2009) mechanism (i.e., activa-

tion + killing) creates variability in the concentration and duration

required for killing, which suggests that classification metrics such

as MIC and MDK may not map directly from parent to prodrugs.

Computational studies have shown that the prodrug activation step

results in distinct differences in kinetics between parent and prodrug

forms of the same compound (Jackson et al, 2000; Murphy et al,

2011; Cho & Yoon, 2018). For example, agent-based simulations

revealed that the rate of prodrug activation (i.e., catalytic efficiency,

kcat/KM) had a strong effect on the MIC of each compound (Murphy

et al, 2011). Furthermore, empirical studies have found there to be

differences in MIC between parent and prodrug forms, as well as

higher variance in prodrug MIC across bacterial strains, relative to

the parent drug (Wang et al, 2018; Evans et al, 2019; Yang et al,

2021).

Here, we develop a mathematical model of bacteria-prodrug sys-

tems to probe failure mechanisms and identify a prodrug-specific

metric distinct from MIC to classify failure. We apply our model to

two in vitro systems: (i) a prodrug of a cationic antimicrobial pep-

tide (AMP) polyarginine (R9) targeting DH5α E. coli and (ii) a

prodrug of trimethoprim (TMP) targeting UTI89 E. coli. The polyar-

ginine AMP is formulated as a prodrug by charge complexation with

anionic peptides connected by a modular protease-cleavable linker

substrate (Olson et al, 2009, 2010; Forde et al, 2014). We design the

linker substrate to be cleaved by E. coli protease OmpT, such that

increasing concentrations of bacteria activate higher concentrations

of free AMP. The trimethoprim prodrug comprises thiomaltose con-

jugated to trimethoprim via a self-immolative disulfide linker, which

releases TMP-OH upon cleavage by free thiols inside bacterial cells

without affecting the toxicity of the drug (Wang et al, 2018). Free

TMP-OH then kills bacteria by inhibiting tetrahydrofolic acid synthe-

sis, which is a necessary cofactor for thymidine, purine, and bacte-

rial DNA synthesis (Masters et al, 2003).

In both prodrug systems, we observe experimental conditions

where (i) bacteria proliferate in the presence of active drug by con-

sistently outpacing prodrug activation at all stages of growth (i.e.,

log phase, stationary phase) as well as (ii) conditions where bacteria

are successfully treated. To create a metric that predicts the transi-

tion between these treatment outcomes we identify a dimensionless

parameter, the Bacterial Advantage Heuristic (BAH). Dimensionless

parameters characterize physical systems across a wide range of

scales (e.g., time, length, temperature, etc.); for example, the dimen-

sionless Reynolds number (Re) predicts the transition from laminar

(low Re) to turbulent (high Re) fluid flow (Batchelor, 2000).

Similarly, we show that the BAH predicts the transition from suc-

cessful treatment (low BAH) to prodrug escape (high BAH) with

high accuracy (AUROC = 1.00, n = 9) across a range of environ-

mental conditions (e.g., temperatures, nutrient levels). We envision

that such a dimensionless parameter may be useful for predicting

prodrug success across a broad range of treatment conditions which

may extend to clinical use cases. These quantitative insights may

inform future drug design and treatment protocols for improving the

impact of prodrugs in combatting antibiotic resistance.

Results

A computational model of bacteria-prodrug activation kinetics

Models of parent drug kinetics (Nielsen et al, 2007, 2011; Nguyen

et al, 2014) generally do not have feedback loops, meaning the drug

population affects the bacterial population (i.e., bacterial death,

green arrow), but the bacteria do not influence the drug population

(Fig 1A). By comparison, models of prodrug kinetics do have a feed-

back loop as bacteria determine the growth of the drug population

(i.e., activation, green arrow), which kills bacteria. We hypothe-

sized that this feedback loop creates competition between the rate

of prodrug activation and the rate of bacterial death (Fig 1B). Inter-

estingly, this may enable possibilities where bacteria escape prodrug

treatment; for example, when the activation rate is decreased to a

near-zero value (i.e., activation, red arrow with "X"), then the rate

of bacterial death is minimized, allowing the bacteria population to

grow uncontrolled (Fig 1C). To quantitatively understand the rate-

competition between bacteria and prodrugs, we built a mathemati-

cal compartment model using a system of nonlinear ordinary differ-

ential equations (ODE). In this system, the three dynamic

populations were the Bacteria, B, the Locked drug (i.e., prodrug), L,

and the Unlocked drug (i.e., parent drug), U, for which we formu-

lated governing ODEs by considering the system parameters that

affect population change over time. We modeled the bacteria popu-

lation, B, as increasing the rate of prodrug conversion (i.e., L to U)

and the unlocked drug population U as increasing the rate of bacte-

rial death (Fig 1B). To account for the fact that bacterial growth

rate, r, slows down as environmental resources become limiting

(i.e., carrying capacity, Bmax), we used a logistic growth model

(Fujikawa et al, 2003), which produces an S-shaped curve and has

been used extensively in biology to study population expansion

(Verhulst, 1845) and tumor growth (Atuegwu et al, 2013). In con-

trast, we model the rate of bacterial death as proportional to the

concentration of unlocked drug, U, and the concentration of Bacte-

ria, B, according to a proportionality rate constant, a, which repre-

sents the bacterial death rate constant (Equation 1.1, Table EV2).

dB

dt
¼ rB 1� B

Bmax

� �
� aBU (1.1)

To model the rate of activation of locked drugs, L, we applied

Michaelis–Menten (MM) kinetics (Menten & Michaelis, 1913),

where the rate of substrate activation is determined by the catalytic

rate of the reaction, kcat, and the half-maximal substrate concentra-

tion, KM. Here, we modeled the locked drug as the substrate and the

unlocked drug as the product; therefore, we modeled the bacteria as
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the enzymatic population because the bacteria convert locked drug

(i.e., substrate) to unlocked drug (i.e., product) (Equation 1.2). To

apply MM kinetics, we assumed our system constituted a well-

mixed solution of freely diffusing substrates (i.e., locked drug) in

large excess relative to the number of bacteria enzymes, which were

valid assumptions for our downstream studies since prodrugs were

present at concentrations ~102 micromolar in an aqueous environ-

ment relative to a maximum bacterial concentration of ~10−6 micro-

molar. Because the total amount of drug is conserved, we defined

the MM activation rate of unlocked drug, U, as opposite of the deg-

radation rate of locked drug L. We further included a term to

account for the loss of unlocked drug according to a proportionality

constant, b, which represents the drug decay rate constant (Equa-

tion 1.3, Table EV2).

dL

dt
¼ �kcatB

L

Km þ L
(1.2)

dU

dt
¼ kcatB

L

Km þ L
� bBU (1.3)

We performed a linear stability analysis on this system of differ-

ential equations and found that there are two unique steady-state

solutions. The analysis revealed that the solution that includes the

result Bs.s = Bmax is stable, whereas the other solution (i.e., Bs.s = 0)

is unstable (Supplementary analysis).

Predicting prodrug success with a dimensionless parameter

We hypothesized that the primary mechanism controlling prodrug

success or escape is tied to the competition between bacterial

growth and prodrug activation (Fig 1B and C). Therefore, we chose

to focus our studies on a dimensionless parameter that represents

the competing ratio of growth rate (r) divided by prodrug activation

rate (kcat). We defined this dimensionless parameter as the Bacterial
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Figure 1. A computational model of bacteria-prodrug activation kinetics.

A Standard model of bacteria-drug kinetics (i.e., the parent drug model). (Top) General mass action schematic of bacteria population (blue box) versus the unlocked
drug population (red box). The unlocked drug increases the rate of bacterial death (i.e., green arrow labeled "bacteria death"). (Bottom) Computational results of the
parent drug model, plotting the living bacteria population over time.

B Our model of bacteria-prodrug kinetics (i.e., the prodrug model). (Top) General mass action schematic of the locked drug (gray box), which is activated (green arrow
labeled "activation") by the bacteria (blue box) and converted into the unlocked drug (red box). (Bottom) Computational results of the prodrug model, plotting the
decay in the living bacteria population over time.

C The model of prodrug escape, (Top) where the activation rate of the locked drug is lowered significantly (red arrow with "X"). (Bottom) Computational results of the
prodrug escape model, plotting the growth in the number of living bacteria over time. In all plots, bacteria are plotted as number of cells (num., y-axis), and time is
plotted in arbitrary units (a.u., x-axis).
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Advantage Heuristic (BAH) and we calculated the log of this quan-

tity since bacterial quantities span across several orders of magni-

tude (Equation 2.1).

BAH ¼ log10
r

kcat

� �
(2.1)

In this form, the BAH is larger when the rate of bacterial growth

(r) increases relative to the rate of prodrug activation (kcat);

according to our hypothesis, conditions with larger BAH values

would yield an increased probability of prodrug escape. To verify

this computationally, we sought to determine the critical BAH value

(BAHcrit) that distinguishes prodrug escape from prodrug success

(Fig 2A). Using our mathematical model, we simulated > 2,500

prodrug treatment conditions covering a range of values for r

(3 × 10−2–100 h−1), Bmax (5 × 104–105 CFU/µl), kcat (2.5 × 109–
1011 h−1), and Km (0.747–7.47 mM) each spanning at least an order

of magnitude (Fig 2B). We fixed the bacteria death rate constant, a,

and the drug decay rate constant, b, because these parameters are

closely linked to the identity of the bacterial strain and prodrug for-

mulation, meaning that changing these values would reflect an

entirely different treatment scenario altogether (i.e., different bacteria

species and/or drug). We plotted the number of surviving bacteria at

various time points divided by the bacterial carrying capacity of the

system to normalize against different Bmax values. We observed that

at early time points (i.e., t < 24 h) conditions with smaller BAH cer-

tainly reached a final value of 0, whereas conditions with larger BAH

resulted in a distribution between 0 and 1 (Fig 2C–E). However, the

model showed that as the system moves toward steady-state (i.e.,

t > 24 h), conditions with high BAH approach a final value of 1,

rate, r
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Figure 2. Predicting prodrug success with a dimensionless parameter.

A (Top) Schematic of general mass action model of bacteria-activated prodrug therapies. Each arrow represents a biological process and is labeled with the system
parameters related to that process. Solid black arrows represent growth or decay expressions, and green arrows represent when one population influences the
growth or decay expression of another population (e.g., bacteria activate locked drug population). (Bottom) Schematic plot of predicted relationship between BAH
value and final number of living bacteria (normalized by Bmax). Conditions where bacteria numbers reach carrying capacity (blue line) are called prodrug escape
conditions. Conditions where bacteria numbers reach 0 (red line) are called prodrug success conditions. The vertical dashed line represents the critical BAH value
(i.e., BAHcrit), the point at which the condition switches from prodrug success to prodrug escape. Blue ovals with gray pac mans represent bacteria either surviving
(whole), or dying (fragmented).

B Legend showing the range of parameters used in the computational simulations. The range of each parameter is calculated by multiplying a constant base value
(top number) with logarithmically spaced values between two powers of 10 (left and right values). The units are displayed below in brackets.

C–H Scatter plots showing the number of bacteria surviving (No. Bacteria) at a particular time point (time point in graph title), normalized by the carrying capacity
(Bmax) (y-axis), versus the BAH value for that system (x-axis). Horizontal dashed lines represent upper and lower limits to bacteria number (i.e., 0 = all bacteria
dead, 1 = bacteria reached carrying capacity). Vertical dashed line represents computationally derived critical BAH value (i.e., BAHcrit) at which systems switch
prodrug success (0) to prodrug escape (1).
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revealing a critical value of BAH (BAHcrit ~ −11.37) (Fig 2F–H). In
other words, the model predicts that for any environmental condi-

tion that produces a BAH > BAHcrit, the bacteria will ultimately

escape the prodrug treatment, and for BAH < BAHcrit, the bacteria

will die (i.e., prodrug success). These dimensionless parameters may

be important for guiding the successful design and administration of

prodrug therapies, which can be improved by optimizing fundamen-

tal pharmacokinetic parameters.

A bacteria-activatable AMP prodrug targets E. coli protease
OmpT

To validate the predictions of our mathematical model with an in

vitro bacteria-activated prodrug system, we synthesized a protease-

activated AMP prodrug. This AMP prodrug comprised cationic

(polyarginine, R9) antimicrobial peptides (AMP) in charge complex-

ation with anionic peptide locks (polyglutamic acid, E13) by a linker

peptide (RRS|RRV) specific for the ubiquitous bacterial protease

OmpT (Olson et al, 2009; preprint: Holt et al, 2019). Upon proteo-

lytic cleavage of the linker, the hairpin prodrug is unlocked to

release free AMP (Fig 3A). To measure OmpT activity, we synthe-

sized an activity probe (McCarter et al, 2004; Kwong et al, 2013,

2021; Holt et al, 2017, 2018; Mac et al, 2019; Zhuang et al, 2019)

with free linker peptides containing a fluorophore-quencher pair,

which produced an increase in fluorescence upon proteolytic cleav-

age. To demonstrate linker specificity for OmpT, we incubated the

activity probe with OmpT genetic knockout bacteria, as well as the

parent background strain (E. coli K-12 BW25113), and only

observed activity in samples incubated with the parent strain (i.e.,

OmpT-positive) (Fig 3B). We also observed no activity in samples

containing the serine protease inhibitor, Aprotinin, which inhibits

OmpT when present in micromolar concentrations (Brannon et al,

2015), confirming the linker specificity for OmpT (Fig 3C). We

observed a similar cleavage activity using this linker substrate when

fully integrated into hairpin AMP drug-lock complexes, confirming

that linker presentation within a constrained conformational state

did not significantly affect cleavage activity by OmpT (Fig 3D). To

measure the cytotoxicity of the unlocked drug, we dosed bacteria

with free AMP and observed significant reduction in colonies com-

pared to untreated controls (blue bars) (Fig 3E and F). To confirm

prodrug specificity, we synthesized AMP drug-lock complexes using

linker peptides specific for OmpT or tobacco etch virus (TEV) prote-

ase, which exhibits orthogonal protease specificity (Kapust et al,

2001). We observed elimination of bacteria only in samples

containing OmpT-specific AMP prodrug (gray bars) or samples

treated with both TEV and TEV-specific AMP prodrug (red bars). All

control samples containing either TEV-specific prodrug alone or

Aprotinin inhibitor did not significantly reduce bacteria load (Fig 3E

and F, Table EV1). These results showed that AMP drug-lock com-

plexes are inert and lack cytotoxic activity until activation by prote-

ase activity.

Validating the model and predicting prodrug success with an
AMP Prodrug and DH5α E. coli

We sought to fit our computational model to this experimental

bacteria-prodrug system (AMP prodrug + DH5α E. coli) (Fig 4A)

and demonstrate that the dimensionless parameter BAH can predict

which conditions are favorable to prodrug success. Rather than

using global parameter fitting method after the final system was

tested (i.e., bacteria + prodrugs), we individually measured the

values for each of the relevant parameters experimentally, including

enzymatic efficiency (e.g., kcat, KM), bacterial growth (e.g., r, Bmax),

and prodrug activity (e.g., a, b) in isolated systems (e.g., bacteria

alone, enzymes alone, bacteria + activity-probe, etc.) (Figs EV1–
EV3, Tables EV2 and EV3). This allowed us to more rigorously test

the model by predicting bacteria-prodrug response curves across

nine distinct combinations of kcat and r values before performing

the physical experiments. We experimentally controlled the nine

distinct combinations of kcat and r values by altering the ambient

temperature and concentration of broth (conditions labeled A1–3,
B1–3, and C1–3; Table EV3). We affected the enzymatic activation

rate of the prodrug, kcat, by changing temperature as described by

the Arrhenius equation (Calvert, 1990). Our model anticipated two

possible steady-state outcomes to prodrug treatment; bacteria were

predicted to be either susceptible to the prodrug and die or to escape

prodrug treatment and proliferate to saturating levels (Fig 3). To

experimentally validate this, we incubated bacteria with AMP

prodrug under the defined nine conditions and quantified the num-

ber of living bacteria longitudinally over the course of a 24-h treat-

ment window. Quantified bacterial counts taken during treatment

closely matched the values predicted by our model (red and blue

dots; Figs 4B and C, and EV4). Furthermore, our model predicted

that the dimensionless parameter, BAH, would separate prodrug

success conditions from prodrug failure conditions. We calculated

the BAH values for each of the nine conditions (Table EV3) and

plotted against the final bacteria number (normalized by Bmax),

which revealed that a critical BAH (BAHcrit) clearly predicted the

conditions where prodrug treatment was favorable (Fig 4D). By

receiver-operating-characteristic (ROC) analysis, BAHcrit perfectly

predicted the conditions where prodrug treatment succeeded

(AUROC = 1.00, n = 9) with 100% specificity and sensitivity. By

comparison, the unlocked drug control (i.e., free polyarginine) suc-

cessfully treated bacteria in all nine conditions tested (Fig EV4). We

next sought to demonstrate an experimental example of how the

BAHcrit could be used to guide successful prodrug treatment. Our

model results predicted that changing key system parameters to

decrease the BAH below the critical threshold will result in success-

ful treatment of bacteria. To demonstrate this, we took three differ-

ent AMP prodrugs with distinct linker sequences (Table EV1),

which served to increase kcat values for OmpT, thereby decreasing

the BAH value below BAHcrit. By treating the same population of

bacteria with a prodrug that has a slightly faster activation rate, we

were able to successfully treat bacteria which previously escaped

prodrug treatment (Fig EV5). Collectively, these experiments dem-

onstrate that when E. coli are exposed to the AMP prodrug, our

model can be used to predict bacterial growth kinetics that closely

match experimental observation. Furthermore, the BAH is a robust

predictor of high-level outcomes (i.e., success or failure) across the

treatment conditions tested.

Validating the model and predicting prodrug success with
TM-TMP and UTI89 E. coli

We next sought to validate our model with an orthogonal bacteria-

prodrug pair, for which we used the strain UTI89 E. coli, which has
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been used in mouse models of urinary tract infections (Mysorekar &

Hultgren, 2006; Hung et al, 2009), in combination with a thiomal-

tose (TM)-conjugated prodrug of the common antibiotic trimetho-

prim (TMP) (Forsch et al, 2004; Ho & Juurlink, 2011), known as

TM-TMP (Wang et al, 2018). Conjugating thiomaltose to trimetho-

prim has been shown to increase the water solubility of TMP by

100-fold, while being stable to serum enzymes and maintaining

activity against urinary tract infections in mice (Wang et al, 2018).

In this formulation, thiomaltose serves as a targeting ligand by

complexing the prodrug with maltodextrin transporters, which are

exclusively expressed by bacteria, relative to mammalian cells

(Fig 5A, step 1) (Wang et al, 2018). Then, thiomaltose is conjugated

to TMP via a self-immolative disulfide linker that releases TMP-OH,

which is as active as TMP, upon disulfide cleavage by free thiols

(Fig 5A, step 2; Fig EV6), resulting in the killing of bacteria (Fig 5A,

step 3). When comparing the relative bacterial toxicity of TMP (par-

ent drug) and TM-TMP (prodrug) under one set of environmental

conditions (i.e., 37°C, 75% broth), we found that the parent drug
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Figure 3. A bacteria-activatable prodrug targets E. coli protease OmpT.

A A cationic AMP drug (R9, white rectangle) locked by an anionic peptide lock (E13, black rectangle) with a protease-cleavable linker (RRS|RRV, gray u-shape) is activated
by OmpT protease (gray pac man) activity.

B Cleavage assay measuring the activity of OmpT expressed on the surface of parent strain E. coli K-12 BW25113 (OmpT-positive; blue bacteria with gray pac mans, top)
as well as OmpT genetic knockouts (OmpT-negative; blue bacteria with red X’s). Activity is measured using an activity probe, comprising a linear peptide substrate
(gray bar) with a fluorophore (blue/gray star) and quencher (black circle) on either end.

C Cleavage assay using activity probes to measure the activity of recombinant OmpT (gray protease) (left) and OmpT expressed on the surface of E. coli bacteria (right),
plotted as the blue lines on the graph. Negative control samples contain the inhibitor aprotinin (black triangle) or linker substrates alone (i.e., no proteases added),
which are plotted as black and gray lines, respectively.

D Cleavage assay measuring the activity of recombinant OmpT (left) or OmpT expressed on the surface of E. coli (right) against fluorescently labeled hairpin prodrugs
(blue lines) or hairpin prodrugs only control (gray lines).

E Bacteria viability assay quantifying drug toxicity relative to untreated bacteria control (blue bar). Positive control for AMP toxicity (black bar). Negative control for
locked AMP or TEV protease alone (tan bars). Positive control for TEV protease (red pac man) with locked AMP (substrate: ENLYFQ|G, specific to TEV protease) (red
bar). Negative control for locked AMP (substrate: RRSRRV, specific to OmpT) with OmpT inhibitor, aprotinin (gray bar). Experimental condition of bacteria treated with
locked AMP activated by natively expressed OmpT (far right bar). All values normalized and compared to bacteria only control via one-way ANOVA, and are plotted as
fraction of bacteria only control (y-axis, fraction). Error bars represent standard deviation (n = 3–4 biological replicates). ****P < 0.0001.

F Representative images of bacterial plates used to quantify viability with schematic legend (scale bar = 4 mm).

Data information: For all line graphs, shaded regions represent standard deviation (n = 3 biological replicates). All cleavage assays (i.e., line graphs) plotted as fold
change (FC) in relative fluorescence units (RFU) from initial time point.
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was significantly more efficient at killing UTI89 bacteria (Fig 5B;

minimum inhibitory concentration (MIC), MICTMP = 3.2 μM versus

MICTM-TMP = 50 μM; n = 3), which closely matched results from a

separate study (Wang et al, 2018). We hypothesized that the

prodrug was less effective because the BAH value in this experiment

was above the critical threshold, indicating conditions favorable to

prodrug escape. To test this, we calculated the BAH for this experi-

ment (Fig 5B, BAH = −10.7) and found that it was indeed higher
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Figure 4. Validating the model and predicting prodrug success with E. coli DH5a and AMP Prodrug.

A Graphical representation of the activation of an AMP prodrug (black and white U-shape) by a membrane protease (gray pac man, OmpT) on a bacteria (blue). The
AMP prodrug first (step 1) complexes with a membrane-bound protease. The protease enzymatically cleaves the AMP prodrug, thereby, activating the prodrug (step
2). The freed AMP kills the bacteria by intercalating with the membrane causing fatal damage (step 3).

B Validating the model with serial CFU measurements (red and blue dots; n = 3 biological replicates, error bars SEM) and ODE model simulations of nine conditions
(A1–3, B1–3, C1–3) given extracted growth rate and enzyme kinetics parameter values. Standard error (SE) represents the difference between model predictions and
experimental observation.

C Agar plates taken at endpoint plotting the resulting bacterial growth for nine environmental conditions (A1–C3, scale bar = 4 mm).
D Plotting the resulting endpoint bacterial growth for each of the nine conditions (plotted as number of bacteria normalized by carrying capacity Bmax) versus the

calculated BAH number (blue dots). This is compared against the values predicted by the model (black dots). The critical BAH value that separates prodrug success
conditions from prodrug failure conditions is represented by the vertical dashed line (i.e., BAHcrit = −11.37).
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than the critical threshold (Fig EV7, BAHcrit = −11.3), suggesting

that prodrug would succeed if the bacterial growth rate was

decreased by at least an order of magnitude. To verify this

experimentally, we examined the same conditions (e.g., TMP versus

TM-TMP) at one drug concentration (10 μM), but decreased the

broth concentration to significantly reduce the bacterial growth rate,
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r, (i.e., approximately 1.23 orders of magnitude; r75% = 1.7 s−1 ver-

sus r0% = 0.1 s−1) which decreased the BAH value. We observed

that by decreasing the BAH value below BAHcrit (i.e.,

BAH75% = −10.8 versus BAH0% = −12), the efficacy of the prodrug

was significantly increased and the parent drug (TMP) and the

prodrug (TM-TMP) performed more similarly (Fig 5C). To verify

this with a second experiment, we also decreased the BAH via

changing the activation rate of the prodrug, kcat, by spiking in gluta-

thione (GSH), which rapidly hydrolyzes TM-TMP (Wang et al,

2018). We found that by adding in GSH (5 mM GSH condition), the

number of bacteria killed by TM-TMP (prodrug) was significantly

increased, whereas the bacterial counts did not significantly change

in either the TMP (parent drug) condition or negative control (no

drug) (Fig 5D). These results demonstrated that using the BAH as a

guiding parameter enabled us to predict the conditions most condu-

cive to prodrug success. Next, we sought to determine whether the

computational model associated with the BAH (Fig 1) closely

matched the kinetics of bacterial growth with this new bacteria-

prodrug pair. To validate the model, we started by testing the bacte-

ria population only (negative control) and then built up to the full

model by adding in the unlocked drug and the locked drug popula-

tions in a stepwise manner (i.e., (i) no drug, (ii) TMP = unlocked

drug, and (iii) TM-TMP = locked drug) (Fig 5E, top row). For each

version of the model (i.e., each column), we tested both a high bac-

terial growth rate, r, (Fig 5E, middle row) and a low bacterial

growth rate (Fig 5E, bottom row), which we controlled by changing

the broth concentration. First, by measuring the kinetics of the bac-

teria population alone, we were able to measure key system param-

eters (e.g., bacterial growth rate, r, and bacterial carrying capacity,

Bmax), which resulted in a close match between experimental and

computational results (Fig 5E, left column). Just as with our earlier

experiments, we measured (i) the number of bacteria and (ii) the

number of drug molecules consumed in each killing reaction to cal-

culate the parameters a and b, respectively (Fig EV8). Using these

parameter values, we used the computational model to predict bac-

teria population kinetics at high and low growth rates when dosed

with TMP (parent drug), which closely matched our experimental

results (Fig 5E, middle column). Finally, both the model and the

BAH value correctly predicted whether the TM-TMP (prodrug)

would successfully treat bacteria (i.e., population decays over time)

or whether the bacteria would escape treatment (i.e., population

grows over time; Fig 5E, right column). These results confirm that

our model matches experimental kinetics and that the BAH parame-

ter can be used to predict conditions that favor prodrug success.

Discussion

The advantages of prodrugs (e.g., increased solubility, pathogen

targeting, etc.) are becoming more widely recognized in contempo-

rary drug design (Rautio et al, 2018b). While there have been many

studies on bacterial resistance strategies that affect traditional antibi-

otics (i.e., parent drug), comparatively little attention has been

given to studying success/failure conditions specific to prodrugs. To

study success and failure conditions in prodrugs, we developed a

mathematical model of the competition between bacterial growth

and prodrug activation rates. We found that our general model fit

the experimental observations from both in vitro prodrug-bacteria

systems well, while only modifying parameter values between sys-

tems. However, future work may improve the model by testing sys-

tems with distinct structures such as multistep activation

mechanisms, multiple bacterial phenotypes, or dynamic parameter

values. While this work held parameters a and b constant within

each system (Tables EV2 and EV4), the model predictions could be

further improved by measuring these constants under all environ-

mental conditions. Furthermore, subsequent iterations may also

incorporate different models for drug killing (e.g., Emax) (Holford,

2017) or bacterial growth (de Jong et al, 2017).

From our model, we derived a dimensionless parameter, BAH,

that predicted the transition between prodrug escape and successful

treatment. We found that these prodrugs failed in conditions where

bacterial growth outpaced the rate of prodrug activation, as

predicted by our computational results. This feedback (i.e., feedback

loop; Fig 1B) between bacterial density and drug concentration is

similar to the feedback between bacterial density and antibiotics in

the inoculum effect (Tan et al, 2012), or the feedback between drug-

insensitive cells and drug-sensitive cells in multidrug adaptive thera-

pies for cancer (West et al, 2020). We demonstrated that both

◀ Figure 5. Validating the model and predicting prodrug success with TM-TMP and UTI89 E. coli.

A Schematic of the activation mechanism for the prodrug TM-TMP with the bacteria UTI89 E. coli. The thiomaltose (TM, gray) subcomponent first complexes with
maltodextrin transporters (blue) on the surface of bacteria (tan) (step 1). The disulfide self-immolative linkage connecting TM to trimethoprim (TMP, red) is cleaved by
thiols, releasing free TMP-OH and thus activating the drug (step 2). Free TMP-OH kills the bacteria (step 3).

B Measuring the toxicity of free TMP (red) and prodrug TM-TMP (gray) against UTI89, when compared to no treatment (blue). A range of drug concentrations are
incubated with bacteria and the final concentration of living bacteria is measured (n = 3 biological replicates; bar height = mean, error bars = standard deviation;
one-way ANOVA + Dunnett’s multiple comparisons test).

C Measuring the number of surviving bacteria under different growth conditions (i.e., high, 75%, or low, 0%, broth concentration). Bacteria plus no drug (blue), free drug
(i.e., TMP, red) and prodrug (i.e., TM-TMP, gray) are incubated in 0% broth (i.e., PBS) or 75% broth (n = 3 biological replicates; bar height = mean, error
bars = standard deviation; one-way ANOVA + Tukey’s multiple comparisons test).

D Measuring the number of surviving bacteria under different drug activation rates (i.e., the presence or absence of glutathione, GSH). Bacteria plus no drug (blue), free
drug (i.e., TMP, red) and prodrug (i.e., TM-TMP, gray) are incubated with no GSH, or 5 mM GSH, which increases the activation rate of the prodrug.

E Plotting longitudinal measurements of living bacteria over time under different drug treatment conditions. Each column represents the drug treatment (no
drug = blue, TMP = red, and TM-TMP = gray), as labeled in the title. Each row represents the environmental condition affecting growth rate (top row, low growth
rate = 0% broth; bottom row, high growth rate = 75% broth). Each plot shows the concentration of bacteria (CFU/ml) over time. Circles with error bars (standard
deviation) are experimental measurements (n = 3 biological replicates) and dashed lines are predicted by the computational model.

Data information: All conditions in (c) and (d) are compared using one-way ANOVA with multiple comparisons test. All comparisons are made in reference to the bacteria
only control (blue bars) **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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environmental (e.g., temperature, available nutrients) and pharma-

cokinetic (e.g., activation rate kcat) parameters can be tuned to engi-

neer successful prodrug therapies. These findings may reveal

opportunities for improvement in prodrug design; for example, this

information could be leveraged to improve the efficacy of existing

prodrugs by tuning the rate of prodrug decay (i.e., biological half-

life), which influences the BAHcrit transition value (Fig EV9). Alter-

natively, the catalytic efficiency of the prodrug substrate could be

tuned to increase the probability of success, which has been previ-

ously demonstrated by engineering prodrug substrates with higher

affinity for the enzymatic target (Jordan et al, 1999; Barak et al,

2006). Importantly, the BAH provides a quantitative target for such

design modifications and is specific to the nature of prodrugs.

By comparison, previous studies which focused solely on bacte-

rial resistance to the parent form of antibiotics yielded parameters

that may not apply to prodrug forms. For example, the minimum

inhibitory concentration (MIC) is commonly used as a parameter for

resistance (Brauner et al, 2016), yet the MIC of the parent and pro-

forms of the same drug can differ, as seen with both model prodrugs

used in this study as well as others from the literature (Wang et al,

2018; Evans et al, 2019; Yang et al, 2021). Using existing MIC classi-

fications, these prodrugs could have been labeled ineffective; yet,

our experiments showed that different environmental conditions or,

in the case of AMP prodrugs, linker sequences, may result in suc-

cess. One possible reason for the discrepancy in MIC in our studies

is that there are kinetic parameters (e.g., drug activation rate) which

do not apply to the parent drug, but are key driving factors in deter-

mining the outcome of prodrug treatment. Future iterations of this

work and the BAH may result in a standardized quantitative design

criteria that is specific to prodrugs. This is supported by the fact that

even with nonprodrugs, metrics such as the single-cell MIC (Arte-

mova et al, 2015) and others based on bacterial temporal dynamics

(Meredith et al, 2015) have been developed for predicting treatment

outcomes where MIC fails.

Dimensionless parameters like the BAH are commonly used in

engineering to create metrics that are consistent across unit-systems

(e.g., metric versus imperial) and scales (i.e., the relative size of the

variables). In the AMP prodrug system, we found that the transition

between prodrug escape and successful treatment occurred sharply

at one value (i.e., BAHcrit = −11.3). By comparison, in the TM-TMP

system this transition occurred across a range of values (i.e.,

−11.5 < BAHcrit < −11.1), which mirrors the example of pipe flow

where the transition from laminar to turbulent flow occurs across a

range of Reynolds numbers (i.e., 2,300 < Re < 4,000). Interestingly,

both the BAHcrit values (−11.3 versus −11.5 to −11.1) and the ratios

of a to b (0.5 × 10−11 versus 3 × 10−11; Tables EV2 and EV4) were

similar between systems, which is consistent with our simulations

predicting the dependence of the BAHcrit value on the ratio a to b

(Fig EV9). Furthermore, dimensionless parameters measured in

model systems can be used to make predictions about scaled-up ver-

sions of the same system (i.e., similitude). Analogously, future work

may show that the BAH could be used to predict which prodrugs are

most likely to succeed in clinical settings based on smaller scale pre-

liminary studies.

In clinical settings, prodrug failure could potentially be caused by

environmental perturbations (e.g., temperature, pH, etc.) as demon-

strated in this work, or by genetic mutations that affect pathogen

growth rates (Jin et al, 2012) or enzymatic activity (Kramer et al,

2000, 2001). We predict that mutations affecting the prodrug-

activating enzyme (i.e., kcat) are the more likely cause of prodrug

failure because these mutations are localized to one protein, rather

than a cascade of events as in the case of growth rate (r) (Jin et al,

2012). Based on protein expression numbers alone (Thomassin

et al, 2012) the range of effective kcat values is at least one to two

orders of magnitude higher on average than the range of potential

growth rate values (Allen & Waclaw, 2019; Weissman et al, 2021),

which means mutations affecting enzyme activity can have a larger

impact on the BAH value. Furthermore, there are multiple examples

of clinical prodrugs with known bacterial resistance mechanisms

linked to enzyme mutations. For example, the nitroimidazole class

of antibiotics (e.g., metronidazole, dimetridazole, tinidazole, etc.),

which is used to treat anaerobic bacteria (e.g., Enterococcus species,

Clostridium species, Helicobacter pylori, etc.) represent prodrugs

that are activated by bacterial reductases (Edwards, 1993). Genetic

studies have revealed that bacterial resistance to nitroimidazole

antibiotics is caused by either partial or complete reduction in

expression of genes (e.g., rdxA, frxA, etc.) encoding the reductases

that activate the prodrug (Jenks et al, 1999; Marais et al, 2003;

Leiros et al, 2004). As another example, the major cause of resis-

tance to nitrofuran prodrugs are mutations to nfsA and nfsB, which

are the enzymes responsible for activating the nitrofuran compound

(Le & Rakonjac, 2021).

Here, we quantitatively studied the driving parameters that pre-

dict the transition between prodrug escape and successful treatment.

We envision that this body of work will improve the process of

prodrug development by providing a quantitative metric for

predicting success, ultimately helping to reduce the burden of antibi-

otic failure.

Materials and Methods

Protease cleavage assays

All protease cleavage assays were performed with a BioTek Cytation

5 Imaging Plate Reader, taking fluorescent measurements at 485/

528 nm (excitation/emission) for read-outs measuring peptide sub-

strates terminated with FITC (Fluorescein isothiocyanate). Kinetic

measurements were taken every minute over the course of 60–
120 min at 37°C. Tobacco etch virus protease (TEVp), along with its

substrate and buffer was obtained from Anaspec, Inc. (Fremont,

CA). Activity RFU measurements were normalized to time 0 mea-

surement, and as such represent fold change in signal. Outer Mem-

brane Protease T (i.e., OmpT, Protease 7) was purchased from

Lifespan Biosciences (Seattle, WA). OmpT fluorescent peptide sub-

strate was custom ordered from Genscript (Piscataway, NJ).

Bacterial culture and cytotoxicity measurement

DH5α Escherichia coli were a gift from Todd Sulchek’s BioMEMS lab

at Georgia Tech. E. coli were cultured in LB broth (Lennox) at 37°C
and plated on LB agar (Lennox) plates. LB broth was purchased

from Millipore Sigma (Burlington, MA) and LB agar was purchased

from Invitrogen (Carlsbad, CA). AMP and locked AMP were custom

ordered from Genscript (Piscataway, NJ). See Table EV1 for more

information. Bacteria were grown to a concentration of 109 CFU/ml
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before being used for experiments. Concentration was estimated by

measuring the OD600 of the bacterial suspension, and assuming an

OD600 of 1.000 corresponds to a concentration of 8 × 108 CFU/ml.

Bacterial cell viability was measured by making eight 10-fold serial

dilutions, and plating three 10-µl spots on an LB agar plate. Plates

were incubated overnight at 37°C, and CFUs were counted.

Untreated bacteria CFU counts served as control for 0% cytotoxicity,

and bacteria + IPA (or 0 countable CFUs) served as control for

100% cytotoxicity.

Computational model

The ODE modelling and solutions were performed in MATLAB

2020b. Code can be found in supplementary information.

Statistical analysis

Statistical analysis was performed using statistical packages

included in GraphPad Prism 6. To assess the significance of an

increase in signal due to protease cleavage, we used a two-way

ANOVA (without repeated measures) followed by Sidak’s multiple

comparisons test. A one-way ANOVA followed by Dunnett’s multi-

ple comparisons test was used to compare experimental means to

cells only control bacterial viability assays. Two-way ANOVA

followed by Sidak’s multiple comparisons test used to compare

experimental means to control for bacterial cytotoxicity at multiple

starting concentrations.

Supplementary analysis

To determine which steady-state solution is the stable steady-state

for our model, we perform a linear stability analysis on the system

of differential equations.

First, we rewrite the model in dimensionless variables and

parameters:

_X=kcat ¼ π1Xð1� XÞ � π2XZ

_Y=kcat ¼ �π3X
Y

1þ Y

_Z=kcat ¼ π3X
Y

1þ Y
� π4XZ

Where the dimensionless variables are defined as:

X ¼ B

Bmax
, Y ¼ L

KM
, Z ¼ U

KM

And the dimensionless parameters are defined as:

π1 ¼ r

kcat
, π2 ¼ aKM

kcat
, π3 ¼ Bmax

KM
, π4 ¼ bBmax

kcat

Steady-state Solution 1: For the steady-state solution where

B = 0, the dimensionless variable solutions that follow are:

X ¼ 0, Y ¼ 1
π2π3
π1π4

� 1
, Z ¼ π1

π2

The resulting Jacobian, J, and eigenvalues, λ, are:

J ¼
0 0 0

�π1π4=π2 0 0

0 0 0

2
64

3
75, λ ¼ 0, 0, 0

Steady-state Solution 2: For the steady-state solution where B =
Bmax, the dimensionless variable solutions that follow are:

X ¼ 1, Y ¼ 0, Z ¼ 0

The resulting Jacobian, J, and eigenvalues, λ, are:

J ¼
�π1 0 0

0 �π3 0

0 π3 �π4

2
64

3
75, λ ¼ �π1, � π3, � π4

Since the eigenvalues for steady-state solution 2 (i.e., B = Bmax)

are all negative, whereas the eigenvalues for steady-state solution 1

(B = 0) are all equal to 0, we can conclude that steady-state solution

2 is stable and steady-state solution 1 is unstable.

Data availability

The data supporting the findings of this study are available

within the paper and EV files. The code is available within the

EV files and at https://github.com/brandon-holt/bacterial-

advantage-heuristic.

Expanded View for this article is available online.
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