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A B S T R A C T   

Deep neural networks (DNNs) have been effective in classifying structural magnetic resonance 
imaging (sMRI) images for Alzheimer’s disease (AD) diagnosis. In this study, we propose a novel 
two-phase slice-to-volume feature representation (SVFR) framework for AD diagnosis. Specif-
ically, we design a slice-level feature extractor to automatically select informative slice images 
and extract their slice-level features, by combining DNN and clustering models. Furthermore, we 
propose a joint volume-level feature generator and classifier to hierarchically aggregate the slice- 
level features into volume-level features and to classify images, by devising a spatial pyramid set 
pooling module and a fusion module. Experimental results demonstrate the superior performance 
of the proposed SVFR, surpassing the majority of the state-of-the-art methods and achieving 
comparable results to the best-performing approach. Experimental results also showcase the ef-
ficacy of the slice-level feature extractor in the selection of informative slice images, as well as the 
effectiveness of the volume-level feature generator and classifier in the integration of slice-level 
features for image classification. The source code for this study is publicly available at https:// 
github.com/gll89/SVFR.   

1. Introduction 

As one of the most common neurodegenerative diseases found in the elderly, Alzheimer’s Disease (AD) accounts for about two- 
thirds of dementia [1]. The predominant clinical symptoms of AD contain progressive memory loss and cognitive deficits, which 
can severely affect the daily life of AD patients. An individual converts into AD every 5 s worldwide, and over 33 million people are 
living with AD globally and the number will be 102 million by 2050 [2], which make AD one of the leading causes of mortality among 
the elderly. Even though AD is incurable and worsens over time due to its irreversible damage to brain cells, treatments, including 
medications and management strategies, are helpful to delay the deterioration of the disease [3,4]. Diagnosing AD as early and 
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accurately as possible is thus critical for AD patients to receive timely treatments and slow down the deterioration of the disease. 
In clinical practice, two common ways to diagnose AD are measuring the changes of brain tissues and testing the loss of cognition. 

Studies demonstrate that the changes of brain tissues have begun 20 years or more before cognition loss [5]. Structural magnetic 
resonance imaging (sMRI) images are widely used for assisting doctors to diagnose AD because of their safe and non-invasive way to 
visualize brain tissues [6,7]. Numerous studies have devoted to automatic AD diagnosis using sMRI images in the last several decades. 
Conventionally, the pipelines for these methods mainly include image preprocessing, hand-designed feature extraction, and diagnosis 
using standard machine learning methods, such as support vector machine [8] or logistical regression [9]. Nevertheless, these 
traditional methods are limited by the subjectivity of hand-designed features and their complicated extraction process. Recently, a 
large number of deep neural networks (DNNs) have been developed for medical image analysis due to their automatic abstraction of 
low-to-high level latent feature representations [10]. Many of these DNNs are used for AD diagnosis. These methods can be divided into 
two main categories, volume-related 3D DNN-based methods and slice-related 2D DNN-based methods. 

The volume-related 3D DNN-based methods take 3D sMRI images as input and design 3D DNNs to extract useful image features for 
AD diagnosis. These methods are divided into three sub-categories: the regions-of-interest-based, patch-based, and whole-image-based 
methods. Regions-of-interest-based methods typically commence by segmenting pre-defined 3D regions-of-interest, such as hippo-
campus, from each 3D sMRI image under the guidance of AD experts. Subsequently, these methods extract features from the segmented 
regions-of-interest using specifically designed 3D convolutional neural networks (CNNs) [11,12]. Nonetheless, a notable drawback of 
these approaches lies in the fact that the pre-defined regions-of-interests exhibit varibility across different AD experts, consequently 
leading to subjectivity and partiality in the extracted features. The patch-based methods first select informative image patches in a 
data-driven manner and then extract and fuse the features of these image patches for AD diagnosis using deep general or multi-instance 
CNNs [13–19]. This kind of method registers each sMRI image into a brain template, losing the individual-specificity. Whole--
image-based methods in AD diagnosis directly extract salient features from entire 3D sMRI images using fine-tuned state-of-the-art 3D 
CNNs or designing new CNNs [20–27]. These methods do not require additional guidance from AD experts. However, it is noteworthy 
that such approaches are prone to overfitting due to the limited number of available 3D sMRI images, the substantial volume of each 
sMRI image, and the relatively smaller volume of lesion regions. 

The slice-related 2D DNN-based methods utilize 2D slice images, selected from 3D sMRI images, as input. These methods devise 2D 
DNNs to extract slice-level features and integrate these slice-level features for AD diagnosis. One type of the slice-related 2D CNN 
method takes the slice images from the three views, i.e, the axial, sagittal, and coronal views, as input. For instance, Aderghal et al. 
proposed a 2D+ƹ approach for AD diagnosis [28]. Specifically, they first segmented 3D hippocampal image patches and then selected 
the three middle slice images of the three views from the 3D hippocampal image patches, together with their individual two closest 
slice images, to form three input images. After that, they devised three parallel CNNs to learn the features of three input images, 
respectively, and an FC layer to fuse these features for final classification. Similarly, Islam and Zhang [29] and Mehmood et al. [30] 
also took the slice images from the three views as three input images. Specifically, Islam and Zhang [29] first trained three parallel 
CNNs for the three input images and then utilized the majority voting to fuse the results of the three CNNs for AD diagnosis. Mehmood 
et al. [30] developed a deep siamese CNN for AD diagnosis. However, the selection of slice images was not well introduced in Refs. [29, 
30]. The other kind of slice-related 2D CNN-based method solely considers slice images from one of the three views as input. For 
example, Valliani and Soni took the median slice image in the axial view of each sMRI image as input and fine-tuned the advanced 
ResNet [31] for AD diagnosis [31,32]. Gao et al. utilized the middle 50 slice images in the sagittal view of each MRI image as input 
under the guidance of neurologists [33]. This approach fine-tuned ResNet to extract the features of these slice images first. After that, 
the bag-of-words strategy [34] was utilized to integrate these slice-level features. Qiu et al. selected a “signature” slice image in the 
axial view of each sMRI image in a semi-automatic manner, together with its two adjacent slice images, as input. They designed three 
individual CNNs for each of the three slice images for slice-level feature extraction and slice image classification. After that, they 
employed the majority voting strategy for sMRI image classification [35]. 

In clinic, when diagnosing a patient with an sMRI image, neurologists first identify the disease-related slice images from the sMRI 
image, then analyze these slice images to collect useful information, and finally integrate such information to make a decision for the 
patient. Motivated by this diagnosing process, we explore a novel slice-related 2D DNN-based framework, namely an automatic slice- 
to-volume feature representation (SVFR) framework, to distinguish AD from normal controls (NC), as depicted in Fig. 1. SVFR consists 
of a slice-level feature extractor (SFE) and a joint volume-level feature generator and classifier (VFGC). SFE aims to automatically 
select informative slice images from sMRI images and extract the features of these informative slice images. It is achieved by combining 
a clustering model and CNNs. The goal of VFGC is to hierarchically fuse the slice-level features of each sMRI image into a volume-level 
feature and make a final decision. VFGC is realized through a devised spatial pyramid and set pooling (SPSP) module and a fusion 
module. Our key contributions are as below. 

Fig. 1. Framework of SVFR. It consists of a slice-level feature extractor and a joint volume-level feature generator and classifier.  
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- We propose a novel SVFR framework for AD diagnosis. This framework is motivated by the diagnosing process of neurologists and it 
makes full use of the merits of the slice images, i.e, the large number of slice images and the small size of slice images.  

- In SFE, we combine a clustering model and CNNs for automatic selection and feature extraction of informative slice images.  
- In VFGC, we design an SPSP module and a fusion module to hierarchically fuse the slice-level features into volume-level features for 

AD diagnosis. 

The rest of the paper is organized as follows. Section 2 describes the proposed method and the dataset used. Section 3 shows 
experimental results and discussion. At last, the paper is concluded in Section 4. 

2. Methodology 

The proposed SVFR fully leverages the benefits of slice images, i.e, the large number and small size of slice images. These benefits 
enhance the rapid convergence and better performance of SVFR. SFE and VFGC are the two phases of SVFR. The goal of SFE is to select 
informative slice images and extract their discriminative slice-level features. The target of VFGC is to generate volume-level features 
and to further make final classification. 

2.1. Slice-level feature extractor 

The challenge of slice-level feature extraction is the lack of slice-level labels. To deal with this issue, the simplest way is to assign 
each slice image the label of its corresponding 3D sMRI image. However, this assignment manner brings in numerous noisy labels for 
the slice images of AD samples, because disease-related regions generally occur in several brain structures yet not the whole brain. 
However, the above assignment manner gives the slice images with normal brain structures the label of AD. To deal with the noisy 
labels in AD samples, we devise SFE motivated by the prior knowledge that disease-related regions occur in certain brain structures 
such as hippocampi, amygdalae, and ventricles. 

SFE consists of slice image clustering, slice image selection, and slice feature extraction. Fig. 2 shows its pipeline. To be specific, 
slice images are first clustered according to brain structures. After that, informative slice image groups are preserved and noisy slice 
image groups are eliminated based on the classification performance of slice groups. At last, the features of informative slice images are 
extracted. We depict the details of each step as below. 

Slice image clustering. Different levels of slice images in the axial view of sMRI images present diverse brain structures, as shown in 
Fig. 3. Clustering based on the phenotype of slice images can divide slice images with different brain structures into various groups. 
Specifically, each slice image is first represented by a slice vector by zooming out the slice image 10 times and sequentially concat-
enating the row pixels of the zoomed image. After that, all the slice vectors are clustered into K groups by using K-means [36]. The K 
groups of slice images are denoted as {S1, .., Sk, .., SK}, displaying K groups of distinct brain structures. It is noted that each slice group 
has the uncertain number of slice images. 

Slice image selection. As aforementioned, several brain structures are closely related to AD, while other brain structures are not 
impacted by the disease. This indicates that different slice groups present various abilities in disease diagnosis. The power of a slice 
group in disease diagnosis can be determined based on the classification performance of the slice group. In detail, K advanced pre- 
trained ResNets, i.e, {ResNet1, .., ResNetk, .., ResNetK}, are employed as the classifiers of the K groups of slice images. Each Sk is 
divided into the training and validation sets to train ResNetk. Moreover, cross-entropy is employed as the loss function, which is 
described in the following Eq. (1), 

L=
∑T

i=1

∑J

j=1
yj log

(
pj
)

(1)  

where L denotes the loss, T is the number of the training samples, J is the number of categories, yj is the one-hot format of the true label 
of a slice image, and pj represents the probability of the slice image belonging to the jth category. 

The classification accuracy of the well-trained ResNetk on the corresponding validation set of Sk is represented as acc_vk. An 
informative slice group SIm is defined as 

Fig. 2. Pipeline of SFE. It is comprised of slice image clustering, slice image selection, and slice feature extraction.  
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SI (m) = S (k) &
(

acc v (k) ˃ θ
)

(2)  

where θ is a threshold and its value will be discussed in the section of Results and Discussion; m is the index of the informative slice 
group. Inversely, the slice group with the classification accuracy on the validation set not larger than θ is called an uninformative slice 
group. 

The validation sets of the informative slice groups are more accurately classified than the validation sets of the uninformative slice 
groups, even though all the slice groups are from the same dataset and are trained using the same CNN architectures and settings. We 
thus obtain that the classification accuracy differences among the validation sets are caused by the only variable factor, i.e, the 
assigned labels of slice images. That is, the labels of the slice images belonging to the informative slice groups tend to be right, while the 
uninformative slice groups contain more noisy labels and are thus discarded. 

Slice feature extraction. The layers from the 1st to the last convolutional layers of the well-trained ResNetm are utilized as the feature 
extractor of the corresponding informative slice groups and denoted as FEm. The feature map set of SIm generated through FEm is 
denoted as Gm = {gm1, …, gmn, …, gmN}, where gmn ∈ RL*W*D is the feature map of the nth slice image in SIm; N is the number of slice 
images in SIm and it is a variable, indicating various numbers of slice images among informative slice groups; L, W, and D are the length, 
width, and depth of a feature map, respectively. The slice-level feature map sets of all the informative slice groups, {SI1,.., SIm,.., SIM }, 
are denoted as {G1 …, Gm …, GM}, where M is the number of informative slice groups. 

2.2. Volume-level feature generator and classifier 

Since intra-group slice images have similar brain structures and inter-group slice images have different brain structures, the fea-
tures extracted from intra-group slice images (i.e, intra-group features) are homogeneous and the features extracted from inter-group 
slice images (i.e, inter-group features) are heterogeneous. Based on this, VFGC is designed to hierarchically aggregate the homoge-
neous and heterogeneous slice-level feature maps for sMRI image classification. Specifically, each intra-group feature map set is first 
fused into a feature vector using the proposed SPSP module. These inter-group feature vectors are then fused for volume-level feature 
generation and final classification using the devised FC module. The structure of VFGC is shown in Fig. 4. 

Intra-group feature map fusion. Each intra-group feature map set, Gm = {gm1, …, gmn, …, gmN}, is fused by using the proposed SPSP 
module. The detailed structure of the SPSP module is displayed in Table 1. It includes two convolutional blocks, a spatial pyramid 
pooling block, set pooling layers, global average pooling (GAP) layers, and a concatenating layer. The two convolutional blocks are to 
extract high-level semantic feature maps. The spatial pyramid pooling block aims to extract different-scale semantic features, 
considering the various sizes of disease-related regions. The set pooling layer is to deal with the variable numbers of feature maps in Gm 
and meanwhile extract prominent features. It is realized by the maximum pooling along the channel dimension, i.e, the first dimension 
of Gm ∈ RN*L*W*D, and generates a feature map with the size of 1*L*W*D. GAP generates a feature vector to emphasize discriminative 
features for classification. The concatenating layer is used to cascade multiple feature vectors into a feature vector. 

A FC layer and an softmax layer are connected after the SPSP module for the training of SPSP. Cross-entropy is employed as the loss 
function. After training, the well-trained SPSP module is employed for intra-group feature map fusion. Formally,  

Fm––SPSP(Gm)                                                                                                                                                                                

where the generated feature vector Fm ∈ R1*MS*D and MS represents the number of scales in the spatial pyramid pooling block. The 

Fig. 3. Different levels of slice images of an sMRI image in the axial view. The slice images from the 1st to 5th rows show various brain structures.  
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feature vector set {F1, …, Fm, …, FM} is produced for {G1 …, Gm …, GM} by using the well-trained SPSP. 
Inter-group feature vector fusion and classification. We devise the FC module to merge the heterogeneous inter-group feature vectors 

{F1, …, Fm, …, FM} for volume-level feature generation and sMRI classification. The detailed structure of the FC module is displayed in 
Table 2. The concatenating layer is to connect M feature vectors into a long feature vector. The FC block is used to fully fuse the inter- 
group feature vectors. A volume-level feature vector is produced after the FC block. The softmax layer is used to normalize the output 
for classification. Moreover, cross-entropy is further utilized as the loss function. 

2.3. Dataset and preprocessing 

We utilize the public Alzheimer’s Disease Neuroimaging Initiative (ADNI) 1 as our experimental data. ADNI is launched in 2003 as a 
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 
serial magnetic resonance imaging, positron emission tomography, other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of mild cognitive impairment and early Alzheimer’s disease. In this study, we 
select total 788 sMRI images from ADNI, which consist of 367 AD samples and 421 NC ones. These sMRI images are from different 
subjects at the baseline time and are acquired using 1.5T scanners with the protocol of sagittal T1-weighted MPRAGE. Each sMRI 
image has a label. However, there is no slice-level label. The demographic and clinical information are summarized in Table 3. 

We perform several preprocessing steps on the sMRI images. First, we utilize the brain extraction tool of FMRIB Software Library 
5.0 2 to remove the skull and dura. The exclusive option of “B” is used during this process to achieve accurate neck removal. Next, we 
utilize FMRIB Software Library 5.0 to resample all sMRI images into a spatial resolution of 1*1*1 mm3. This is accomplished by linearly 
aligning the sMRI images to the template of MNI152, resulting in sMRI images with a size of 182*218*182. However, these resampled 
sMRI images include a large background portion. To remove the unnecessary background and maintain the brain’s morphology, we 
perform cropping operations on each sMRI image. Specifically, we eliminate the background along the minimum vertical external 
matrix encompassing the brain portion. Consequently, the sizes of sMRI images vary. To ensure a consistent size and preserve the 
brain’s morphology, we apply a scaling operation to each sMRI image, maintaining the image’s original ratio, until the size of its 
maximum side reach 128. Tri-linear interpolation is utilized in this process, Additionally, we pad the other two sides of each sMRI 
image to achieve a final size of 128*128*128. Through these operations, all the sMRI images are standardized to a size of 128*128*128 
without deformations. We can thereby obtain 128 slice images from each sMRI image in its axial view and each slice image has the 
same label of its corresponding sMRI image. The pixel values of each slice image were normalized into [0, 1]. 

Fig. 4. Structure of VFGC. It consists of two parts, intra-group feature map fusion and inter-group feature vector fusion and classification.  

Table 1 
Detailed structure of the SPSP module.   

layers 

Conv block1 1*1*512 convolution layer with stride = 1, ReLU, 
1*1*1024 convolution layer with stride = 1, ReLU; 

Spatial pyramid pooling block 3*3 max pooling layer with stride = 3, 
1*1*1024 convolution layer with stride = 1, ReLU; 
2*2 max pooling layer with stride = 2, 
1*1*1024 convolution layer with stride = 1, ReLU; 
1*1 max pooling layer with stride = 1; 
1*1*1024 convolution layer with stride = 1, ReLU; 

Set pooling 1D adaptive max pooling layer 
Conv block2 1*1*1024 convolution layer with stride = 1, ReLU; 
GAP Global average pooling; 
Concat Concatenating layer.  

1 http://adni.loni.usc.edu/.  
2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET. 
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3. Results and discussion 

3.1. Evaluation metrics and Implementation details 

The proposed SVFR is evaluated on the task of classifying AD and NC. In the task, we regard AD subjects as positive cases and NC 
subjects as negative cases. We utilize accuracy (ACC), specificity (SPE), sensitivity (SEN, also called Recall), precision (PRE), and F1- 
score (F1) to evaluate our method. The computation of the five metrics is described in Eqs. (3)–(7). 

ACC=(TP+TN) / (TP+TN+ FP+FN) (3)  

SPE=TN / (TN+FP) (4)  

SEN=TP / (TP+ FN) (5)  

PRE=TP / (TP+FP) (6)  

F1=(2×PRE×Recall) / (PRE+Recall) (7)  

where TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives, and FN is the number 
of false negatives. 

We divide the sMRI images into the training, validation, and test sets with a ratio of 7:2:1. The numbers of the sMRI images with the 
label of AD in the training, validation, and test sets have the ratio of 7:2:1 and the sMRI images with the label of NC in the three sets also 
have the same ratio, which avoids bringing into extra data imbalance. Importantly, it should be noted that the splitting of the data is 
performed on the participant-level, rather than the slice-level. The training and validation sets are used to train SVFR. Specifically, for 
SFE, we first cluster the slice images in both the training and validation sets into K groups, and then adjust each group of slice images 
into training and validation sets according to the above divided recording. After that, we separately train K ResNets using the K groups 
of training and validation sets, with 60 epochs and a batch size of 100. Furthermore, we determine M informative slice groups based on 
Eq. (2), and generate M slice-level feature map sets for the informative slice groups using their corresponding feature extractors. For 
VFGC, we first train M SPSP modules together with their FC and softmax layers with 60 epochs and a batch size of 1, by using their 
corresponding slice-level feature map sets. We then employ M well-trained SPSP modules to fuse their corresponding slice-level feature 
maps into M feature vectors. After that, we train the FC module using the M feature vectors with 40 epochs and a batch size of 240 for 
volume-level feature generation and sMRI classification. 

We train all the methods, including SVFR and the following comparison methods, on an NVIDIA RTX 2080Ti GPU. During the 
training process, these methods utilize the optimizer of stochastic gradient descent with the momentum [37] of 0.9 and with the weight 
decay of 0.0001. We initialize the learning rates of these methods to 0.001 and then lower them by a tenth every 15 epochs. 

3.2. Comparison results with state-of-the-art methods 

The proposed SVFR are compared with seven automatic CNN-based methods. They are the patch-based method in Ref. [18], the 
residual-based method in Ref. [20], the attention-based method in Ref. [21], the self-attention-based method in Ref. [26], the 
contrastive-learning-based method in Ref. [27], the ranking-based method in Ref. [38] and the slice-related method in Ref. [28]. As 
sMRI images the methods utilized are different, we implement all these methods and evaluate them on our downloaded sMRI images. 
To be specific, the patch-based method [18] devises a participant-specific lesion probability map for patch selection and then design a 
multilayer perceptron for AD diagnosis. The residual-based method [20] utilizes the 3D ResNet for AD diagnosis. The attention-based 

Table 2 
Structure of the FC module.   

layers 

Concat Concatenating layer; 
FC block M × MS × D FC layer, 

M × MS × D FC layer, 
M × MS × D FC layer, 
2 FC layer; 

Softmax Softmax function.  

Table 3 
Demographic and clinic information of the 788 subjects (Age, Edu, and MMSE are defined as mean ± standard deviation).   

Number Sex(F/M) Age Edu MMSE 

AD 367 176/191 75.0 ± 7.9 15.1 ± 3.0 23.2 ± 2.1 
NC 421 218/203 74.6 ± 5.8 16.3 ± 2.7 29.1 ± 1.1  
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method [21] designs an attention-based 3D ResNet to identify AD and NC. The attention block is realized by a convolutional layer and a 
rectified linear unit layer. The self-attention-based method [26] introduces a residual self-attention block to capture discriminative 
local, global and spatial features for AD diagnosis. The contrastive-learning-based method [27] devises a contrastive loss using sMRI 
images with group categories comparative information. The ranking-based method [38] proposes a triple-based ranking network 
architecture and loss to learn the ordinal relations among samples. The strategy of triplet loss in this method can be employed for sMRI 
image-based AD diagnosis, even though this method is for colorectal cancer grading. The slice-related method [28] designs a 2D+ƹ 
approach for AD diagnosis, as illustrated in Introduction. The comparison results are summarized in Table 4. 

It can be seen that the proposed SVFR surpass the majority of the state-of-the-art methods and achieves comparable results 
compared with the best-performing approach. Specifically, our SVFR is superior to the patch-based and self-attention-based, and 
residual-based methods referring to all the metrics, especially outperforming the patch-based and self-attention-based methods a lot. 
Moreover, our SVFR is better than the attention-based and slice-based methods in terms of ACC, SEN, PRE, and F1, and a little lower 
than the two comparison methods about SPE. Moreover, our SVFR outperforms the contrastive-learning-based method regarding to 
ACC, SEN, and F1 by 5.81 %, 11.91 %, and 4.66 %, and is lower than the comparison method regarding to SPE and PRE by 2.27 % and 
2.8 %. Additionally, our SVFR achieves better SEN, almost the same ACC and F1, and lower SPE and PRE values compared with the 
ranking-based method. These findings strongly indicate that the proposed SVFR holds substantial potential for AD diagnosis. 

3.3. Selection of the hyper-parameters 

There are three hyper-parameters in our proposed framework, which are K in K-means and the threshold θ of the first phase of SFE, 
and MS in the SPSP block of the second phase. Among the three hyper-parameters, K and MS determinate the structures of the 
framework, and are first evaluated. After that, for ease of description, we determine the value of the threshold θ in the section of 3.4. 

We investigate K and MS based on the classification accuracy on the validation set. Specifically, we vary K in {5, 7, 9, 11, 13} and MS 
in {1, 2, 3}, and summarize the results in Fig. 5. We can see that the accuracy achieves the highest when K is set as 9 and MS is set as 2, 
respectively. As such, all the experiments were evaluated with the two values. 

3.4. Performance of the two phases of S2Veer and related decisions for the final framework 

In this section, we display the performance of the two phases of SVFR, i.e, SFE and VFGC, and meanwhile illustrate how we select 
the value of the hyper-parameter θ by two steps. Moreover, we also illustrate that how we made decisions to obtain the final framework 
based on the performance of the two phases. 

Evaluation for SFE. During this phase, we display the ACC values of the 9 clusters in the validation set first and then illustrate the 
candidate informative slice groups. Further, we show the ACC values of the candidate informative slice groups in the test set. 

Table 5 summarizes the ACC values of the 9 slice groups in the validation set, i.e, S1, S2, …, and S9. We can see that the ACC values 
among these slice groups vary a lot. We select informative slice groups from the 9 slice groups based on Eq. (2). Specifically, in order to 
preserve more information, we set the preliminary value of θ to a low value of 70 %. Therefore, S1, S4, S5, and S7 are regarded as the 
candidate informative slice groups. Inversely, S2, S3, S6, S8, and S9 are the uninformative slice groups. 

For the test set, we first cluster the slice images into 9 groups based on the cluster centers, obtained based on the training and 
validation sets. After that, we select and evaluate the four candidate informative slice groups, i.e, S1, S4, S5, and S7, using the four 
corresponding well-trained ResNets. Their ACC values are shown in Table 6. We find that S1, S4, and S7 in the test set hold similar ACC 
to those in the validation set, demonstrating superior performance. However, the ACC value of S5 in the test set is lower than that in the 
validation set by 8.27 %. 

From Tables 5 and 6, we can see that, compared with the candidate informative slice group S5, the three candidate informative slice 
groups, i.e, S1, S4, and S7, hold more stable and better performance, which lays good foundations for the follow-up feature fusion and 
classification. 

Evaluation for VFGC. We first display the ACC values of the four candidate informative groups in the validation set for the slice 
group classification, by using the SPSP module and the corresponding classifier, and meanwhile determine the value of θ and the 
informative slice groups based on the classification results. After that, we display the final performance of the FC module for volume- 
level feature generation and final classification between AD and NC. 

Table 7 summarizes the ACC values of the four candidate informative slice groups in the validation set. We find that, in the 

Table 4 
Comparison results with state-of-the-art methods on the test set (%).  

Methods Publication ACC SPE SEN PRE F1 

Patch [18] Brain 2020 78.95 78.57 79.41 75.00 77.14 
Residual [20] ISBI 2017 85.5 80.95 91.18 79.49 84.93 
Attention [21] ISBI 2019 84.21 85.71 82.35 82.35 82.35 
Self-attention [26] JBHI 2020 76.47 70.59 82.35 73.68 77.78 
Contrastive [27] CMPB 2021 82.35 84.62 80.95 89.47 85.00 
Ranking [38] MICCAI 2021 88.24 92.31 85.71 94.74 90.00 
Slice [29] ICMR 2017 80.26 83.33 76.47 78.78 77.61 
Ours __ 88.16 82.35 92.86 86.67 89.66  
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validation set, the three candidate informative slice groups of S1, S4, and S7 achieve higher ACC values compared with the ACC values 
of S1, S4, and S7 in Table 5. Specifically, the ACC values of S1, S4, and S7 in Table 7 are 6.81 %, 10.53 %, and 8.10 % larger than those in 
Table 5. However, the ACC value of S5 in Table 7 is 57.24 %, much lower than that in Table 5 and slightly better than random guessing. 
Based on the aforementioned results, we set the final value of θ is set to 75 %. Therefore, S1, S4, and S7 is selected as informative slice 
groups and S5 is an uninformative slice group. 

Table 8 summarizes the ACC values of the three informative slice groups in the test set. Similarly, we find that the three informative 
slice groups achieve higher ACC values when compared with the ACC values of the three informative slice groups in the test set in 
Table 6. Specifically, the ACC values of S1, S4, and S7 in Table 5 are 2.82 %, 8.25 %, and 9.77 % bigger than those in Table 6. These 
results demonstrate the effectiveness of the SPSP module for intra-group feature map fusion. Furthermore, we find that the ACC values 
of S1, S4, and S7 in the test set for slice group classification are close to those in the validation set in Table 7. This result indicates the 
better generalization ability of the SPSP module for intra-group feature map fusion. 

Fig. 6 displays the performance of both the validation and test sets using the FC module for volume-level feature generation and 
final classification, where the blue histograms denote the five metrics of the validation set and the red histograms represent the 
performance of the test set. We find that the ACC values of the validation set and the test set in Fig. 6 separately increase by 7.23 % and 
5.27 % when compared with the ACC values of the validation and test sets in Table 7. This result indicates that the FC block can 
effectively fuse the inter-group feature vectors and further improve the accuracy of the classification between AD and NC. 

It is note that the value of θ is determined by two steps. Initially, we set the preliminary value of θ to a low value of 70 % based on 
the results of Table 5 (i.e., ACC values of the 9 slice groups in the validation set), leading to the selection of four candidate informative 
groups, namely, S1, S4, S5, and S7. In the subsequent phase, we count the ACC values of the four candidate informative groups in the 
validation set for the slice group classification, as shown in Table 7. The results manifests that three of the candidates– S1, S4, and S7– 
demonstrate elevated ACC values relative to their preceding values detailed in Table 5. Contrarily, the ACC value for the S5 group, as 
indexed in Table 7, stands at 57.24 %, a marked decrement from its initial representation in Table 5. This particular deviation, which 

Fig. 5. Classification accuracy of the validation set. The x-axis denotes the K values, the y-axis represents the accuracy values, and the three colors 
denote different MS values. 

Table 5 
ACC values of the 9 slice groups in the validation set (%).   

S1 S2 S3 S4 S5 

ACC 81.35 56.92 61.50 76.31 74.42  
S6 S7 S8 S9  

ACC 67.91 79.32 65.67 62.00   

Table 6 
ACC values of the candidates of informative slice groups in the test set (%).   

S1 S4 S5 S7 

ACC 80.07 75.96 66.15 74.44  

Table 7 
ACC values of the candidate informative slice groups in the validation set for the slice group classification (%).   

S1 S4 S5 S7 

ACC 88.16 86.84 57.24 87.42  

Table 8 
ACC values of the informative slice groups in the test set for the slice group classification (%).   

S1 S4 S7 

ACC 82.89 84.21 84.21  
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only marginally surpasses random conjecture, signifies the non-informative nature of the S5 group. Endeavoring to retain high-quality 
informative slice groups, a synthesis of insights derived from Tables 5 and 7 is executed, culminating in the ultimate value of θ at 75 %. 
Consequently, S1, S4, and S7 emerge as the elected informative slice groups. 

3.5. Ablation study 

We conduct an ablation study to validate the effectiveness of the informative slice groups, the intra-group feature map fusion, and 
the inter-group feature fusion and classification. The results are summarized in Table 9. Specifically, the first line is the results of using 
the selected informative slices for subject-level classification. Since the numbers of different subjects are variable, we first predicted 
slice-level labels and utilize the majority voting for subject-level classification. The second line is the results of utilizing the SPSP 
module to cope with the variable numbers of slices, obtaining intra-group-level labels, and finally employing the majority voting for 
subject-level classification. The last line is the results of the proposed method. 

We can see that the performance of the second line is better than that of the first line. This indicates the effectiveness of the intra- 
group feature map fusion. Additionally, the performance of the last line is the best. This indicates that the combining the three steps is 
most effective. 

3.6. Visualization of the clustering results and the selected slice groups 

We display the clustered 9 slice groups and the selected informative slice groups, which are highlighted in red rectangles, in Fig. 7. 
We can see that, the slices in each group have similar morphology. Specifically, Cluster 1 mainly contains cortices, hippocampi, 
cerebellum, and pons. Cluster 2, 3, 8, and 9 are the cortices with different sizes. Cluster 4 mainly includes lateral ventricles, hippo-
campi, and cortices. Cluster 5 mainly contains lateral ventricles and cortices. Cluster 6 contain the regions of cortices, cerebellums, and 
pons. Cluster 7 mainly shows cerebellums, where the cerebellums in Cluster 6 is smaller than these in Cluster 7. Moreover, we find that 
the informative slice groups of Cluster 1 and 4 contain an important AD biomarker, i.e., the obviously atrophic hippocampi. Addi-
tionally, Cluster 4 contains the biomarker of obviously atrophic cortices. We infer that the reason of Cluster 6 is selected as the 
informative slice group is because it contains the large size of cerellums, which are reported to be a potential biomark of AD [39]. 

4. Conclusions and future work 

In this paper, we investigate the slice-related methods for AD diagnosis. Specifically, we propose the novel SVFR framework to 
classify sMRI image for AD diagnosis. SVFR consists of two phases: SFE and VFGC. SFE aims to select informative slice groups and 
extract their discriminative slice-level features, by taking advantage of CNNs and the clustering model. The purpose of VFGC is to fuse 
the slice-level features into volume-level features and further to distinguish AD from NC, by the proposed SPSP module and FC module. 
Experimental results on the public ADNI dataset demonstrate the effectiveness of SFE in selecting informative slice groups and that of 
VFGC in aggregating slice-level features for image classification. Moreover, the combination of SFE and VLFC boosts the performance 
of SVFR for AD diagnosis by leveraging the benefits of slice images, i.e, the large number and the small size. 

In the future, we will focus on the following directions. At first, we will explore deep clustering methods to cluster slice images 
based on their high-level features, such as morphological features. This approach is necessary as the current K-means strategy is 
relatively straightforward and can be influenced by shallow features like grayscale. Secondly, we will optimize the framework of SVFR, 
since the current framework is a little separate and the FC module is a little over-fitting. Thirdly, we will take the heterogeneity caused 
by the sub-types of the disease into consideration. Finally, we will conduct more tasks, such as identifying mild cognitive impairment, 
stable mild cognitive impairment, and progressive mild cognitive impairment, to validate the robustness and generalization of the new 
framework. 

Data availability statement 

We utilize the public dataset ADNI, as described in Section 2.3. We also provide the subject ids we utilize in supplementary 
material. 

Fig. 6. Performance of the validation and test sets using the FC module (%).  
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Table 9 
Ablation study results on the test set (%).  

Informative slice classfication Intra-group classification Inter-group classification ACC SPE SEN PRE F1 

✓   78.95 73.53 83.33 79.55 81.40 
✓ ✓  86.67 82.35 90.24 86.05 88.10 
✓ ✓ ✓ 88.16 82.35 92.86 86.67 89.66  

Fig. 7. Visualization of the 9 slice groups and the selected informative slice groups that are marked by red rectangles  
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